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Abstract. The term inversion principle goes back to Lorenzen who coined it
in the early 1950s. It was later used by Prawitz and others to describe the
symmetric relationship between introduction and elimination inferences in
natural deduction, sometimes also called harmony. In dealing with the invert-
ibility of rules of an arbitrary atomic production system, Lorenzen’s inversion
principle has a much wider range than Prawitz’s adaptation to natural de-
duction,. It is closely related to definitional reflection, which is a principle for
reasoning on the basis of rule-based atomic definitions, proposed by Hallnäs
and Schroeder-Heister. After presenting definitional reflection and the inver-
sion principle, it is shown that the inversion principle can be formally derived
from definitional reflection, when the latter is viewed as a principle to estab-
lish admissibility. Furthermore, the relationship between definitional reflection
and the inversion principle is investigated on the background of a universal-
ization principle, called the ω-principle, which allows one to pass from the set
of all defined substitution instances of a sequent to the sequent itself.
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1. Definitional Reflection

In proof-theoretic semantics, inversion principles provide a basis for unifying ap-
proaches to logic and logical constants. Prawitz [13] describes the uniform relation-
ship between introduction and elimination inferences in natural deduction by such
a principle, which justifies the elimination inferences as a sort of ‘consequence’ of
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2 Peter Schroeder-Heister

the introduction inferences, in accordance with certain remarks made by Gentzen
[3]. He explicitly adopts the term ‘inversion principle’ from Lorenzen, who coined
it in the early 1950s [10, 11]. Prawitz’s later definition of validity for derivations
in natural deduction style can be understood as a further elaboration of inversion,
making the justification of inferences explicit in the form of reduction procedures
associated with noncanonical derivations.1 The basic idea behind this inversion
principle is that if certain defining (‘canonical’) inferences for A, say

B1

A
. . .

Bn

A

are given, then an inference with A as a premiss, say

A

C

is justified if each defining condition Bi of A entails the conclusion C, in other
words: if C can be derived from each Bi, then C can be derived from A. Putting
this principle into an inference schema yields

A

B1 Bn

C · · · C
C

This pattern, which corresponds to standard ∨-elimination, leads to a uniform
schema for elimination rules in natural deduction2.

However, the idea of inversion is not confined to logic and logical constants. In
the form of definitional reflection as proposed by Hallnäs and Schroeder-Heister
it becomes a general principle of definitional reasoning.3 Suppose that capital
letters stand for atomic propositions (atoms), which are not further speicifed. Let
expressions of the form A1, . . . , An→A, also written as Γ→A, be called rules.
Suppose a certain finite set of rules

D











A1 ← ∆1

...
Am ← ∆m

1See, e.g., [14, 16], and, for a critical overview, [23].
2See [18]. For the relationship between the uniform schema and generalized elimination rules see
[22]. A discussion of Lorenzen’s inversion principle in relation to the proof-theoretic justification
of logical laws can be found in [12] and [24, 25].
3As a schema to universally characterize logical constants, a principle like (D` ) was proposed
by Schroeder-Heister[18], leading to generalized elimination rules and correcting an error made

by Prawitz [15] in a paper with a similar target. The idea and the formulation of (D` ) as a
general principle of definitional reasoning independent of the application to logical constants,
and the idea to use it for a nonmonotonic extension of logic programming is due to Hallnäs
[1, 4, 5]. He also proposed the terminology ‘definitional closure / definitional reflection’ (see
below). The further proof-theoretic elaboration of definitional reflection in the presence of free
variables, both in the context of logic programming and in general logic, was carried out by
Hallnäs and Schroeder-Heister [6, 19, 20, 21].
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is considered to be a definition.4 Suppose that










A ← Γ1

...
A ← Γn

are exactly those rules in D, whose head is A. They are called the defining rules of
A (with respect to D). The set of defining conditions {Γ1, . . . , Γn} of A is denoted
by D(A). As a limiting case, a defining condition may be empty, in which case the
rule is written as

A ←

(in logic programming terminology, A is a fact). Note that this situation must
be distinguished from D(A) = ∅, i.e., from there being no defining condition of
A at all. Then the principle of definitional reflection says that everything that is
entailed by each defining condition of A is entailed by A itself (in any context ∆).
Formulated as an inference principle in the sequent calculus this reads as

Γ1, ∆`C . . . Γn, ∆`C

A, ∆`C
(D` )

in short
{Γ, ∆`C : Γ ∈ D(A)}

A, ∆`C
(D` )

This principle complements the principle of definitional closure

∆`Ai1 . . . ∆`Aiki

∆`A
(`D) (1 ≤ i ≤ n)

in short
∆`Γi

∆`A
(`D) (1 ≤ i ≤ n)

if Γi is Ai1, . . . , Aiki
and ∆`Γi stands for a list of sequents5. Definitional closure

expresses the application of definitional rules in the obvious way.
Concerning terminology, I speak of inferences or inference principles to dis-

tinguish rules for sequents (written vertically using an inference line) from rules
for atoms of the form Γ→A, for which I want to reserve the term rule6.

4Following the practice in logic programming I often write rules with the head in leading position,
but only, if they are definitional, i.e., primitive (‘program rules’ in the terminology of logic
programming).
5Not to be confounded with a multiple succedent sequent, where Γ in ∆`Γ is understood dis-
junctively. Sequents of this kind are not considered in this paper.
6For the latter I could, of course, have chosen a different term such as clause or production. In
fact, production would not be bad (unlike clause, which suggests a disjunctive reading common in
resolution theory). However, in the present context, I prefer to stick to Lorenzen’s terminology,
who speaks of rules. As will be seen in section 3, speaking of inference principles in connec-
tion with sequents fits also well with Lorenzen’s terminology, if sequents are read as expressing
admissibility statements, so that rules for sequents are principles for establishing admissibility.
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The principles of definitional closure and definitional reflection can also be
formulated in natural deduction style as

Γi

A
(definitional closure)

and

A

{

Γ
C

: Γ ∈ D(A)

}

C
(definitional reflection).

Formulated for propositional constants as atoms, these principles are, of course,
not very powerful. However, they illustrate the underlying idea. They are added
as inference principle for atoms to a logical system L, yielding an extended system
L(D), called the definitional logic based on D. Since systems of atomic rules can
be identified with inductive definitions, L(D) may be viewed as a logic extended
with an inductive definition. In L(D), the symmetry pattern of logical principles
(sometimes called harmony) is extended by a corresponding pattern of principles
for definitional reasoning: The rules of a definition give rise to sequent style right
introduction and left introduction inferences for atoms (or natural deduction style
introduction and elimination inferences for atoms). Depending on what one is in-
terested in, the underlying system L may be a full-fledged logical system such as
first-order logic, or a more parsimonious system containing some standard struc-
tural principles such as identity, thinning and contraction

A`A
(Id)

Γ`A

Γ, ∆`A
(Thin)

Γ, B, B `A

Γ, B `A
(Contr)

or even a weaker substructural logic. I do not investigate here which impact dif-
ferent choices of the structural and logical properties of the basic system L have
for features of the resulting definitional logic L(D). For simplicity, I assume that
the antecedent Γ of a sequent Γ`A is a multiset, and that the three structural
principles (Id), (Thin) and (Contr) just mentioned are available. However, for the
points made in this paper, nothing really hinges on this assumption.

As the logical inferences themselves follow the general symmetry pattern,
they can be interpreted within the definitional schema. Using for the time being
a language with individual variables p, q, r, . . ., term forming operations ∧, ∨ ⊃
(binary) and ⊥ (nullary), and a single unary predicate T (‘truth’), consider the
following definition:

D1























T (p ∧ q) ← T (p), T (q)
T (p ∨ q) ← T (p)
T (p ∨ q) ← T (q)
T (p ⊃ q) ← (T (p) ⇒ T (q))
[no defining rule for T (⊥)]

Here I temporarily assume not only the first-order structure of atomic formulas
to be given (it will be formally introduced and discussed in section 3), but I also
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suppose that in the underlying logic L some sort of implication ‘ ⇒ ’ is available.
Given an appropriate logic L with such an implication, from the system L(D1) the
standard inference principles of intuitionistic propositional logic can be extracted.
This cannot just be discarded as a duplication of constants between L and D1,
arguing that one already presupposes what one wants to define, as at least for
disjunction and absurdity no corresponding constant in L needs to be considered
(unlike defined implication ‘⊃’, which corresponds to primitive implication ‘ ⇒ ’,
and defined conjunction ‘∧’, which corresponds to the comma)7.

I do not want to further discuss these foundational issues here, but just
mention the following points:

1. There is no restriction on the rules in a definition D in the sense that the
premisses of a definitional rule must only contain atoms already defined oth-
erwise. As in logic programming, definitional rules are completely arbitrary,
thus permitting, e.g., circular definitions. This opens up new possibilities of
dealing with non-wellfounded phenomena such as paradoxes8.

2. Implications in the bodies of rules give the logic of definitional reflection spe-
cial power which goes beyond what is normally considered (e.g. in the theory
of monotone inductive definitions or in definite clause logic programming).
When such an implication is available, certain definitions are partial in the
sense that, e.g., the eliminability of cuts is lost, i.e., the system lacks certain
global features, though locally it behaves ‘nicely’9.

In the following I shall only consider rules of the form A1, . . . , An→A for atoms
A (which may contain individual variables, see section 3), i.e., rules without im-
plications in bodies. This means that logical implication cannot be expressed in
the systems considered here. This corresponds to the usual way of dealing with
atomic systems and inductive definitions and is sufficient for the points I want to
make.

2. Definitional reflection as an admissibility principle

Definitional reflection has been developed in the context of partial inductive defi-
nitions (see [4]), where it is considered to be a fundamental principle of reasoning
which is dual to the (more common) principle of definitional closure. In the present
context, however, where I want to compare it with the inversion principle proposed
by Lorenzen [10, 11] in the early 1950s, a narrower interpretation is appropriate:
the admissibility interpretation. Given a calculus K as a ‘definition’, a rule R is

7Obviously, absurdity ‘⊥’ is a special case, presupposing a certain interpretation of limiting cases
of (D` ) if no defining rule for an atom is given.
8See [22]. Sometimes, in logic programming, certain well-foundedness properties for definitions
are discussed, such as the properties of a program being hierarchical or stratified. However, this is
not considered to be a requirement for a program to make sense, but as something, which, when
it holds, influences the global behaviour of the program (such as the functioning of negation as

failure, see, e.g., [8]).
9See [20], [22].
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admissible in K if adding R to the primitive rules of K does not extend the set of
derivable formulas, i.e.,

if `K+RA, then `KA.

(The term admissible was coined by Lorenzen in this sense.) In order to show that
R is admissible, one has to give an elimination procedure (again a term proposed by
Lorenzen), demonstrating that every application of R in a derivation within K +R
can be eliminated, yielding a derivation in K. I now interpret the sequent Γ`A as
expressing that the rule Γ→A is admissible (with respect to a calculus given by a
setD of definitional rules). Then both the inference schemata of definitional closure
and of definitional reflection become admissibility principles, stating that, if their
premisses are valid admissibility statements for D, then so is their conclusion. This
is obvious for definitional closure

Γ`B1 . . . Γ`Bn

Γ`A

where B1, . . . , Bn→A is a rule of D: In order to eliminate an application of Γ→A,
one may pass from Γ to B1, . . . , Bn using the admissible rules Γ→B1, . . . Γ→Bn,
and then apply the primitive (= definitional) rule B1, . . . , Bn→A. In the case of
definitional reflection

{Γ, ∆`C : Γ ∈ D(A)}

A, ∆`C
(D` )

the argument runs as follows: Consider an application of the rule A, ∆→C. Then
its premiss A is derived by using one of the primitive rules Γ→A (with Γ ∈
D(A)) in the last step. Hence there are derivations of the elements of Γ in the
previous steps. There are also derivations of the elements of ∆ (as premisses of
the considered application of A, ∆→C). Using the admissibility of Γ, ∆→C one
may pass to C as required.

If definitional reflection is understood as an admissibility principle, this is
its justification. It is exactly the kind of reasoning Lorenzen uses to justify his
inversion principle, if the latter is restricted to the propositional case (see sec-
tion 4). Abstracting from features irrelevant in our context, in the propositional
case Lorenzen’s inversion principle is the same as definitional reflection.

3. Definitional reflection in the presence of variables

The situation becomes more complicated when first-order atoms with variables
are considered. This is indispensable not only for logic programming, but for de-
finitional reasoning in general. The consideration of the propositional case in the
previous sections just served as an outline of the general principle.

I now suppose that atoms of a given signature are built up using predi-
cate symbols (denoted by P, Q, R, . . .), which are applied to terms constructed
from constants (a, b, c, . . .), variables (x, y, z, . . .) and perhaps function symbols
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(f, g, h, . . .). Nullary predicate symbols, which correspond to propositional vari-
ables, are allowed as a limiting case. Atoms are denoted by A, B, C, . . ., terms by
t1, t2, . . .. The set of variables occurring in a term, formula, list of formulas or rule
E is denoted by var(E).

This setting is still less general than the situation considered by Lorenzen [11]
who does not deal with a term/formula structure but just with a word structure
over an arbitrary alphabet. However, it is sufficiently general for most purposes,
and in particular, for the foundational issues discussed in this paper.

In the following, a substitution σ is considered to be a partial function
from variables to terms whose domain dom(σ) is finite (letters for substitutions:
θ, ρ, σ, τ, . . .). Thus substitutions can be identified with finite sets of pairs of vari-
ables and terms, written as [x1/t1, . . . ,

xn/tn]. Expressions like σ ∪ τ and στ
are then understood in the usual way, with σ ∪ τ only being defined if σ and
τ agree on dom(σ) ∩ dom(τ) (especially if dom(σ) ∩ dom(τ) = ∅), and with
dom(σ ∪ τ) = dom(σ) ∪ dom(τ) = dom(στ) in that case. As usual, a one-one
substitution σ mapping variables to variables is called a renaming substitution for
E, if var(E) ⊆ dom(σ). If x and y are finite sets of variables of the same cardinal-
ity, then [x/y] denotes the substitution which renames the variables of x by the
corresponding variables of y, where for the sake of uniqueness, a standard ordering
of all variables is assumed10. A rule R′ is called a variant of a rule R, if R′ = Rσ for
a renaming substitution σ for R. A definition D′ is called a variant of a definition
D, if D′ results from D by replacing rules in D by variants thereof. If σ is a unifier
of A and B, it is always assumed that σ affects no variables outside A and B, i.e.,
dom(σ) ⊆ var(A) ∪ var(B).

Let again a definition (database, program, calculus) of rules

D











A1 ← Γ1

...
An ← Γn

be given, where the atoms A1, . . . , An and the atoms in Γ1, . . . , Γn are now formulas
in the sense just defined. Then the principles of definitional closure and definitional
reflection can be formulated as follows:

∆`B1σ . . . ∆`Bmσ

∆`Aσ
(`D) (definitional closure)

if A←B1, . . . , Bm is a definitional rule (= rule in D) and σ is a substitution. This
inference principle is straightforward, as a rule is always applied under a certain
substitution.

{Γσ, ∆`C : B←Γ ∈ D, A = Bσ}

A, ∆`C
(D` ) (definitional reflection)

10This notation is only needed for the renaming variables with fresh variables (in the context of
‘standardizing apart’), so there is no need to deal with sequences rather than sets of variables.
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If D(A) (‘the defining conditions of A’) denotes {Γ : A←Γ is a substitution
instance of a definitional rule}, this can be written exactly as in the propositional
case, i.e., as

{Γ, ∆`C : Γ ∈ D(A)}

A, ∆`C
(D` ) (definitional reflection).

The application of (D` ) is subjected to the following proviso:

D(Aσ) ⊆ (D(A))σ

As the converse inclusion is trivial, it may as well be formulated as D(Aσ) =
(D(A))σ. Note that this is a proviso for the applicability of definitional reflection,
not a condition for a definition D to make sense.

The proviso ensures that for a substitution instance of A no defining rules
need to be considered beyond those relevant for A itself. Consider, e.g., the defin-
ition

{

P (x) ← Q
P (a) ←

If the proviso is disregarded, the sequent

P (x)`Q

can be derived by applying (D` ) to Q`Q, though P (a) is derivable without Q
being derivable (i.e., P (x)→Q is not admissible). The proviso also prevents the
application of (D` ) in the presence of extra variables in the premisses of rules,
i.e., variables occurring in the body but not in the head of a rule as in the following
definition:

{

P (b) ← Q(x)
Q(a) ←

Disregarding the proviso gives
P (b)`Q(b)

by applying (D` ) to Q(b)`Q(b), though P (b) is derivable without Q(b) being
derivable (i.e., P (b)→Q(b) is not admissible). In order to deal with such extra
variables, one could in the basic logic introduce a binding device such as existential
quantification and write the above rule for P (b) as

P (b)←∃xQ(x) .

Putting it in positive terms, the proviso guarantees that (D` ) is closed under
substitution in the sense that any substitution instance of (D` ) is an application
of (D` ) as well. This makes (D` ) particularly well-suited for computational pur-
poses, as it enables lifting, i.e. the permutation of evaluation with substitution,
which is essential for the computation of substitutions (bindings). In this way,
definitional reflection is used in extensions of logic programming (see [1],[6]). At
the same time, this means that for the justification of (D` ) one may argue as
in the propositional case. Call an application of a rule B1, . . . , Bn→B direct, if
it is applied under the empty substitution, i.e., if it leads from B1, . . . , Bn to B.
Suppose the rule A, ∆→C is applied using its instance Aσ, ∆σ→Cσ, i.e., leading
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from Aσ and ∆σ to Cσ. This can at the same time be understood as a direct
application of the rule Aσ, ∆σ→Cσ. By the propositional variant of (D` ), the
latter rule is admissible, if the rules in {Γ, ∆σ→Cσ : Γ ∈ D(Aσ)} are admissible.
By the proviso, σ can be extracted, yielding {Γ, ∆→C : Γ ∈ (D(A)}σ, whose
rules are admissible by assumption, since the rules in {Γ, ∆→C : Γ ∈ D(A)} are
admissible.

However, for the purely declarative reading, which underlies the admissibility
interpretation, a more general principle of definitional reflection is available. The
principle (D` )ω of generalized definitional reflection runs as follows:

{Γσ, ∆σ `Cσ : B←Γ ∈ D′, σ = mgu(A, B)}

A, ∆`C
(D` )ω

where D′ is a variant of D, which has no variables in common with A, ∆`C, and
where σ = mgu(A, B) means that only one most general unifier of A and B is
considered, if there exists one at all. This restriction guarantees that the number
of premisses of (D` )ω is at most the number of rules in D.

This principle allows one to obtain

P (x)`Q(x)

given that
{

P (a) ← Q(a)
P (b) ← Q(b)

are the only clauses defining the predicate P . Obviously, (D` ) does not suffice to
reach this result.

Generalized definitional reflection is easily justified by the admissibility in-
terpretation. Suppose the rule A, ∆→C is applied under a substitution θ, yielding
Cθ from Aθ and ∆θ. Then this application can be eliminated as follows, depend-
ing on how the premiss Aθ is obtained. Aθ must be an instance Bρ of a head B
of a definitional rule B←Γ. Obviously, B←Γ can be viewed as a member of a
variant D′ of D with variables standardized apart from those occurring elsewhere
in the derivation. Then θ ∪ ρ is a unifier of A and B, and Aθ = Aστ, Bρ = Bστ
for an mgu σ of A and B, and τ chosen such that στ = θ ∪ ρ. Since by assump-
tion, Γσ, ∆σ→Cσ is already available as an admissible rule, using its instance
Γστ, ∆στ→Cστ yields Cθ as required.

It is easy to see that (D` )ω comprises (D` ) as a special case. One just has
to realize that σ is an mgu of A and B if A = Bσ and variables are standardized
apart. Furthermore, due to the proviso D(Aσ) ⊆ (D(A))σ, there is no further mgu
of A with the head B of a definitional clause, so that (D` )ω can be applied to
the premiss set of (D` ).

Generalized definitional reflection is called (D` )ω since it implicitly con-
tains a step from instances to free variables, which is reminiscent of the ω-rule in
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arithmetic. In the above example, one implicitly passes from

P (a) ` Q(a)
P (b) ` Q(b)

which is obtained by propositional definitional reflection, to

P (x) ` Q(x)

In section 8 the idea of an underlying universalization principle (called ω-principle)
is investigated in more detail.

To distinguish (D` ) verbally from (D` )ω, I shall sometimes speak of ‘simple’
in contradistinction to ‘generalized’ definitional reflection.

4. Lorenzen’s inversion principle

Lorenzen was the first to explicitly formulate a general inversion principle. Un-
fortunately, his own formulations are not quite correct. A counterexample to the
version given in the first edition of [11] (1955) was given by Hermes [7] (1959),
who proposed a corrected formulation. Lorenzen’s version in the second edition of
[11] (1969) took only part of Hermes’ critique into account and is still incorrect.
Another formulation given by Lorenz [9] (1980) is also not fully correct. In the
following, when speaking of Lorenzen’s inversion principle, I mean the inversion
principle in the reading given to it by Hermes. However, in order to compare it with
definitional reflection, I assume the standard first-order term/formula structure to
be given for atoms, not just a word structure as in Lorenzen.11

It is crucial that in Lorenzen, definitional rules and formulas in derivations
may have variables in common, i.e. they need not be, and, for many purposes,
must not be standardized apart (see section 5 for this point). As there might be
such common variables, Lorenzen has to impose certain conditions on them. In
the following, using Hermes’ notation, I write E instead of var(E) for the set of
variables in E. For a substitution τ and a set of variables V , let τ � V be the
restriction of τ to V .

As mentioned above, Lorenzen’s inversion principle is intended and formu-
lated as an admissibility principle. Using as before the turnstile ‘` ’ to express
admissibility, it runs as follows. Suppose











B1 ← Γ1

...
Bn ← Γn

11I cannot discuss in this paper the proper treatment of inversion for this general case (though
some of the points raised by Hermes [7] are related to it). This would require the theory of
equational unification under associativity, which does not lead to uniquely determined most
general unifiers, but only to (not necessarily finite) minimal complete sets of unifiers. See [2].
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are exactly those rules in a definition D, which have joint instances with A, i.e.,
for which there are substitutions σi, ρi such that Aσi = Biρi (1 ≤ i ≤ n). Then
the inversion principle can be expressed by the following inference schema:

Γ1 `C . . . Γn `C

A`C
IP(D)

provided the following two conditions are satisfied for all i (1 ≤ i ≤ n):

(HC1) Γi ∩C ⊆ A ∩Bi

(HC2) If Aσ = Biρ, then σ and ρ agree on A ∩Bi

As these conditions were proposed by Hermes [7], I call them the Hermes condi-
tions.

That IP(D) is correct with respect to the intended admissibility interpreta-
tion can be seen as follows: Consider an application of the rule

(R) A→C

using the substitution σ, thus leading from Aσ to Cσ. Then Aσ is derived by an
application of the rule

(Ri) Γi→Bi

in the last step, using some substitution ρ, thus leading from Γiρ to Biρ where
Biρ = Aσ. This situation can be depicted as follows:

Aσ
R

Cσ
=

Γiρ
Ri

Biρ

It can be assumed that dom(σ) ⊆ A→C and dom(ρ) ⊆ Γi→Bi, i.e. σ and ρ are
not defined for variables outside the respective rules. Let

σ′ := σ � C ρ′ := ρ � Γi

Then by HC1

dom(σ′) ∩ dom(ρ′) ⊆ C ∩ Γi ⊆ A ∩Bi

By HC2, σ and ρ and therefore σ′ and ρ′ agree on A ∩ Bi. Thus σ′ and ρ′ agree
on dom(σ′) ∩ dom(ρ′), which means that

τ := σ′ ∪ ρ′

is well defined and
Γiρ = Γiρ

′ = Γiτ
Cσ = Cσ′ = Cτ

Thus Γiτ `Cτ is the same as Γiρ`Cσ, which means that the given application
of A→C (under the substitution σ) can be eliminated by using an application of
Γi→C under the substitution τ , passing directly from Γiρ to Cσ and circumvent-
ing Aσ(= Biρ).
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If in analogy with definitional reflection the inversion principle were formu-
lated as including a context ∆:

Γ1, ∆`C . . . Γn, ∆`C

A, ∆`C

then (HC1) would have to be appropriately modified:

(HC1′) (Γi ∪∆) ∩ C ⊆ A ∩Bi for all i (1 ≤ i ≤ n) (HC1′)

.

Digression: Other attempts at formulating the inversion principle

In the first edition of [11] (1955) Lorenzen formulated the inversion principle with
the following variable condition:

Bi ∩ C = ∅ for all i (1 ≤ i ≤ n) (LC1)

In the second edition of [11] (1969), though aware of Hermes’ formulation, he chose
instead

Bi ⊆ A for all i (1 ≤ i ≤ n) (LC2)

Lorenz [9] (1980) proposed

Γi→Bi ⊆ A for all i (1 ≤ i ≤ n) (LC3)

The following counterexample shows that none of these conditions is appropriate.
Let terms be a constant c as well as numerals of the form 0, s(0), s(s(0)), . . . for
another constant 0 and a unary function symbol s. Let P be a unary predicate.
Let the definitional rules for P be as follows:

{

(R1) P (c) ←
(R2) P (s(0)) ← P (x)

.

Obviously, the only derivable formulas are P (c) and P (s(0)). Thus the rule

(R) P (s(x))→P (x)

is not admissible, as it would enable one to derive P (0). Since R2 is the only rule
by means of which the premiss of an application of R can be derived,

P (x)`P (x)

P (s(x))`P (x)

is an instance of the inversion principle, yielding the admissibility of R. As can
easily be checked, each of the conditions LC1, LC2 and LC3 is satisfied, demon-
strating that neither of them is appropriate to ensure the validity of the inversion
principle, whereas the Hermes conditions block its application. Though HC2 is
satisfied, HC1 does not hold, as

P (x) ∩ P (x) = {x} 6= ∅ = P (s(x)) ∩ P (s(0))
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5. Standardizing apart

In logic programming, one normally assumes that variables in derivations are dif-
ferent from those occurring in the primitive rules of a program. As variables in
rules are (semantically) understood as universally quantified, this can always be
achieved by renaming, a procedure called standardizing variables apart (see [8]).
This is also assumed in the formulation of generalized definitional reflection. More
precisely, the inference schema (D` )ω refers to an appropriate variant D′ of D,
whose variables do not occur in the conclusion of (D` )ω . If this assumption is
made in the case of IP(D) by expecting the rules Bi←Γi to be variants of rules in
D whose variables are different from those in A`C, then the Hermes conditions
HC1 and HC2 are trivially satisfied: Γi∩C = ∅ yields HC1, and A∩Bi = ∅ yields
HC2.

This indicates that the inversion principles becomes too weak in this case.
Consider the language with variables over an arbitrary domain, and the unary T
as its only predicate (‘truth’). Extend the language with a binary function symbol
∧ not yet available in the language and give it the definition

D
{

(R) T (x∧y) ← T (x), T (y)

Then
(R1) T (x∧y)→T (x)
(R2) T (x∧y)→T (y)

are admissible in the extended system. To demonstrate this using the inversion
principle, one would use

T (x), T (y)`T (x)

T (x∧y)`T (x)

as an instance of IP(D), for which the Hermes conditions are fulfilled. This instance
establishes the admissibility of R1, as its premiss T (x), T (y)`T (x) is trivially
obtained12 (analogously for R2).
Now suppose that R is formulated with variables standardized apart:

D′
{

(R′) T (u∧v) ← T (u), T (v)

In order to establish the admissibility of R1 by the inversion principle, the instance
of IP (D′) needed is

T (u), T (v)`T (x)

T (x∧y)`T (x)

which is valid (under the admissibility interpretation of sequents), but whose pre-
miss T (u), T (v)`T (x) is simply not true.

This is a strong argument against Lorenzen’s inversion principle as it stands.
It is not invariant with respect to the formation of variants of definitional rules, i.e.,
the inferences generated by IP(D) may differ from those generated by IP (D′) for

12Here thinning is presupposed. In a substructural logic without thinning, the principle of defin-
itional reflection and the inversion principle would have to formulated in such a way that in the
antecedents of their premisses they only refer to single elements of Γ.



14 Peter Schroeder-Heister

a variant D′ of D. Contrary to that, (D` )ω is, by its very formulation, invariant
in that respect, i.e., every inference step of the form (D` )ω can be viewed as an
inference step (D′ ` )ω for any variant D′ of D.

This example gives a further clue why definitional reflection is preferable over
Lorenzen’s inversion principle. Let for D′ the situation

T (a∧b)
R1

T (a)

=

T (a) T (b)
R′

T (a∧b)

be given, which can be analyzed as

T (x∧y)σ
R1

T (x)σ

=

T (u)ρ T (v)ρ
R′

T (u∧v)ρ

with ρ = [u/a, v/b] and σ = [x/a, y/b]. Then, in order to circumvent the ap-
plications of R1 and R′ and to proceed directly from T (u)ρ to T (x)σ, only the
substitution instances R′ρ and R1σ of the rules R′ and R1, respectively, are needed,
which, if they are standardized apart, can be written as a single unifier θ = ρ∪ σ.
Moreover, in order to obtain a principle which covers all possible substitutions, it
is sufficient to consider most general unifiers.

The misconstruction of Lorenzen’s inversion principle lies in the fact that, in
order to establish the admissibility of A→C, Lorenzen requires the admissibility
of the full rules Γi→C as premisses of inversion, rather than the admissibility
of certain substitution instances thereof. In expecting Γi `C rather than Γiθ `Cθ
(for an mgu θ of A and Bi) to hold, sophisticated variable conditions have to
be imposed. For that Lorenzen cannot be blamed, as in the early 1950s, when
he conceived his admissibility theory, the theory of unification as developed in
the context of automated theorem proving (especially resolution), was far from
available, Robinson’s 1965 paper [17] being the key publication. Relying on the
modern theory of substitution and unification, I would claim that generalized
definitional reflection with its way of considering most general unifiers retains
most, if not all, intentions of Lorenzen’s inversion principle13.

6. The inversion principle follows from generalized definitional
reflection

I now show that IP(D) can be formally derived from (D` )ω, using only the
principle of substitution

Γ`A

Γσ `Aσ
(Subst)

13Again, of course, apart from its restriction to full term structure instead of Lorenzen’s general
word structure.
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together with elementary properties of substitutions. More precisely, I show the
following: Read sequents as formal expressions. Let D be any definition. Consider
a sequent system based on the inference schemata of (Subst) and (D` )ω. Suppose
a rule A→C is given. Write D as

D



































...
B1 ← Γ1

...
Bn ← Γn

...

such that the displayed rules Bi←Γi (1 ≤ i ≤ n) are exactly those definitional
rules in D whose heads have joint instances with A, i.e., there are σi, ρi such that
Aσi = Biρi. Suppose HC1 and HC2 are satisfied. Then IP(D) is a derivable
inference schema of this sequent system, i.e., A`C can be derived from {Γi `Ci :
1 ≤ i ≤ n}.

As Lorenzen’s formulation of the inversion principle does not use contexts ∆,
I restrict myself to the versions of (D` ) and IP(D) without such contexts. For
the proof with contexts, which is a straightforward generalization of the one given
here, one has to use the extended Hermes condition HC1′. So the schemata to be
compared are:

{Γ′

i
σi `Cσi : σi = mgu(A, B′

i
), 1 ≤ i ≤ n}

A`C
(D` )ω

where for each i (1 ≤ i ≤ n), B′

i
←Γ′

i
is a variant of Bi←Γi which has no variables

in common with A`C, and

{Γi `C : 1 ≤ i ≤ n}

A`C
IP(D)

The following proof constructs, for each i (1 ≤ i ≤ n), a variant B′

i
←Γ′

i
of Bi←Γi,

which has no variables in common with A`C, such that for σi := mgu(A, B′

i
),

the sequent Γ′

i
σi `Cσi is a substitution instance of Γi `C. This means that the

premisses of (D` )ω are obtained from those of IP(D) by substitution.

Define the following sets of variables:

xi := A ∩Bi

x′

i
:= Γi→Bi ∩A→C

x∗

i
:= x′

i
\ xi

Corresponding to these sets, generate disjoint sets of fresh variables yi, y
′

i, y
∗

i of
the same cardinalities, such that

Bi[x
′

i/y′
i
]←Γi[x

′

i/y′
i
]
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is a variant of Bi←Γi which has no variables in common with A`C. This variant
is abbreviated as B′

i
←Γ′

i
. Let σi := mgu(A, B′

i
). Then

Aσi = Bi[x
′

i/y′
i
]σi = Bi[x

∗

i /y∗

i
][xi/yi

]σi

By HC2, the substitutions σi and [x
∗

i /y∗

i
][xi/yi

]σi agree on xi, which means that

(∗) [xi/yi
]σi = σi

since xi and x∗

i are disjoint, and outside xi the substitutions σi and [xi/yi
]σi

trivially agree.

Now Γi `C has

Γ′

i
`C[x

′

i/y′i]

as a substitution instance, which can also be written as

Γ′

i
`C[x

∗

i /y∗i ][
xi/yi

]

By HC1, those variables of x∗

i
, which occur in C, do not occur in Γ′

i
. Therefore

renaming them back, i.e., substituting with [y
∗

i /x∗

i
], yields

Γ′

i
`C[xi/y

i
]

Substitution with σi gives

Γ′

i
σi `C[xi/yi

]σi

from which, by (∗),

Γ′

i
σi `Cσi

is obtained as desired.

That IP(D) is strictly weaker than (D` )ω follows by using the results of
section 5 on standardizing rules apart, since, given the definitional rule

T (u∧v)← T (u), T (v)

the sequent T (x∧y)`T (x) is derivable by (D` )ω, but not by IP(D). Another
example, which does not rely on the problems the inversion principle has with the
renaming of variables, is the following. Let P and Q be unary predicates and a
the only constant available. Suppose

D















...
P (a) ← Q(a) (R1)

...

has R1 as the only clause defining P . Then

Q(a)`Q(a)

P (x)`Q(x)
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is an instance of (D` )ω with the premiss trivially derivable, whereas a correspond-
ing instance of IP(D) leading to P (x)`Q(x) is

Q(a)`Q(x)

P (x)`Q(x)

whose premiss is not derivable.

7. Simple definitional reflection and the inversion principle are
mutually independent

Both simple definitional reflection (D` ) and the inversion principle IP(D) are
strictly weaker than generalized definitional reflection (D` )ω. The following ex-
amples show that neither of them entails the other one without assuming further
inference principles. In this sense they are independent of each other.

To show that (D` ) does not imply IP(D) consider the definition














P (a) ← P (a)
P (b) ← P (b)

Q ← P (a)
Q ← P (b)

Then using the inversion principle, P (x)`Q is obtained via

P (a)`Q P (b)`Q
IP(D)

P (x)`Q

However, P (x)`Q cannot be derived using (D` ) as P (x) is not an instance of
the head of a definitional rule (apart from the fact that the proviso D(P (x)σ) ⊆
(D(P (x)))σ is not satisfied).

To show that IP(D) does not imply (D` ), one could argue as in the previous
section that, given the definitional rule

T (u∧v)← T (u), T (v)

the sequent T (x∧y)`T (x) is derivable by (D` ) (not only by (D` )ω), but not by
IP(D). An example not related to the ‘standardizing apart’-problems of IP(D) is
the following. Consider the definition















P (x) ← Q(x)
R ← Q(a)

Q(a) ← Q(a)
Q(b) ← Q(b)

Then using (simple) definitional reflection, P (a)`R can be derived via

Q(a)`R
(D` )

P (a)`R
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However, P (a)`R cannot be derived using IP(D), since for that Q(x)`R would
be needed as a premiss. In order to derive Q(x)`R by using IP(D), both Q(a)`R
and Q(b)`R must be derivable. But Q(b)`R is not derivable.

8. Universalization: The ω-principle

Generalized definitional reflection (D` )ω is equivalent to simple definitional re-
flection (D` ), if the following principle is added, called the ω-principle:

{Aσ, ∆σ `Cσ : B←Γ ∈ D′, σ = mgu(A, B)}

A, ∆`C
(ω)D

As with (D` )ω, D′ is a variant of D, which has no variables in common with
A, ∆`C, and σ = mgu(A, B) means that only one most general unifier of A and
B is considered. The difference between (D` )ω and (ω)D is that the latter allows
one to pass from all defined substitution instances of a sequent to the sequent
itself, without replacing A on the left side with its defining conditions. In this way
the basic idea of definitional reflection is separated from the universalization step
contained in passing from {Aσ, ∆σ `Cσ : . . .} to A, ∆`C.

It is easy to see that, as an admissibility principle, (ω)D is valid. Sup-
pose the rule A, ∆→C is applied using its substitution instance Aσ, ∆σ→Cσ,
leading from Aσ and ∆σ to Cσ. Then the premiss Aσ is derived using an in-
stance Bρ←Γρ of a definitional rule B←Γ. Since it is assumed that variables
are standardized apart, ρ ∪ σ is well defined and is a unifier of A and B. Fur-
thermore, (∆σ, Aσ→Cσ) = (∆(σ ∪ ρ), A(σ ∪ ρ)→C(σ ∪ ρ)). Since ρ ∪ σ = θτ
for θ = mgu(A, B), the admissibility of ∆σ, Aσ→Cσ follows by substitution from
that of ∆θ, Aθ→Cθ, which is assumed as a premiss of (ω)D.

To see that (ω)D is a consequence of (D` )ω , one may use thinning, passing
in its premiss set from

Aσ, ∆σ `Cσ

to

Γσ, Aσ, ∆σ `Cσ,

then use (D` )ω yielding

A, A, ∆`C,

and then use contraction. Another possible strategy would be to apply cut using
the sequent

Γσ `Aσ

which can be obtained using (`D).
Conversely, in order to show that (D` )ω is derivable from (`D) together

with (ω)D, consider an application of (D` )ω with conclusion A, ∆`C. Suppose
Aσ = Bσ for a rule B←Γ in D with σ = mgu(A, B). Suppose Aσ = B′ρ for a
rule B′←Γ′ in D. Since variables are assumed to be standardized apart, σ ∪ ρ
is a unifier of A and B′. Let θ := mgu(A, B′). Then Γ′θ, ∆θ `Cθ is a premiss
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of (D` )ω, from which by substitution Γ′(σ ∪ ρ), ∆(σ ∪ ρ)`C(σ ∪ ρ) is obtained,
which is the same as Γ′ρ, ∆σ `Cσ. Therefore

Mσ := {Γρ, ∆σ `Cσ : Aσ = Bρ for some B←Γ in D}

is a subset of the set of premisses of (D` )ω. From Mσ one derives Aσ, ∆σ `Cσ
using (D` ). As this sequent is obtained for every Aσ in the premisses of (ω)D,
applying (ω)D yields A, ∆`C as desired.

This result shows that (D` )ω can be split up into (`D) and (ω). Generalized
definitional reflection combines two ideas, which may be separated from each other.
(D` ) expresses the step of definitional reflection, which refers to the definitional
conditions of a formula, whereas (ω)D is a principle of universalization, leading
from substitution instances of a sequent to the sequent itself. In this sense (ω)D can
be viewed as being dual to substitution (Subst), which is a specialization principle.
According to this picture there are two separate fundamental pairs of principles:
Specialization (Subst) and universalization (ω)D for the handling of variables,
and definitional closure (`D) and definitional reflection (D` ) for handling the
relationship between definienda and defining conditions.

I consider this separation of universalization and definitional reflection to be
a great conceptual advantage. This advantage is reflected by the fact that, when
it comes to exploit the dualities between left and right inferences in the sequent
calculus, one would treat (ω)D separate from the duality given by (`D) and
(D` ). From the perspective of cut elimination, it is simple definitional reflection,
not generalized definitional reflection, which complements the rule of definitional
closure. There is no straightforward principal reduction for a (`D)/(D` )ω cut, as
side formulas in (D` )ω do not remain unchanged between the premisses and the
conclusion of (D` )ω, but there is an obvious principal reduction for (`D)/(D` )
cuts (see [19]). ‘Harmony’ or ‘symmetry’ obtains between (`D) and (D` ), not
between (`D) and (D` )ω.

For these reasons, I prefer treating (ω)D as an elementary principle of reason-
ing rather than mixing it up with other ideas as in (D` )ω . Actually, as a principle
of its own (ω)D is already quite powerful. For example, it suffices to derive the full
theory of free equality. Given the definition

{

x
.
= x ←

consisting of a single rule for the binary equality predicate
.
=, the following infer-

ence principles can be generated:

t
.
= t

Γσ `Aσ

s
.
= t, Γ`A

σ = mgu(s, t)
s

.
= t, Γ`A

s and t not unifiable

which again are equivalent to the standard theory of free equality (see [21]).
In the presence of (ω)D, IP(D) and (D` ) are no longer mutually indepen-

dent. Now the inversion principle is strictly weaker than simple definitional reflec-
tion. The result that, given (ω)D, (D` ) entails IP(D), follows from the fact that,
as shown before, (D` )ω is a consequence of (D` ) together with (ω)D, and IP(D)
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is a consequence of (D` )ω. However the converse does not hold. Consider again
the example















P (x) ← Q(x)
R ← Q(a)

Q(a) ← Q(a)
Q(b) ← Q(b)

already studied above. Even if (ω)D is available, the sequent P (a)`R, which is
derivable by means of (D` ), cannot be derived using IP(D) and (ω)D. As men-
tioned above, Q(x)`R is needed to derive P (a)`R using IP(D), and in order
to derive Q(x)`R by (ω)D, both Q(a)`R and Q(b)`R must be available. But
Q(b)`R is underivable. Actually, if the two premisses Q(a)`R and Q(b)`R were
derivable, one would receive Q(x)`R already by IP(D), as

Q(a)`R Q(b)`R

Q(x)`R

can be read both as an application of (ω)D and of IP(D). This illustrates that
IP(D) itself incorporates certain ideas underlying (ω)D, to the effect that in the
present example, (ω)D does not add any deductive power to IP(D).

Summarizing the results of this paper, both definitional reflection and the
inversion principle are consequences of generalized definitional reflection. Both are
strictly weaker than generalized definitional reflection, but neither of them entails
the other one. If the ω-principle is added, the inversion principle is strictly weaker
than simple definitional reflection (which is then equivalent to generalized defini-
tional reflection). Whether there is some other general principle similar to (ω)D,
on the basis of which the inversion principle would entail definitional reflection
and perhaps even generalized definitional reflection, remains to be investigated.
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Sand 13
72076 Tübingen
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