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Abstract

In formal approaches to inductive learning, the ability to learn is un-
derstood as the ability to single out a correct hypothesis from a range of
possibilities. Although most of the existing research focuses on the charac-
teristics of the learner, in many paradigms the significance of the teacher’s
abilities and strategies is in fact undeniable. Motivated by this observation,
in this paper we highlight the interactive nature of learning by propos-
ing a game-theoretical and logical approach. We consider learning as a
game, and present different levels of cooperativeness between the players.
Then, we look at different variants of Sabotage Games as learning scenar-
ios, expressing the conditions for learnability in Sabotage Modal Logic and
analyzing their complexity. Our work constitutes the first step towards a
unified game-theoretical and logical approach to formal learning theory.

1 Introduction

The objective of this paper is to investigate how logics for interaction in multi-
agent systems can be used to reason about strategic abilities and information
flow during the learning process. Formal learning theory (see e.g. [4]) is
concerned with the process of inductive inference: it formalizes the process
of inferring general conclusions from partial, inductively given information,
as in the case of language learning (inferring grammars from sentences) and
scientific inquiry (drawing general conclusions from partial experiments). We
can think of this general process as a game between two players: Learner and
Teacher. The game starts with a class of possible worlds from which Teacher
chooses the actual one, and Learner has to find out which one it is. Teacher
provides information about the world in an inductive manner, and whenever
Learner receives a piece of information, he picks a conjecture from the initial
class, indicating which one he thinks is the case. Several conditions can be
defined for the success of the learning process: we can require that Learner
arrives at a correct hypothesis (finite identification), or that the sequence of
Learner’s conjectures converges to a correct hypothesis (identification in the
limit) [3].

We restrict ourselves to a high-level analysis of the process described above.
Our proposal focuses on some important elements of learnability. First of all,
we treat learning as a procedure of singling out one correct hypothesis from
some range of possibilities. Moreover, we see this procedure not as a one-move
choice, but as a sequence of them, and therefore we allow many steps of update
before the conclusion is reached. Those two properties make our notion of
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learning different from the concept of learning formalized as epistemic update
in dynamic epistemic logic (see e.g. [2]), where the word “learning” is often
used as a synonym of “getting to know” and is usually represented as a one-step
epistemic update. Moreover, in our approach we pay attention to the strategies
for teaching, highlighting the fact that restricting the power and knowledge of
the learner can be compensated by providing additional insights and intentions
for the teacher.

2 Learning as a Sabotage Game

Our work is motivated by the learning from queries and counterexamples model
[1]. In that paradigm, the goal of Learner is to recognize a given language,
which is initially unknown to him. In order to do this, he is allowed to ask
Teacher two types of questions: about the membership of a certain string to
the unknown language, and about the equivalence of his conjecture to the
unknown language. When answering those questions Teacher does not have
any freedom — the responses are predetermined by the initial choice of the
language. However, a negative answer to the second question is accompanied
by a counterexample, which plays the role of a hint for Learner. This is the only
point of the procedure in which Teacher has a relative freedom of choice, and
in fact, the informativeness of the string given as a counterexample influences
the effectiveness of the learning process. We want to focus on this aspect of
learning and illustrate how in various scenarios the “profile” of Teacher can be
encoded in his strategy. To make the picture of possible strategies in learning
scenarios complete, we describe games in which Teacher is either helpful or
unhelpful, and we also consider two possible “profiles” of Learner: to be either
eager or unwilling.

Let us start by considering a very simple “classroom” situation with one
Teacher and one Learner. From our high-level perspective, learning is a step-
by-step process through which Learner changes his information state, and the
process is successful if he eventually reaches a state representing the goal. The
information that Teacher provides can be seen as feedback about Learner’s cur-
rent conjecture, allowing Learner to rule out possible changes of mind because
they are inconsistent with the received information. By looking at the Teacher-
Learner interaction from this perspective, we can represent the situation as a
graph whose vertices represent Learner’s possible information states and edges
represent transitions between them. During the learning process, Learner can
change his information state by moving along the edges and Teacher can cut
off edges, thereby preventing Learner from making certain transitions. Some
state is associated with the learning goal: whenever the agent reaches it, we
say that the learning process has been successful. The correspondence between
the learning model from formal learning theory and our proposal, based on the
Sabotage Games defined below, is described in Table 1.

It is easy to observe that in learning from queries and counterexamples,
giving an informative counterexample results in the absolute removal of some,
initially possible, hypotheses. We want to generalize this idea and allow the
multiplicity of transitions between two states, so that the removal of one tran-
sition does not in principle has to make it impossible to get from one state to
another. Obviously, this view is more general, and therefore we analyze the
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Table 1: Correspondence with Learning Model

Learning Model Sabotage Games

hypotheses states

correct hypothesis goal state

possibility of a mind change from hypothesis
a to hypothesis b

transition from state a to b

giving a counterexample that eliminates the
possibility of a mind change from a to b

removing a transition be-
tween a and b

above-described paradigm of learning by queries and counterexamples only as
a special case.

2.1 Sabotage Games

Our perspective on learning leads naturally to the framework of Sabotage
Games [6, 10]. A Sabotage Game is played in a directed multi-graph, with two
players, Runner and Blocker, alternatingly moving with Runner being the first.
Runner moves by making a single transition from the current vertex; Blocker
moves by deleting any edge from the graph. We begin by defining the structure
in which a sabotage game takes place.

Definition 2.1 (Directed Multi-graph [6]). A (directed) multi-graph is a tuple
G = (V,E) where V is a set of vertices and E : V ×V →N is a function indicating the
number of edges between any two vertices.

Then the sabotage game is defined as follows.

Definition 2.2 (Sabotage Game [6]). A Sabotage Game (SG) is a tuple SG =
〈V,E, v, vg〉, where (V,E) is a multi-graph and v, vg ∈ V. Vertex v represents the
position of Runner and vg represents the goal state.

The game is played as follows: the initial position SG0 = 〈V,E0, v0, vg〉 is given
by SG0 = SG. Round k + 1, from position SGk = 〈V,Ek, vk, vg〉, consists of Runner
choosing some vk+1 such that E(vk, vk+1) > 0, and Blocker answering by choosing some
(v, v′) such that Ek(v, v′) > 0. The new position SGk+1 = 〈V,Ek+1, vk+1, vg〉 is such
that Ek+1 := Ek(v, v′) − 1 and, for every (u,u′) , (v, v′), Ek+1(u,u′) := Ek(u,u′). The
game ends if some player cannot make a move or if vk = vg, and Runner wins iff vl = vg
for some round l.

Note that in this definition of the Sabotage Game, Blocker removes an edge
between two states v, v′ by decreasing the value of E(v, v′) by 1. As we will see
later, this definition of the game based on the above definition of multi-graphs
can lead to some technical problems when transforming such a graph into a
Kripke model. Therefore, we will now present an alternative definition. In
Theorem 1, we then show that for our purposes the definitions are equivalent
with respect to the existence of a winning strategy.
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Definition 2.3 (Directed Labelled Multi-graph). Let Σ = {a1, . . . an} be a finite set
of labels. A (directed) labelled multi-graph is a tuple GΣ = (V,E) where V is a set
of vertices and E = (Ea1 , . . . ,Ean ), where Eai ⊆ V × V for each ai ∈ Σ.

In this definition, labels from Σ are used to represent multiple edges between
two vertices. Then, the definition of the game is as follows.

Definition 2.4 (Labelled Sabotage Game). A Labelled Sabotage Game (SGΣ) is a
tuple SGΣ = 〈V,E, v, vg〉, where (V,E) is a labelled multi-graph and v, vg ∈ V. Vertex
v represents the position of Runner and vg represents the goal state.

The game is played as follows: the initial position SGΣ
0 = 〈V,E0, v0, vg〉 is given by

SGΣ
0 = SGΣ. Round k+1, from position SGk = 〈V,Ek, vk, vg〉withEk = (Ek

a1
, . . . ,Ek

an
),

consists of Runner choosing some vk+1 such that there is some ai ∈ Σ for which
(vk, vk+1) ∈ Ek

ai
, and Blocker answering by choosing some ((v, v′), a j) ∈ ((V × V) × Σ)

for which (v, v′) ∈ Ek
a j

. Then new position SGΣ
k+1 = 〈V,Ek+1, vk+1, vg〉 is such that

E
k+1
a j

= Ek
a j
\ {(v, v′)} and Ek+1

ai
= Ek

ai
for all i , j. The game ends if some player cannot

make a move or if vk = vg, and Runner wins iff vl = vg for some round l.

With this definition of the game, it is easy to see that each time Blocker
removes an edge from v to v′, it is irrelevant for Runner which is the label of
the removed edge; what matters for the existence of a winning strategy for him
is the number of edges that are left from v to v′.

Observation 1. Let SGΣ = 〈V,E, v0, vg〉 and SG′Σ = 〈V,E′, v0, vg〉 be two labelled
Sabotage Games that differ only in the labels of their edges, that is,

∀(v, v′) ∈ V × V : |{Eai | (v, v
′) ∈ Eai }| = |{E

′

ai
| (v, v′) ∈ E′a}|.

Then Runner has a winning strategy in SGΣ iff he has a wining strategy in SG′Σ.

We will now show that the decision problems of deciding whether Run-
ner has a winning strategy in each of the sabotage games SG and SGΣ are
polynomially equivalent. We start by formalizing the problems.

Definition 2.5 (SABOTAGE Problem). The sabotage game problem is as follows.

INPUT: A Sabotage Game SG = 〈V,E, v0, vg〉.

QUESTION: Does Runner have a winning strategy in SG?

Definition 2.6 (Σ-SABOTAGE Problem). The labelled sabotage game problem
is as follows.

INPUT: A Sabotage Game on a labelled multi-graph SGΣ = 〈V,E, v0, vg〉.

QUESTION: Does Runner have a winning strategy in SGΣ?

Theorem 1. SABOTAGE and Σ-SABOTAGE are polynomially equivalent.

Proof. We show that the problems can be polynomially reduced to each other.

• Given SG = 〈V,E, v0, vg〉, let m := max E[V × V]. Define f (SG) :=
〈V,E, v0, vg〉 where E := (E1, . . .Em) and each Ei is given by Ei := {(v, v′) |
(v, v′) ∈ V × V, E(v, v′) ≥ i}.
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We show that Runner has a winning strategy (w.s.) for SG iff he has one
for f (SG). The proof is by induction on n =

∑
(v,v′)∈V×V E(v, v′), which is

the total number of edges in the multi-graph. Note that by definition of
f , n =

∑i=n
i=1 |Ei|.

The base case is straightforward since in both games Runner has a w.s.
iff v = vg. For the inductive case, from left to right, Runner has a w.s.
in SG = 〈V,E, v0, vg〉 with

∑
(v,v′)∈V×V E(v, v′) = n + 1. Then there is some

v1 ∈ V such that E(v0, v1) > 0 and Runner has a w.s. for all games
SG′ = 〈V,E′, v1, vg〉 that result from Blocker choosing a pair (v, v′) with
E(v, v′) > 0. Now, by definition of f , in f (SG), choosing v1 is also a legal
move for Runner in f (SG). By Observation 1, Runner has a w.s. in the
game that results from Blocker choosing any ((v, v′), a) such that (v, v′) ∈ Ea
iff he has one in the game resulting from Blocker choosing ((v, v′),E(v, v′)),
which is f (SG′). Then we can apply the inductive hypothesis.

From right to left, Runner having a w.s. in f (SG) means that he can
choose some v1 with (v0, v1) ∈ Ei for some i ≤ m such that he has a
w.s. in all games f (SG)′′ that result from Blocker’s move. Choosing v1
is also a legal move of Runner in SG. Suppose that Blocker replies by
choosing (v, v′). Let us call the resulting game SG′. By assumption and
Observation 1, Runner also has a w.s. in the game f (SG)′ which is the
result from Blocker choosing ((v, v′),E(v, v′)). Since f (SG)′ = f (SG′), we
can apply the inductive hypothesis.

• Given SGΣ = 〈V,E, v, vg〉 with Σ = {a1, . . . am}, let f ′(SGΣ) := 〈V,E, v, vg〉,
where E(v, v′) := |{Eai | (v, v′) ∈ Eai }|.

Showing that Runner has a w.s. in SGΣ iff he has one in f (SGΣ) is straight-
forward and can be done by induction on n :=

∑
a∈Σ |Ea|, i.e. the number

of edges in (V,E).

Both f and f ′ are polynomial. This concludes the proof. �

2.2 Sabotage Learning Games

Based on the Sabotage Games framework, we define Sabotage Learning Games
as follows.

Definition 2.7 (Sabotage Learning Game (SLG)). A Sabotage Learning Game is
a labelled sabotage game played by Learner (L, taking the role of Runner) and Teacher
(T, taking the role of Blocker). We distinguish between three different versions, SLGUE,
SLGHU and SLGHE, that differ in the winning conditions (given in Table 2).

In Table 2, we show winning conditions for different versions of SLG. They
correspond to different levels of Teacher’s helpfulness and Learner’s willing-
ness to learn. We can have an unhelpful teacher and an eager learner (SLGUE),
but there is also the possibility of a helpful teacher and an unwilling learner
(SLGHU). The cooperative case corresponds to a helpful teacher and an eager
learner (SLGHE).

Having provided a formal framework for Teacher-Learner interactions by
means of SLGs, we now show how Sabotage Modal Logic can be used for
reasoning about players’ strategic power in these games.
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Table 2: Sabotage Learning Games

Game Winning Condition

SLGUE Learner wins iff he reaches the goal state, Teacher wins
otherwise.

SLGHU Teacher wins iff Learner reaches the goal state, Learner
wins otherwise.

SLGHE Both players win iff Learner reaches the goal state. Both
lose otherwise.

2.3 Sabotage Modal Logic

Sabotage Modal Logic (SML) has been introduced in [10]. Besides the standard
modalities, it also contains “transition-deleting” modalities for reasoning about
model change that occurs when a transition is removed. To be more precise,
we have formulas of the form –̂φ, expressing that it is possible to delete a pair
from the accessibility relation such that φ holds in the resulting model at the
current state.

Definition 2.8 (Sabotage Modal Language [10]). Let PROP be a countable set of
propositional letters and let Σ be a finite set. Formulas of the language of Sabotage
Modal Logic are given by

φ ::= p | ¬φ | φ ∨ φ | ^aφ | –̂ aφ

with p ∈ PROP and a ∈ Σ. We write ^φ for the finite disjunction
∨

a∈Σ^aφ and –̂φ
for the finite disjunction

∨
a∈Σ –̂ aφ.

Definition 2.9 (Sabotage Model [7]). Given a countable set of propositional letters
PROP and a finite set Σ = {a1, . . . , an}, a Sabotage Model for the Sabotage Modal Logic
is a tuple M = 〈W, (Rai )ai∈Σ,Val〉 where W is a set of worlds, each Rai ⊆ W ×W is an
accessibility relation and Val : PROP → P(W) is a propositional valuation function.
The pair M,w with w ∈W is called a Pointed Sabotage Model.

In order to define the way formulas of SML are evaluated in Sabotage
Models, we first define the model that results from removing an edge.

Definition 2.10. Let M = 〈W,Ra1 , . . .Ran ,Val〉 be a Sabotage Model. The model Mai
(w,v)

that results from removing the edge (w, v) ∈ Rai is defined as

Mai
(w,v) := 〈W,Ra1 , . . .Rai−1 ,Rai \ {(v, v

′)},Rai+1 , . . .Ran ,Val〉.

Definition 2.11. Given a sabotage model M = 〈W, (Ra)a∈Σ,Val〉 and a world w ∈
W, atomic propositions, negations, disjunctions and standard modal formulas are
interpreted as usual. For the case of “transition-deleting” formulas, we have

M,w |= –̂ aφ iff ∃ w, v ∈W : (w, v) ∈ Ra & Ma
(w,v),w |= φ.

Theorem 2 ([7]). Model checking of SML is PSPACE-complete.
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2.4 Sabotage Learning Games in Sabotage Modal Logic

The Sabotage Modal Logic is useful for reasoning about the players’ strategic
power in sabotage learning games, since for any given Sabotage Learning Game
we can construct a Pointed Sabotage Model M(G) in a straightforward way.

Definition 2.12. Let SGΣ = 〈V,E, v0, vg〉 be a Sabotage game with E = (Ea)a∈Σ;
we define a Pointed Sabotage Model M(SGΣ), v0 over the set of atomic propositions
PROP := {goal} as

M(SGΣ) := 〈V,E,Val〉,

where Val(goal) := {vg}.

For each of the winning conditions in Table 2, we can define a formula of SML
that is true in a given Pointed Sabotage Model if and only if the corresponding
player has a winning strategy in the game represented by the pointed model.

Let us first look at the game SLGUE, in which the learner tries to reach
the goal state and the teacher tries to prevent him from doing so. This is the
standard sabotage game of [10]. Inductively, we define

γUE
0 := goal, γUE

n+1 := goal ∨^–�γUE
n .

Then we get the following result, which is a variation of Theorem 7 of [7],
rephrased for labelled Sabotage Games. We go into it with some detail to show
how our “labelled” definition avoids a technical issue present in the original
proof.

Theorem 3. Learner has a winning strategy in SLGUE in the game SGΣ =
〈V,E0, v0, vg〉 iff M(SGΣ), v0 |= γUE

n , for n :=
∑

a∈Σ |E
0
a | (the number of edges in

(V,E0)).

Proof. The proof is by induction on n.

Base case

(⇒) L having a winning strategy implies that v0 is the goal state. Thus
M(SGΣ), v0 |= goal. Hence, M(SGΣ), v0 |= γUE

0 .
(⇐) M(SGΣ), v0 |= γUE

0 means that M(SGΣ), v0 |= goal, thus v0 is the goal state.
Hence, L can win immediately.

Inductive case

(⇒) Let
∑i=|Σ|

i=1 |E
0
ai
| = n + 1. Assume that L has a w.s. Then there are two

possibilities. (1) v0 is the goal state. Then M(SGΣ), v0 |= goal. Thus, M(SGΣ), v0 |=
γUE

n+1. (2) v0 is not the goal state and then there is some v1 ∈ V such that
(v0, v1) ∈ E0

ai
for some ai ∈ Σ and no matter what pair ((v, v′), a j) ∈ (V × V) × Σ

with (v, v′) ∈ E0
a j

T chooses, L has a w.s. in the resulting game SG′Σ〈V,E1, v1, vg〉,

with E1 = (E0
a1
, . . .E0

a j−1
,E0

a j
\ {v, v′},E0

a j+1
, . . .E0

a|Σ| ). Now,
∑i=|Σ|

i=1 |E
1
ai
| = n and thus

by inductive hypothesis, M(SG′Σ), v1 |= γUE
n . This implies that M(SGΣ), v0 |=

^–�γn. Thus, M(SGΣ), v0 |= γn+1. They key observation is that the model that
results from removing an edge from M(SGΣ) is always a model that results
from transforming a labelled sabotage game into a model. With the original
definition of a sabotage game, this is not the case: if in the model an edge
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between v and v′ with label k has been removed, the resulting model is not the
image of a multi-graph if k < E(v, v′). Another way to look at is the following:
the multiple edges of the original multi-graph can be seen as implicitly labelled
by numbers, and the existence of a edge labelled with k implies the existence
of edges labelled with 1, . . . , k − 1. This property is not preserved when when
T removes an arbitrary edge from the model M(SG).

(⇐) M(SGΣ), v0 |= goal ∨ ^–�γn implies that v0 is the goal state (so L wins
immediately) or else there is v1 accessible from v0 such that M(SGΣ), v1 |= –�γn,
that is, M(SGΣ)ai

(v,v′), v1 |= –�γn for any ((v, v′), ai) ∈ (V × V) × Σ. By inductive
hypothesis, this gives L a w.s. at v1 in a game that results from removing any
edge from the multi-graph of SGΣ, and hence a w.s. at v0 in the game SGΣ. �

Next, consider the game SLGHU, in which the teacher tries to force the
learner to reach the goal state. Inductively, define

γHU
0 := goal, γHU

n+1 := goal ∨ (^> ∧ � –̂γHU
n ).

Now, we can show that this formula corresponds to the existence of a winning
strategy for Teacher. Note that in order to win, Teacher has to make sure that
Learner does not get stuck before he has reached the goal state. This is why we
need the conjunct ^> in the formula.

Theorem 4. Teacher has a winning strategy in SLGHU in the game SGΣ =
〈V,E0, v0, vg〉 iffM(SGΣ), v0 |= γHU

n , for n :=
∑

a∈Σ |E
0
a |.

Proof. The argument is similar to the proof of Theorem 3. �

Let us now consider the third version of SLG in which Teacher and Learner
win together if and only if Learner reaches a goal state. The corresponding
formula is defined as follows

γHE
0 := goal, γHE

n+1 := goal ∨^ –̂γHE
n .

Theorem 5. Teacher and Learner have a joint winning strategy in SLGHE in the
game SGΣ = 〈V,E0, v0, vg〉 iffM(SGΣ), v0 |= γHE

n , for n :=
∑

a∈Σ |E
0
a |.

Proof. Note that L and T have a joint w.s. iff there is a path from v0 to vg. From
left to right this is obvious; from right to left, if there is such path, then there is
also one without cycles. Then, there is a joint w.s. that follows the path and at
each step removes the edge that has just been used. The Theorem follows by
observing that γHE

n express the existence of such a w.s. �

The previous results are summarized in Table 3.

2.5 Complexity of Sabotage Learning Games

Intuitively, some versions of the Sabotage Learning Game are simpler than
others. In cases with a helpful teacher and an eager learner, the learning
process should be easier than in cases with an unhelpful teacher or a unwilling
learner. This is indeed reflected in the computational complexity of deciding
in a given game whether the winning condition is satisfied or not.

We have shown that our three winning conditions (Table 3) can be expressed
in SML, and Theorem 2 (proved in [7]) tells us that model checking of SML is
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Table 3: Winning Conditions for SLG in SML

Game Winning Condition in SML Winner

SLGUE γUE
0 := goal, γUE

n+1 := goal ∨^–�γUE
n Learner

SLGHU γHU
0 := goal, γHU

n+1 := goal ∨ (^> ∧ (� –̂γHU
n )) Teacher

SLGHE γHE
0 := goal, γHE

n+1 := goal ∨^ –̂γHE
n Both

PSPACE-complete. This gives us PSPACE upper bounds for the complexity of
the problems of deciding whether each one our winning conditions is satisfied
in a given game. For two of the winning conditions (SLGUE and SLGHE), we
can give more precise complexity results and also give tight lower bounds.

For SLGUE – the standard sabotage game – PSPACE-hardness is shown by
reduction from QBF Problem[7].

Theorem 6 ([7]). SLGUE is PSPACE-complete.

As mentioned above, for SLGHU we obtain a PSPACE upper bound.

Theorem 7. Solving SLGHU is in PSPACE.

Proof. Follows from Theorem 2 and Theorem 4. �

It remains to be shown whether SLGHU is also PSPACE-hard. Note that, on
the one hand, SLGHU and SLGUE are very similar since the winning positions
for Teacher in SLGHU are exactly the same as the ones for Learner in SLGUE (i.e.
the positions in which Learner is in a goal state). However, since the powers of
the players are essentially different, due to the different nature of their moves
(Teacher moves globally, whereas Learner moves locally), a reduction from
SLGUE to SLGHU is not straightforward.

Let us now look at SLGHE. This game is of a different nature than the
two previous ones since it is cooperative in the sense that one player wins
iff the other one does. In this case, a winning strategy is a joint strategy for
both players, and does not need to take into account all possible moves of the
opponent. This suggest that this version should be less complex than SLGUE
and SLGHU.

The following result shows that at least for the comparison of SLGUE and
SLGHE, this is indeed the case: in case of an eager learner, learning with a
helpful teacher is easier than learning with an unhelpful one. This follows
from the fact that the winning condition of SLGHE is satisfied iff the goal
vertex is reachable from the initial vertex. Thus, determining whether Teacher
and Learner can win SLGHE is equivalent to solving the REACHABILITY (st-
CONNECTIVITY) problem, which is known to be nondeterministic logarithmic
space (NL)-complete [8].

Theorem 8. SLGHE is NL-complete.

Proof. Polynomial equivalence of SLGHE and REACHABILITY follows from
the argument given in the proof of Theorem 5. �
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Table 4: Complexity Results for Sabotage Learning Games

Game Winning Condition Complexity

SLGUE Learner wins iff he reaches the goal state,
Teacher wins otherwise

PSPACE-complete.

SLGHU Teacher wins iff Learner reaches the goal
state, Learner wins otherwise.

PSPACE

SLGHE Both players win iff Learner reaches the
goal state. Both loose otherwise.

NL-complete

Table 4 summarizes the complexity results for the different versions of SLG.
The complexity results agree with our intuition when comparing the coop-

erative version of the sabotage game (SLGHE) with the non-cooperative ones
(SLGUE and SLGHU): The easiest way to learn is indeed when Teacher is
helpful and Learner — eager.

3 Refined view on teaching: learning algorithms

The view on learning presented above is very general. To give a more refined
view, let us go back to the queries and counterexamples paradigm (see [1]). In this
approach, Learner is an algorithm that embodies a winning strategy in the game
of learning (the learning procedure succeeds on all possible true data). Teacher
can significantly influence the learning process by giving counterexamples, and
the time needed for learning depends on her choices. Therefore, the game of
teaching in such a setting can be formalized in extensive form as presented in
Figure 1.

C0

w1 w2 w3 w4

C1 C2 C3

w′1 w′2 w′3 w′′1 w′′2 w′′3 w′′′1 w′′′2 w′′′3

. . . . . . . . .

C5

C5 C5 C5

. . .

. . . . . . . . .

Figure 1: The tree of the teaching game: dotted lines are Learner’s moves,
which are determined by his algorithm; solid lines are Teacher’s moves; wi are
counterexamples given by Teacher; Ci are conjectures made by Learner; C5 is
the correct hypothesis.
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There are a number of game-theoretical issues that arise when viewing the
run of the learning algorithm as a game. We can for example consider the
epistemic status of the players, introduce imperfect information and analyze
payoff characteristics. Concerning the payoff characteristics, different classes of
teachers such as (un)helpful teachers, we can define corresponding preference
relations or payoffs: the helpful teacher strictly prefers all shortest paths in the
game tree, i.e. the paths in which the learner learns the fastest. The unhelpful
teacher strictly prefers all the longest paths in the game tree, i.e. the paths in
which the learner learns slowly.

We also provide a choice for Learner in this game. Firstly, we can allow that
at each step the learner can choose from one or more procedures which are part
of one algorithm. Secondly, in the beginning Learner can decide with which of
the available algorithms he is going to proceed. Moreover, we can consider also
another possibility that involves extending the traditional inductive inference
paradigm. Usually, learnability of a class is interpreted as the existence of
Learner that learns every element from the class independently of the behavior
of Teacher — if we introduce the possibility of non-learnability to the game,
we can view learning algorithms as winning strategies for an eager Learner in
the learning game. With the possibility of non-learnability, there are also paths
in the game tree in which the learner never makes a correct conjecture. In this
framework, a helpful teacher would also prefer all (shortest) paths ending in
a position in which the learner makes a correct conjecture over all the other
paths. An unhelpful teacher then prefers all the paths in which the learner does
not learn over those in which he does learn.

4 Conclusions and further work

We have provided a game theoretical approach to learning that takes into
account different levels of cooperativeness between the learner and the teacher.
Based on Sabotage Games, we have defined Sabotage Learning Games with three
variations of the winning condition, each of them representing different levels
of cooperativeness between Teacher and Learner. Then, we have shown how
Sabotage Modal Logic can be used to reason about these games and, in particular,
we have identified formulas of the language that characterize each of the three
winning conditions, providing also complexity results for each one of them.

From the game-theoretical perspective, Sabotage Learning Games can be
extended to more general scenarios by relaxing the strict alternation. As we
have mentioned before, there is a difference in the “nature” of moves of the
payers in this game. Learner’s moves can be seen as internal ones while
Teacher’s moves can be interpreted externally. Due to this asymmetry, each
of Learner’s moves does not in principle need to be followed by a teacher’s
move (e.g. the learner can perform several changes of his information state
before the teacher can actually make a restriction). An interesting extension of
this work could deal with such different possibilities, providing corresponding
formulas expressing the winning conditions and exploring their computational
complexity.

From the perspective of Formal Learning Theory, several relevant extensions
can be done. We have described the learning process as changes in information
states, without going further into their epistemic and/or doxastic interpretation.
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A deeper analysis can give us insights about how the learning process is re-
lated to different notions of dynamics of information, such as belief revision or
dynamic epistemic logic.

In the introduction we described the concepts of finite identification and iden-
tification the limit. Our work on SLGs is closer to the first one, as we understand
learning as the ability to reach an appropriate information state, without taking
into account what will happen after such a state has been reached. In particu-
lar, we are not concerned with the stability of the resulting belief. Identification
in the limit extends finite identification by looking beyond reachability in order
to describe “ongoing behaviour”. Fixed-point logics, like the propositional
µ-calculus [9, 5], can provide us with tools to express this notion of learnability.
In this case, epistemic and doxastic interpretations of learning would involve
notions of stable belief and a kind of operational, non-introspective knowledge
as a result of the process.
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