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Abstract

Information systems, providing information about a set of objects re-
garding a set of attributes, are extended to multi-agent partial knowledge
information systems (MPISs). MPISs also account for missing informa-
tion. A logic which is sound and complete for MPISs is presented along
with its dynamic version. The latter accommodates ‘information updates’.

1 Introduction

An information or knowledge representation system [14] is a data table that is
used to represent information about a set of objects regarding a set of attributes.
Formally,

Definition 1 An information system (IS) S := (W,A,
⋃

a∈A V ala, f), com-
prises a non-empty set W of objects, a non-empty set A of attributes, a non-
empty set V ala of attribute values for each a ∈ A, and f : W ×A → ⋃

a∈A V ala
such that f(x, a) ∈ V ala.

In tabular form, S has columns labelled with attributes from A, and rows with
objects from W . Any group of columns, i.e. subset B of A, would induce an
equivalence (indiscernibility) relation IndS(B) on W :

x IndS(B) y if and only if f(x, a) = f(y, a) for all a ∈ B.

So x and y cannot be distinguished using only the information provided by the
attributes of the set B.

Given S and B ⊆ A, any concept represented as a subset (say) X of the
universe W , is approximated using the attributes from the set B from ‘within’
and ‘outside’, by its lower and upper approximations [14] defined as XIndS(B) :=
{[x]IndS(B) : [x]IndS(B) ⊆ X} and XIndS(B) := {[x]IndS(B) : [x]IndS(B)∩X 6= ∅}
respectively. [x]IndS(B) denotes the equivalence class of x(∈ W ) with respect to
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IndS(B). Any x in XIndS(B) is termed a positive element of X. Elements in
the complement of XIndS(B) are negative, while those in XIndS(B) \ XIndS(B)

are the boundary elements.
From Definition 1 it is clear that for each object of the domain, we have

information about the attribute value(s) of every attribute in A. But in reality,
this may not be the case. In this article, we follow Kryszkiewicz [8] to allow
a situation when there is no information available regarding an attribute a for
some object x. In order to accommodate this, we take a new symbol ε and write
‘f(x, a) = ε’. Thus we have the following definition.

Definition 2 A partial knowledge information system (PIS) is a tuple K :=
(W,A, V al ∪ {ε}, f), where W,A, V al :=

⋃
a∈A V ala are as in Definition 1, and

f : W ×A → V al ∪ {ε}.

Moreover, we consider a multi-agent scenario: agents come from a set (say)
Ag := {1, 2, . . . , n}, with a common domain of discourse, attribute set and
values, but each with her own value assignment function fi. Formally, this is
represented by a multi-agent partial knowledge information system (MPIS).

Definition 3 A MPIS is a tuple K := (W,A, V al ∪ {ε}, {fi}1≤i≤n), where for
each i = 1, 2, . . . , n, fi : W ×A → V al ∪ {ε}.

It may be mentioned that MPIS is actually a special case of a multi-source
knowledge representation system [7].
For each B ⊆ A and agent i, one then obtains IndK(i, B):

x IndK(i, B) y if and only if fi(x, a) = fi(y, a) for all a ∈ B.

Let us consider a MPIS. It is possible that an agent does not have information
regarding some attributes for some of the objects, or the agent may have ‘wrong’
information. Missing information may be provided or correction (or refinement)
of information may be made with the help of incoming information from outside
the system. On the other hand, an agent may update her information with help
from agents inside the system as well: she may borrow from information of
another agent. We note that the flow of information or action taken by agents
as mentioned above will have effects on the indiscernibility relations and hence
on elements in the extensions of concepts. Thus, for instance, it could happen
that a positive element of (the extension of) a concept may not remain so after
the update of information for an agent.

In this paper, we formally study these kinds of situations. Any discussion
on information here would be in terms of attributes and attribute values of the
objects. In Section 2, a logic LMPIS is proposed, a fragment (denoted Lf ) of
which is a logic for MPISs. Lf can express properties of indiscernibility relations
corresponding to any finite set of attributes, as well as notions related to de-
pendencies in data and data reduction [14]. LMPIS has attribute and attribute
value constants in its language. It should be remarked that there are logics
defined for information systems with this feature in the language (cf. [3]), but
none in our knowledge, which are sound and complete and which also relate
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attribute and attribute values with indiscernibility relations. In Section 3, we
briefly survey some of the logics for information systems and indiscernibility
relations to make a comparison. In Section 4, LMPIS is extended to define a
dynamic logic DLMPIS, which is related with LMPIS in the same way as dy-
namic epistemic logic is related with epistemic logic [19]. In the process, we
also obtain a dynamic version LD

f of Lf . The actions discussed above are ex-
pressible in DLMPIS and LD

f . Using these logics, one is able to explore how the
actions may affect properties of objects. We may remark that a temporal logic
was proposed in [4] to study the effect of flow of information on indiscernibility
relations. But a multi-agent scenario was not considered there, and the flow of
information itself did not appear in the picture. The dynamic logics presented
here overcome this limitation. Section 5 concludes the article.

2 The logic LMPIS

The language of LMPIS contains (i) a non-empty finite set Ag := {1, 2, . . . , n}
of agents, (ii) a non-empty countable set AC of attribute constants, (iii) for
each a ∈ AC, a non-empty finite set VCa of attribute value constants, (iv) a
non-empty countable set PV of propositional variables and (v) a special symbol
ε. Atomic formulae are the propositional variables p from PV , and descriptors
(i, a, v), for each a ∈ AC, v ∈ VCa ∪ {ε} and i ∈ Ag.
Using the Boolean logical connectives ¬ (negation) and ∧ (conjunction) and
unary modal connectives [(i, B)] for each B ⊆ AC and i ∈ Ag, well-formed
formulae (wffs) of LMPIS are then defined recursively as:

(i, a, v) | p | ¬α | α ∧ β | [(i, B)]α.

Let D denote the set of all descriptors, and L the set of all LMPIS-wffs.

2.1 Semantics

The semantics of LMPIS is based on the notion of a MPIS-structure.

Definition 4 A MPIS-structure is a tuple F := (W, {R(i, B)}i∈Ag, B⊆AC ,m),
where R(i, B) ⊆ W ×W and m : D → 2W satisfying the following.
(S1) For each a ∈ AC and i ∈ Ag,

⋃{m(i, a, v) : v ∈ VCa ∪ {ε}} = W .
(S2) For each a ∈ AC, m(i, a, v) ∩m(i, a, v′) = ∅, for v 6= v′.
(S3) For each B ⊆ AC, R(i, B) is an equivalence relation.
(S4) R(i, ∅) = W ×W .
(S5) R(i, B) ⊆ R(i, C) for C ⊆ B ⊆ AC.
(S6) For B ⊆ AC and b ∈ AC, R(i, B) ∩R(i, b) ⊆ R(i, B ∪ {b}).
(S7) For b ∈ AC, (w,w′) ∈ R(i, b) if and only if there exists v ∈ VCb ∪ {ε}
such that w, w′ ∈ m(i, b, v).
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Conditions (S1) and (S2) correspond to the fact that each object takes for
each attribute, exactly one value (which could be ε). (S6) and (S7) relate the
attribute, attribute value pairs with the indiscernibility relations.

Given a MPIS K := (W,AC, ⋃a∈AC VCa ∪ {ε}, {fi}i∈Ag), we get the MPIS-
structure F := (W, {IndK(i, B)}i∈Ag, B⊆AC ,mK), where mK(i, a, v) := {w ∈
W : fi(w, a) = v}. In the line of [15], let us call it the standard MPIS-structure
generated by K. The class of all standard MPIS-structures is thus identifiable
with the class of all MPISs.
Note that there may be a MPIS-structure F := (W, {R(i, B)}i∈Ag,B⊆AC ,m)
which does not satisfy the equality R(i, B) =

⋂
b∈B R(i, b). Such a MPIS-

structure cannot be standard and hence all MPIS-structures are not standard.
But for any F, we can determine F′ := (W, {R′(i, B)}i∈Ag, B⊆AC ,m), a stan-
dard MPIS-structure, such that R(i, B) = R′(i, B) for every i ∈ Ag and finite
subset B of AC. In fact, F′ is generated by the MPIS K := (W,AC, ⋃a∈AC VCa∪
{ε}, {fi}i∈Ag), where fi(x, a) = v if and only if x ∈ m(i, a, v). Then IndK(i, B) =
R(i, B) = R′(i, B) for all i ∈ Ag and finite B.

Definition 5 A MPIS model is a tuple M := (F, V ) where F is a MPIS-
structure and V : PV → 2W .
M is standard, if F is a standard MPIS-structure.

Let us now define satisfiability of a LMPIS-wff α in a MPIS model M at an
object w of the domain W , denoted as M, w |= α. We only give the cases for
atomic and modal wffs.

Definition 6 M, w |= (i, a, v) if and only if w ∈ m(i, a, v), for (i, a, v) ∈ D.
M, w |= p, if and only if w ∈ V (p), for p ∈ PV .
M, w |= [(i, B)]α, if and only if for all w′ in W with (w,w′) ∈ R(i, B),
M, w′ |= α.

Let Lf denote the set of all LMPIS-wffs which do not involve any modal
operator [(i, B)], where B is an infinite subset ofAC. One can prove the following
easily with the help of the earlier observations about standard MPIS structures.

Proposition 1 Any α ∈ Lf is satisfiable in the class of all MPIS models, if
and only if α is satisfiable in the class of all standard MPIS models.

2.2 Axiomatization of LMPIS

We now present an axiomatization for LMPIS. Note that for each i, the modal
operator [(i, ∅)] is interpreted as the global modal operator. Let F ⊆ AC and
B,C be infinite subsets of AC. Apart from the axioms of classical propositional
logic, we have

Ax1. [(i, F )](α → β) → ([(i, F )]α → [(i, F )]β);
Ax2. α → 〈(i, B)〉α;
Ax3. α → [(i, B)]〈(i, B)〉α;
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Ax4. 〈(i, B)〉〈(i, B)〉α → 〈(i, B)〉α;
Ax5. [(i, C)]α → [(i, B)]α for C ⊆ B;
Ax6. [(i, ∅)]α → [(j, F )]α;
Ax7. (i, a, v) → ¬(i, a, v′), for v 6= v′;
Ax8.

∨
v∈VCa

(i, a, v);
Ax9. (i, a, v) → [(i, {a})](i, a, v);
Ax10. ((i, b, v) ∧ [(i, F ∪ {b})]α) → [(i, F )]((i, b, v) → α);

Rules of inference:

N. α MP. α
[(i, F )]α α → β

β

The notion of theoremhood is defined in the standard way. We will write
` α, if α is a theorem of the above deductive system. Observe that for finite
B, it is not necessary to write the axioms Ax2-Ax4, as these can be deduced as
theorems. One can easily prove the following.

Theorem 1 (Soundness ) If ` α, then α is valid in the class of all MPIS
models.

Note that the modal operator [(i, B)] is very similar to the distributed
knowledge operator of epistemic logic. The relation corresponding to [(i, B)]
is given by

⋂
b∈B R(i, b). Completeness theorem of epistemic logic with dis-

tributed knowledge operator is proved, e.g. in [5, 17, 1]. But our approach
here is different, as LMPIS has the extra feature of descriptors. This fea-
ture, in fact, makes the completeness proof much simpler. The canonical model
MC := (WC , {RC(i, B)}i∈Ag,B⊆AC ,mC , V C) is defined in a standard way over
the collection of all maximally consistent sets of L-wffs, with mC(i, a, v) :=
{w ∈ WC : (i, a, v) ∈ w}. It can be proved that MC has all the properties
of a MPIS-structure except (S4) and (S7). But these can be incorporated by
considering the generated sub-model of MC , using RC(i, ∅). This gives

Theorem 2 (Completeness) If α is valid in the class of all MPIS models,
then ` α.

Due to Proposition 1, completeness of Lf with respect to the class of all
standard MPIS models is also obtained. Thus Lf serves as a logic for MPISs,
which can express properties of indiscernibility relations corresponding to finite
sets of attributes.

We note that Lf can also be proved to be decidable. Let us also remark here
that a trivial modification of LMPIS will lead to a logic for information systems
(cf. Definition 1).
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3 LMPIS in perspective

The salient features of LMPIS are as follows.
1. The semantics of LMPIS is based on structures of the form
F := (W, {R(i, B)}i∈Ag, B⊆AC ,m).
2. The language of LMPIS includes attribute and attribute value constants.
3. The semantics of LMPIS is defined such that attribute, attribute value pairs
are connected with the relations, just as in the case of information systems.
4. There is a sound and complete deductive system for LMPIS.

Let us briefly survey logics with one or more of these features.
Recall from Section 1 that given an information system S and a set B of

attributes, we get the equivalence relation IndS(B). On the other hand, given
an equivalence relation R on a domain U , one can define an information system
S with domain U and a set B of attributes such that IndS(B) = R. From
this correspondence, it would seem that the modal system S5 would serve as
a logic for information systems and for studying the indiscernibility relation.
But OrÃlowska, in [12], observed that when we say two objects are indiscernible,
the indiscernibility is meant not in the absolute sense, but with respect to a
set of attributes. Thus, whenever we mention indiscernibility of objects, the
concerned attribute set should be brought into the picture. A structure with
relative accessibility relations was thus proposed for the study of indiscernibility
relations. These are of the form (W, {RB}B⊆A), called information structure,
where W is a non-empty set, A is a non-empty set of parameters or attributes
and for each B ⊆ A, RB is an equivalence relation satisfying

R∅ = W ×W , and RB∪C = RB ∩RC .

OrÃlowska cited the axiomatization of a logic with semantics based on information
structures as an open problem. Later, Balbiani [1] gave a complete axiomatiza-
tion of the set of wffs valid in every information structure, using the technique
of copying introduced by Vakarelov [16]. However, we note that the language
of Balbiani’s logic does not contains attribute, attribute value constants.

Let us consider the question whether the information structure is suitable
for studying information systems? If we are only interested in indiscernibility
relations, then the answer appears to be yes. But, in reality, an information
system is more than an information structure. The former actually provides
information about what value an object takes for an attribute, and this is used
to generate the indiscernibility relations, which is not the case in an information
structure. Thus it seems that in order to define a logic for information systems,
one must have attribute, attribute value pairs explicitly in the syntax.

Several logics are defined with this last-mentioned feature in their language
[13, 10, 11, 9] (cf. [3]). Although the language of the logic NIL [13] contains
descriptors (a, v), it does not connect it with the indiscernibility relations. The
logic DIL presented in [9] does not have modal operators for indiscernibility
or any other relations induced by information systems. So it can only express
changes in attribute values of the objects with time, but not (changes in) set
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approximations. For the class of logics with attribute expressions defined in
[10, 11], we do not know of complete axiomatizations.

4 Dynamic logic for MPISs

The presence of attribute, attribute value pairs in the language of LMPIS enables
us to express the flow of information in terms of attribute and attribute values.
In this section, we define a dynamic logic for MPISs. The alphabet of DLMPIS
is that of LMPIS with the added symbols “, ” and “; ”. In order to define the
wffs of DLMPIS, we specify what is meant by information.

Definition 7 The set Inf of information is the smallest set such that

• (φ, P, a, v), (φ, P, j, a) ∈ Inf , where φ ∈ L, a ∈ AC, v ∈ VCa and P ⊆ Ag,

• if σ, σ′ ∈ Inf , then σ;σ′, σ ∨ σ′ ∈ Inf .

An information of the form (φ, i, a, v) or (φ, i, j, a) will be called an atomic
information. (φ, P, a, v) signifies that information is obtained by the agents
i ∈ P according to which the objects represented by φ take the value v for the
attribute a. On the other hand, (φ, P, j, a) signifies that the agents belonging to
the set P replace the information about the objects represented by φ regarding
the attribute a with the information the agent j has about these objects regard-
ing the same attribute a. Thus ((i, a, ε), i, j, a) says that the agent i adopts the
information regarding attribute a that agent j has about any object lying in
the interpretation of (i, a, ε) (i.e. an object for which i has no information for
attribute a). σ ∨ σ′ says that we have got the information that either σ is the
case or σ′. σ; σ′ means that first we get the information σ and then σ′.

The set LD of wffs of DLMPIS is obtained by extending the formation rules
of LMPIS-wffs with the clause:

if σ ∈ Inf, α ∈ LD then [σ]α ∈ LD.

Let LD
f denote the set of all DLMPIS-wffs which do not involve any modal

operator [(i, B)], where B is infinite. This fragment of DLMPIS gives the dy-
namic logic for MPISs.

4.1 Semantics

We first define the notion of update MI of a (standard) MPIS model M :=
(W, {R(i, B)}i∈Ag, B⊆AC ,m, V ), given an atomic information I of form (φ, i, a, v)
or (φ, i, j, a).
For φ ∈ L, let [[φ]]M denote the set {w ∈ W : M, w |= φ}.

Definition 8 Let I := (φ, i, a, v). MI := (W, {RI(P, B)}P⊆Ag, B⊆AC ,mI , V ),
where

• mI is given as follows:
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– mI(j, b, u) = m(j, b, u) for j 6= i or b 6= a,

– mI(i, a, v′) := m(i, a, v′) \ [[φ]]M for v 6= v′,

– mI(i, a, v) := m(i, a, v) ∪ [[φ]]M.

• RI(j, B), B ⊆ AC, are defined as follows.

– For a /∈ B or j 6= i, RI(j, B) = R(j, B).

– If a ∈ B, then (x, y) ∈ RI(i, B) if and only if any of the following
holds:

∗ x, y /∈ [[φ]]M and (x, y) ∈ R(i, B),
∗ x ∈ [[φ]]M, y /∈ [[φ]]M, y ∈ m(i, a, v) and (x, y) ∈ R(i, B \ {a}),
∗ x /∈ [[φ]]M, y ∈ [[φ]]M, x ∈ m(i, a, v) and (x, y) ∈ R(i, B \ {a}),
∗ x, y ∈ [[φ]]M and (x, y) ∈ R(i, B \ {a}).

Definition 9 Let I := (φ, i, j, a). MI := (W, {RI(P, B)}P⊆Ag, B⊆AC ,mI , V ),
where

• mI is given as follows:

– mI(k, b, v) = m(k, b, v) for k 6= i, or b 6= a,

– mI(i, a, v) = (m(j, a, v) ∩ [[φ]]M) ∪ (m(i, a, v) ∩ [[¬φ]]M).

• RI(k, B), B ⊆ AC, are defined as follows.

– For a /∈ B or k 6= i, RI(k, B) = R(k, B).

– If a ∈ B, then (x, y) ∈ RI(i, B) if and only if any of the following
holds:

∗ x, y /∈ [[φ]]M and (x, y) ∈ R(i, B),
∗ x ∈ [[φ]]M, y /∈ [[φ]]M, (x, y) ∈ R(i, B \ {a}) and x ∈ m(j, a, v),

y ∈ m(i, a, v) for some v,
∗ x /∈ [[φ]]M, y ∈ [[φ]]M, (x, y) ∈ R(i, B \ {a}) and x ∈ m(i, a, v),

y ∈ m(j, a, v) for some v,
∗ x, y ∈ [[φ]]M and (x, y) ∈ R(j, {a}) ∩R(i, B \ {a}).

Note that in either case, RI(i, ∅) = R(i, ∅). It can be shown that MI is a
(standard) MPIS model.

Each information σ induces a relation Rσ on the set of all MPIS models:

• for atomic information I := (φ, i, a, v) or I := (φ, i, j, a), MRIM
′ if and

only if M′ = MI ,

• for I := (φ, P, a, v), RI := RI1 ; RI2 ; · · · ; RIm , where P := {i1, i2, . . . , im}
and Ik := (φ, ik, a, v),

• for I := (φ, P, j, a), RI := RI1 ;RI2 ; · · · ;RIm , where P := {i1, i2, . . . , im}
and Ik := (φ, ik, j, a),
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• Rσ;σ′ := Rσ; R′
σ,

• Rσ∨σ′ := Rσ ∪R′
σ.

R1; R2 denotes the composition of the two relations R1 and R2. For RIi and
RIj

, observe that RIi
; RIj

= RIj
; RIi

.
So RI , where I is an atomic information, behaves like a function, i.e. for

each M, there exists a unique M′ such that MRIM
′. Further, we could have

information σ which is non-deterministic, i.e. update of a MPIS-model with
this information could result in more than one MPIS-model.

Satisfiability of the wff α ∈ LD in a model M at the world w is defined by
extending Definition 6:

M, w |= [σ]α if and only if M′, w |= α, for all M′ such that MRσM′.

Let us pause to make a comparison with dynamic epistemic logic. In pub-
lic announcement logic [19], the updated model is obtained from a model by
restricting it to some subset of the domain. More complex epistemic actions,
considered e.g. in [6, 2], may result in the refinement of accessibility relations
while the domain of the model remains unchanged, and they may even result
in the enlargement of the domain of the model. Contrary to these, in the case
of DLMPIS, the domain of the model remains unchanged whatever information
is provided, and relations can change in any manner. It could happen that two
objects not related earlier become related after the update.

In dynamic epistemic logic, usually an action or flow of information does
not change the value of the atomic propositions. However, in [18], an action
called ‘public assignment’ expressed as [p := φ], is considered which only af-
fects the atomic information p. The update of the epistemic model M :=
(U, {Rn}n∈Ag, V ) with respect to the public assignment [p := φ] gives the model
(U, {Rn}n∈Ag, V

′), where V ′(q) = V (q) for q 6= p and V ′(p) = [[φ]]M. Note that
relations remain unchanged in this case.

In the case of DLMPIS, we have two kinds of atomic wffs: the propositional
variables and descriptors. Although we have the validity of [σ]p ↔ p, we may
have information σ and descriptor (i, a, v) such that the wff [σ](i, a, v) ↔ (i, a, v)
is not valid. This shows that atomic facts may change here. We also note that
the update due to public assignment is different from the one due to the actions
of the kind (φ, i, a, v). In fact, in the latter case, not only is the assignment
to the atomic wff (i, a, v) affected, assignments to the other atomic wffs as well
as the relations may also get affected. This is because relations are connected
with the attribute, attribute value pairs. Another difference is that the value
mI(i, a, v) of the atomic wff (i, a, v) contains the extension [[φ]]M of φ in M, and
is not necessarily equal to it.

4.2 Reduction Axioms

A deductive system for DLMPIS can be given by taking the axiom schema and
inference rules of LMPIS along with the following set of reduction axioms.
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Ax11. [I]p ↔ p.

Ax12. [I]¬α ↔ ¬[I]α.

Ax13. [I](α → β) ↔ ([I]α → [I]β).

Ax14(a). [(φ, i, a, v)](k, b, v′) ↔ (k, b, v′), for k 6= i, or b 6= a.

Ax14(b). [(φ, i, a, v)](i, a, v′) ↔ (¬φ ∧ (i, a, v′)), v′ ∈ (VC ∪ {ε}) \ {v}.
Ax14(c). [(φ, i, a, v)](i, a, v) ↔ (¬φ → (i, a, v)).

Ax15(a). [(φ, i, a, v)][(k, B)]α ↔ [(k, B)]α, where a /∈ B or i 6= k.

Ax15(b). For a ∈ B,

[(φ, i, a, v)][(i, B)]α ↔ ((φ → [(i, B \ {a})](φ → [(φ, i, a, v)]α))
∧ (φ → [(i, B \ {a})](¬φ ∧ (i, a, v) → [(φ, i, a, v)]α))
∧ ((¬φ ∧ (i, a, v)) → [(i, B \ {a})](φ → [(φ, i, a, v)]α))
∧ (¬φ → [(i, B)](¬φ → [(φ, i, a, v)]α)).

Ax16(a). [(φ, i, j, a)](k, b, v) ↔ (k, b, v), for k 6= i, or b 6= a.

Ax16(b). [(φ, i, j, a)](i, a, v) ↔ [((j, a, v) ∧ φ) ∨ ((i, a, v) ∧ ¬φ)].

Ax17(a). [(φ, i, j, a)][(k,B)]α ↔ [(k,B)]α, where a /∈ B or i 6= k.

Ax17(b). For a ∈ B,

[(φ, i, j, a)][(i, B)]α ↔ [(¬φ → [(i, B)](¬φ → [(φ, i, j, a)]φ))

∧ (φ →
∧

v∈VCa

((j, a, v) → [(i, B \ {a})](((i, a, v) ∧ ¬φ) → [(φ, i, j, a)]φ)))

∧ (¬φ →
∧

v∈VCa

((i, a, v) → [(i, B \ {a})](((j, a, v) ∧ φ) → [(φ, i, j, a)]φ)))

∧ (φ →
∧

v∈VCa

((j, a, v) → [(i, B \ {a})]((j, a, v) ∧ φ) → [(φ, i, j, a)]φ))].

18(a). For P = {i1, i2, . . . , im},
[(φ, P, a, v)]α ↔ [I1][I2] · · · [Im]α, where Ik := (φ, ik, a, v).

18(b). For P = {i1, i2, . . . , im},
[(φ, P, j, a)]α ↔ [I1][I2] · · · [Im]α, where Ik := (φ, ik, j, a).

Ax19. [σ;σ′]α ↔ [σ][σ′]α.

Ax20. [σ ∨ σ′]α ↔ [σ]α ∧ [σ′]α.

Rules of inference:
N(I). α

[I]α
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5 Conclusions

Multi-agent partial knowledge information systems (MPISs) are defined, and a
logic for these structures is presented along with its dynamic version.

We have considered knowledge operators of the kind [(i, B)], i ∈ Ag, in the
logic LMPIS. One may think of enriching the language with the distributed
knowledge operator [(P, B)], P ⊆ Ag. The corresponding relation will have
the property R(P, B) =

⋂
i∈P

⋂
b∈B R(i, b). It is easy to extend the axiom

schema of LMPIS to this case, but completeness is an open question. It may be
remarked that due to the presence of descriptors in the language, the technique
of copying employed by Balbiani to prove the completeness of epistemic logic
with distributed knowledge will not work.

The work in this paper is a first step towards a formal study of dynamic
aspects of information systems and indiscernibility relations. There are many
issues which need further work. For instance, we have restricted our study
to consider finite sets of attribute values V ala for each attribute a. Although
in practical problems we usually consider finite sets, one may check the conse-
quences of removing the restriction. Similarly, one would like to extend this work
to incomplete information systems where an object-attribute pair is mapped to
a set of attribute values. This represents uncertainty, in the sense that we know
some possible attribute values that an object may take for an attribute, but
do not know exactly which one. In this kind of situation one could get in-
formation which reduces or removes this uncertainty. Moreover, in this case,
relations other than the indiscernibility, such as inclusion or similarity, may be
considered.
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