12th Int. Cong. Logic Methodology and Philosophy of Science, LMPS’03
Oviedo, Spain, August 7-13, 2003
correspondence to: ekeenan@ucla.edu

Edward L. Keenan - Edward P. Stabler

Linguistic Invariants and Language Variation

Since the publication of Noam Chomsky’s field founding Syntactic Struc-
tures in 1957, generative grammarians have been formulating and studying
the grammars of particular languages to extract from them what is gen-
eral across languages. The idea is that properties which all languages have
will give us some insight into the nature of mind. A widely acknowledged
problem to which this work has led is how to reconcile the goal of general-
ization with language specific phenomena and the cross language variation
they induce. Good science requires that cross linguistically valid general-
izations be based on accurate, precise and thorough descriptions of par-
ticular languages. But such work on any given language increasingly leads
us to describe language specific phenomena: irregular verbs, exceptions to
paradigms, lexically conditioned rules, etc. So this work and cross language
generalization seem to pull in opposite directions.

Here we propose an approach in which these two forces are reconciled.
Our solution, presented in greater depth in Bare Grammar (Keenan and
Stabler, 2003), is built on the notion of linguistic invariant. On our ap-
proach different languages do have non-trivially different grammars: their
grammatical categories are defined internal to the language and may fail
to be comparable to ones used for other languages. Their rules, ways of
building complex expressions from simpler ones, may also fail to be isomor-
phic across languages. So languages differ. Nonetheless certain properties
and relations may be invariant in all natural language grammars, as we will
see below. And it is to these linguistic invariants that we should look for
properties of mind.

Our approach contrasts with that of the most widely adopted linguistic
theories, where the dominant idea is that there is only one grammar, the
grammars of particular languages being, somehow, special cases. This has
led to a mode of description in which grammars of particular languages
are given in a notationally uniform way: the grammatical categories of all
languages are drawn from a fixed universal set,’ as are the rules charac-
terizing complex expressions in terms of their components. It has also led
to the postulation of a level of unobservable structure (“LF”, suggesting
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“Logical Form”), where structural properties of observable expressions may
be changed in important ways. So this allows that structural generaliza-
tions which appear to be false on the basis of observable expressions may
be true at LF where structural properties have been modified. We shall be
concerned with one such case in this paper.

1. Linguistic Invariants

Consider the minimally complex expressions in (1):

(1) a. Casper coughed

b. Carson sneezed

Different linguistic theories - GB/Minimalism (Hornstein, 1995), HPSG
(Pollard and Sag, 1994), LFG (Bresnan, 2001), Relational Grammar and
Arc-Pair Grammar (Aissen, 1987) - differ with regard to the structure they
attribute to (1a), and of course the notation they use to express that struc-
ture. But each of these theories would assign the same structure to (la) and
(1b). And it is this latter type of judgment - Under what conditions do X
and Y have the same structure? - that forms the basis of the Bare Grammar
(BG) approach.

Consider how we might argue pretheoretically that (1a,b) have the same
structure. We agree that replacing ‘Caspar’ by ‘Carson’ in (la) yielding
Carson coughed does not change structure. And then replacing ‘coughed’
by ‘sneezed’ deriving thus (1b) does not change structure. So the intuition
is that expressions X and Y have the same structure if each can be derived
from the other by a succession of structure preserving transformations.

Here is a more explicit statement, leading up to our definition of in-
variant. We think of a grammar as a way of defining (and semantically
interpreting) a class of expressions. Specifically the syntax of a grammar
G is primarily a pair (Lexg, Ruleg), where, omitting subscripts, Lex is a
(normally) finite set of expressions, called lexical items, and Rule is a set of
functions, called generating or structure building functions. Lg, the language
generated by G, is the set of all expressions you can build starting with those
in Lex and applying the structure building functions finitely many times.

Lexical items on our view do present some internal structure. Like the
expressions in Lg in general, they are partitioned into classes by grammat-
ical categories. So we represent an expression, and in particular a lexical
item, as an ordered pair (s, C) where s is a string over the vocabulary Vg
of G and C is an element of the set Catg of category symbols of G. For any
expression e = (s,C), Cat(e) =qr C, its second coordinate. Slightly more
formally:

Definition 1. A bare grammar G is a four-tuple, (Vg, Catg, Lexg, Ruleg),
where Lex C VxCat, and Rule is a set of partial functions from (V* x Cat)™*
into V* x Cat. V* x Cat is the set of possible expressions over G, and the
language generated by G, Lg, is the closure of Lex under Rule.
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For any set K we can find a grammar G as above such that K is the set of
strings of expressions in Lg. So any universal properties of natural language
will have to be given explicitly as axioms (or consequences of other axioms),
they do not follow from the mere formalism we use to express the grammar.

Definition 2. An automorphism of a grammar G is a bijection h : Lg —
L which fizes each F in Rule, that is, h(F) = F. This just means that F
maps a tuple (s1,...,5n) t0 Sny1 iff F maps (h(s1),...,h(sn)) to h(spt+1).

Fact 1 idy, the identity map on Lg, is in Autq, the set of automorphisms
of G; so is h™! whenever h is, and so is goh whenever g and h are. So Autg
is a group, as expected.

Definition 3. For alls,t € Lg, s is isomorphic to t, noteds ~ t, iff h(s) =t
for some h € Autg. We write [s] for {t € La| s ~t}.

We may, when useful, treat [s] as the “structure” of s. In practice we have
not found this very useful; ~, however, is a very useful relation.

Fact 2 For each G, ~ is an equivalence relation partitioning Lg into blocks
{[s]| s € La}.

Now, leading up to our definition of invariant, observe that whenever g is
a function from a set A to a set B we can canonically lift g to a map P,
from p(A), the power set of A, into p(B) by setting Py (K) = {g(x)| x € K}.
We usually just write g(K) instead of P, (k). Similarly we can extend g to
a map g* from A*, the set of finite sequences of elements of A, into B* by
setting g*(az,...,a,) = (g(a1),...,g(an)). Again we usually write g for g*
here.

Definition 4. The invariants of a grammar G are the expressions, prop-
erties (sets) of expressions, relations between expressions,.. . that are fized,
mapped to themselves, by all the automorphisms of G.

So given a grammar, its (logical) invariants are those linguistic objects
(expressions, properties of expressions, relations between expressions, func-
tions from expressions to expressions,. . .) which cannot be changed without
changing structure.

Later we introduce the notion of a stable automorphism and define the
linguistic invariants of a grammar G to be those linguistic objects fixed by all
stable automorphisms. But first let us learn to use the more general notion
(and in any event in our initial examples of grammars the automorphisms
and the stable automorphisms coincide).

2. Eng, an illustrative grammar for a fragment of English

We present a very simple grammar Eng in order to illustrate in a concrete
way the notions of grammar and invariant defined above. It has some proper
nouns, like John and Bill, some one place predicate symbols (Pls), like
laughed and cried, some two place predicate symbols (P2s), like praised and
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criticized. We also have some conjunctions, and and or which form boolean
compounds of expressions in a fairly obvious way. Finally, Eng has a reflexive
pronoun himself that combines with P2s to form P1s, but does not combine
with P1s to form anything. Eng has just two rules: Merge, which combines
nominal elements with Pn+1s to form Pn’s (we use PO where many use ‘S’
for ‘sentence’), and Coord which forms boolean compounds with and and
or. Formally, Eng=(V, Cat, Lex, Rule), where these are given as follows:

V: laugh, cry, sneeze, praise, criticize, see,
John, Bill, Sam, himself, and, or, both, either
Cat: PO, P1, P2, P01/P12, P1/P2, CONJ
Lex: P1 laughed, cried, sneezed
P2 praised, criticized, interviewed
P01/P12 John, Bill, Sam
P1/P2  himself
CONJ  and, or
Rule: Merge and Coord, defined below.

Domain Merge Value Conditions

s t sTt

A B — PO A =P01/P12,B=P1

5ot © 5 Ac{P1/P2,P01/P12},B = P2
A B P]. € { / ) / }a -

So the domain of Merge is the set of pairs ((s, A), (t,B)), for any s,t in V*
and any A,B in Cat meeting the specified conditions. We summarize the
argument that (John laughed,P0) is in Lgn, using a Function-Argument
(FA) tree in which mother nodes are labeled with the values of generating
functions applied to the labels on the daughter nodes:

Merge:(John laughed, P0)
(John,P01/P12) (laughed, P1)

Linguists more often represent this derivation with slightly less explicit
“standard” tree like the following;:

PO

/\
P01/P12 Pl

|
John laughed

Letting the set of coordinable categories cCgng = Cat — {CONJ} and the
class of nominal categories nCgng = {P1/P2,P01/P12}, we define the other
generating function Coord as follows:



Linguistic Invariants 5

Domain Coord Value Conditions
and s t both™s Tand ™t C C
CONJ C C — C € Vking
or s t either™s “or™t C C
CONJ C C — C € CVEng
and s ¢ both™s Tand ™t ,
CoONJ ¢ ¢ 7 P1/P2 C# "€ nChng
or st either™s “or™t ,
cony ¢ ¢ T P1/P2 ©# C"€nChng

This rule is used in the derivation of (John criticized both himself and Bill,
P0), as we see in the following FA derivation tree:

Merge:(John criticized both himself and Bill, P0)
(John,P01/P12)  Merge:(criticized both himself and Bill, P1)
Coord:(both himself and Bill,P1/P2) (criticized, P2)

(and, CONJ) (himself, P1/P2)  (Bill,P01/P12)

3. Some invariants of Eng

El. At the lowest level, the only expression that is invariant is (himself,
P1/P2). The reason is that it has a unique distribution. It is the only
lexical item that combines with P2s to form P1s but does not combine
with Pls to form POs.

E2. At the level of properties, we find several interesting invariants. First,
the property of being a lexical item is invariant. That is, for all auto-
morphisms h of Eng, h(Lexgng) = Lexgng. Indeed one might think that
the property of being a lexical item was invariant in all G, but this is
not the case.

E3. For each category C of Eng, the property of being an expression of
category C is invariant. That is, for allh € Autg,,, h(PH(C)) = PH(C),
where PH(C) =q4¢ {s € Lg| s = (t,C) for some string t}. This also is
not a universal invariant, as we see explicitly later.

E4. A more interesting invariant property in Lg,g is: the property of be-
ing an anaphor. Informally anaphors are expressions like himself, both
himself and Bill, etc. which are obligatorily interpreted as referentially
dependent in a certain way. (Below we provide a properly semantic,
language independent, definition of ‘anaphor’.) We can show that the
(infinite) set of expressions in Lgn, which have this property is fixed by
all the automorphisms of Eng.
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E5. At the level of relations and functions, the binary relation is a con-
stituent of (CONEpg) is invariant, but this is universally invariant in
the sense that for all G, CONg is invariant (as explained in the next
section). Also invariant, but not universally so, is the three place relation
s is a possible antecedent of an anaphor t in u. To illustrate the intuition
behind this relation consider that in the expressions below himself may
be understood as referentially dependent as the underlined nominals in
the expression, and if there is none it is ungrammatical (indicated by
the asterisk):

(2) a. John thought that the duke defended himself well
b. *John thought that Mary defended himself well
c. John protected Bill from himself

E6. And lastly, as an example of an invariant (partial) function on Lgn,
consider SUBJgyg, which maps a PO to its subject it if has one: for any
S € LEng,

Domain(SUBJgyg) = Range(Merge) N PH(PO)
SUBJgng (s) = t iff for some u of category P1,s = Merge(t, u).

So SUBJgng(both John and Bill praised Sam, P0) = (both John and
Bill, P01/P12). But (Either John laughed or Bill cried, P0) is not
mapped to anything by this function, since it is not in the range of
Merge.

4. Universal invariants

We referred above to invariants as universal if they are invariant in all G,
no matter how implausible G might be considered as a grammar for a nat-
ural language. So these are invariants that follow from our definition of a
grammar plus that of invariant. But linguistically our interest lies primar-
ily in properties, relations, etc. which are empirically invariant — they hold
for all motivated grammars of natural language but admit of formal coun-
terexamples. We shall argue that is an anaphor and is a possible antecedent
of are two such cases. But first, let us list some universal invariants, since
they place boundary conditions on empirical invariants and they are very
useful in showing that one or another property of a particular grammar G is
invariant. In our statements we use ‘structural’ and ‘structurally definable’
as synonyms of ‘invariant’. We have the following, for all grammars G:

Ul. Lg is invariant. That is, the property of being grammatical in G is
structural.

U2. For any F € Ruleg, F is invariant (trivially), as is its domain and range.
So the property of being derived by any given F € Ruleg is structural.
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U3. If Lexg is invariant then for all n, Lex, is invariant, where we define
the complexity hierarchy Lex, by: Lexo = Lexg and for all n, Lexp+1 =
Lexn, U{F(t)| F € Ruleg, t € Lex}; N Domain(F)}.

Note that Lg = J, Lex, and if for all F € Ruleg, Range(F) NLexg = (8
then Lexg is invariant.

U4. If G is category functional and each Lex(C) is invariant then each
PH(C) is invariant, where Lex(C) =4¢ PH(C) N Lex and G is category
functional iff for all F € Rule and all n-tuples u,v € Domain(F), if
Cat(u;) = Cat(vi) all 1 <i < n then Cat(F(u)) = Cat(F(v)).

U5. The set of invariant subsets of Lg is closed under relative comple-
ment and arbitrary intersections and unions, and thus forms a complete
atomic boolean algebra (with atoms [s]). So conjunctions, disjunctions,
and negations of invariant properties are themselves invariant proper-
ties. Comparable claims hold for R C (Lg)", for all n. Equally, cross
products of invariant sets are invariant.

So if the property of being a feminine noun is invariant, and the property
of being a plural noun is invariant then the property of being a feminine
plural noun is invariant, as is that of being a feminine non-plural noun,
etc.

U6. The is a constituent of relation, CON, is invariant, as are PCON (is
a proper constituent of) and ICON (is an immediate constituent of),
where for all s,t € L, we define:

a. sICONt iff for some uy,...,uy € Lg and some F € Ruleg, t =

F(u,...,u,) and s = u;, some 1 < i < n.

b. sPCONt iff for some n > 2 there is a sequence v = (Vi,...,Vn)
of elements of Lg with vi = s,v, = t and for each 1 < ¢ < n,
ViICONVi+1.

c. sSCONt iff s =t or sPCONt

U7. The sister of relation is invariant, where, s sister of t in u iff some
F(v1,...,vn) is a constituent of u and for some i # j, s = v; and t = vj.

U8. CC, c-commands, is invariant, where, sCCt in u iff for some constituent
v of u, s is a sister of v in u and t is a constituent of v.

U6-U8 define linguistic notions on expressions, not, as is more usual, on
derivations or tree-like structures representing derivations. We give the def-
initions more generally than usual because there are a variety of linguistic
phenomena that are not naturally representable with standard trees and
in which constituency is not recoverable by merely segmenting the derived
string. Examples are reduplication, second position placement of Latin -que
‘and’, and the Dutch crossing verb dependencies (see Keenan and Stabler
2003, Chapter 3).
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5. Empirical invariants: Anaphor-Antecedent relations

For illustrative purposes we limit ourselves to the simplest environment
in which non-trivial anaphora obtains: that between the two arguments
of a binary relation denoting expression (e.g. a transitive verb). Consider
the data pattern in English below, where the intended antecedent of the
anaphor himself is underlined, and constituency is indicated by brackets for
later reference:

(3) a. [Every student [criticized himself]]

b. *[Himself [criticized every student]]

A first attempt to describe these data might use left-right order: “X is a
possible antecedent of an anaphor Y iff X and Y are co-arguments and X
precedes Y”. This claim works surprisingly well for quite a range of fairly
simple sentences in English. But it is cross linguistically not valid. Languages
such as Malagasy (Austronesian; Madagascar) and Tzotzil (Mayan; Mexico)
which use Verb+Patient+Agent as a pragmatically neutral order in simple
sentences, (4a,b), naturally present anaphors before their antecedents (5a,b)

(4) a. Namono ny akoho Rabe Malagasy
Killed the chicken Rabe

‘Rabe killed the chicken’

b. ?i-s-poxta Xun li j?ilol-e Tzotzil (Aissen 1987:90)
Asp-3-care Xun the shaman-clitic

‘The shaman treated Xun’

(5) a. Namono tena Rabe Malagasy
Killed self Rabe
Rabe killed himself

b. ?i-s-poxta s-ba li Xun-e Tzotzil
Asp-3-care 3-self art Xun-clitic

‘Xun treated himself’

A more comprehensive proposal, accepted by many linguists as valid for
natural languages in general, would replace “X precedes Y” with “X c-
commands Y”. This characterization of the AA (Anaphor-Antecedent) re-
lation is consistent with the Tzotzil and Malagasy data above. But again it
seems insufficiently general to account for a quite widespread language type:
the verb is peripheral (usually final) and the arguments of the verb carry
morphological markings, case markers, which identify the arguments. In the
verb final case, illustrated below by Korean, the relative order of arguments
is often rather free. We give the examples directly with the anaphors, but
non-anaphoric nominals may replace them without change.

(6) [Caki-casin-ul [motun haksayng+tul-i piphanhayssta]] Korean
Self-emph-acc all student+pl-nom criticized

‘All the students criticized themselves’



Linguistic Invariants 9

(7) [[Sinampal ng babae] ang sarili niya] Tagalog
slap+GF gen woman top self 3poss

‘The woman slapped herself’

There is reasonable evidence in these cases that the antecedent of the
anaphor does not c-command it; indeed the anaphor seems to asymmet-
rically c-command its antecedent. But the important structural regularity
here concerns the case markers. They cannot be interchanged preserving
grammaticality:

(8) *[Caki-casin-i [motun haksayng+tul-ul piphanhaysstal]] Korean
Self-emph-nom all student+pl-acc criticized

‘All the students criticized themselves’

(9) *[[Sinampal ang babae] ng sarili niya] Tagalog
slap+GF  top woman gen self 3poss

‘The woman slapped herself’

The c-command relations have not changed, but the case marking has, re-
sulting in ungrammaticality. So case marking plays a structurally important
role in these languages, and in our models is provably invariant.

The appropriate generalization for Korean then is: in simple sentences,
X is a possible antecedent for an anaphor Y iff X and Y are co-arguments
and X is - marked and Y is -ul marked.? In Tagalog X is ng marked and Y
is ang marked. Based on the Korean data we exhibit a mini-grammar for a
verb final case marking language in which case relations determine the dis-
tribution of anaphors. We provide a compositional semantic interpretation,
including a semantic, language independent, definition of anaphor, thereby
establishing that the expressions we call anaphors are indeed interpreted
as anaphors. But first let us give the language independent definition of
anaphor (for the restricted class of contexts considered).

6. A semantic definition of ‘anaphor’

For each domain E we interpret P2s as binary relations over E, represented
as functions from E into [E — {0,1}]. Anaphors and ordinary NPs, such
John, most of John’s friends, etc. map P2 denotations into [E — {0,1}].
The difference in the two cases concerns what the values of the functions
depend on. Compare:

(10) a. Sam criticized most of John’s students

b. Sam criticized himself

In (10a) whether the denotation of criticized most of John’s students holds
of Sam is decided just by checking the set of objects that Sam criticized.
If that set includes a majority of John’s students the whole S is true. We
don’t need to know who Sam is. If Bill praised exactly the people that
Sam criticized then (10a) and Bill praised most of John’s students must
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have the same truth value. In contrast it might be that the individuals Sam
criticized are just those that Bill praised but (10b) and Bill praised himself
have different truth values. Formally,

Definition 5. Given a domain E, a binary relation R over E, and x € E,

xR =ar {y € E| (R(y))(x) = 1}.

So in set notation, xR = {y € E| (x,y) € R}.
Let F map binary relations to properties. Then F satisfies the Extensions
Condition (EC) iff for all a,b € E, all binary relations R,S over E,

if aR = bS then F(R)(a) = F(S)(b).

And F satisfies the Anaphor Condition (AC) iff for all a € E, all binary
relations R, S over E,

if aR = aS then F(R)(a) = F(S)(a).

Let D combine with P2s to form P1ls. Then D is an anaphor iff all non-
trivial 3 interpretations of D satisfy the AC but fail the EC.*

So for example, for E with at least two members, the function SELF from
binary relations to sets given by: SELF(R)(x) = R(x)(x) is easily seen to
fail the EC but satisfy the AC.

7. Kor, a verb final case marking language

Consider the following language Kor, inspired by Korean:

V: laughed, cried, sneezed, praised, criticized, saw, -nom, -acc,
John, Bill, Sam, himself, and, or, nor, both, either, neither
Cat: NP, NP, Ka, Kn, KPa, KPn, PO, Pla, P1n, P2, CONJ
Lex: Kn -nom

Ka -acc
Pln  laughed, cried, sneezed
P2 praised, criticized, interviewed

NP John, Bill, Sam
NP,es himself
CONJ and, or, nor
Rule: CM (case mark), PA (predicate-argument) and Coord, as follows.

Domain CM Value Conditions
-nom ¢ t-nom
Kn NP KPn (none)
- t e
ace s A X € {NP,NPeq}

Ka X KPa
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Domain PA Value
S t st
KPn Pln S
S t STt
KPa Pla S
S t st
KPn P2 " Pla
S t STt
KPa P2 "~ Pl

Letting the coordinable, “boolean” categories be
cCxkor =ar Cat — {CONJ,Ka, Kn,KPa, KPn}
and the nominal categories be
nCkor =ar {NP, NPren },

we define a coordination rule as follows:®

Domain Coord Value Conditions
and s ot both™s Tand™t C C
CONJ C C — C € CUKor
or s t either™s Tor™t C C
CONJ C C — C € UKor
nor s t neither™s Tnor™t C C
CONJ C C — C € UKor
and st both™s Tand™t ,
cony ¢ ¢ NP,en C#C €nCicor
or s t either™s Tor™t ,
CONJ C C’ — NP, C# 0 enCicor
nor st neither™s “or™t ,
coNny ¢ o NP,e € # ¢ €nCror

The following tree represents the argument that (himself-acc John-nom
praised, P0)eL(Kor).
PA:(himself -acc John -nom praised, P0)
CM:(himself -acc, KPa) PA:(John -nom praised, Pla)
(-acc,Ka)  (himself, NPen) CM:(John -nom, KPn) (praised, P2)
(-nom,Kn) (John,NP)

This is the only derivation of this expression, and so, in this expression,
(himself,NP,qn) c-commands and is not c-commanded by (John-nom,KPn).
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8. Some invariants of Kor

K1. The set Lex is invariant. So by U3, Lex, is invariant for each n.

K2. The expressions (-nom,Kn) and (-acc,Ka) are both invariants.

Pretheoretically case markers are grammatical formatives, so the fact
that they are provably invariants in Kor supports that our formal notion
of invariant identifies expressions independently judged to be grammat-
ical in nature. So no automorphism can interchange (-nom,Kn) and
(-acc,Ka).

K3. The expression (himself,NP,eq) is invariant, but (Bill,NP) is not.

K4. For all C € Cat, the set PH(C) of expressions of that category is
invariant.

K5. The co-argument relation is invariant, defined by: s co-argument t in
u iff for some v of category P2, either PA(s,PA(t,v)) or PA(t,PA(s,v))
is a constituent of u.

9. Semantic interpretation for Kor

This section provides L(Kor) with a compositional semantics which shows
that sentences with reflexives are interpreted correctly in all cases. Those
willing to take our word for this can move directly to the next section. We
assume a modest familiarity with a model theoretic semantics and boolean
lattices.

Definition 6. Given a non-empty universe E, we let Rg =qr {0, 1}, regarded
as the boolean lattice 2 where the < relation coincides with the numerical
one. In general R,41 is [E — R,], regarded as a boolean lattice with <
understood pointwise: f < g iff for x € E, f(x) < g(x).

Type 1 is the set of functions from n+I-ary relations to n-ary ones, for
all n:

{f € [ JRus1 = [ JRaul| for all n, all 1 € Rupa, £(r) € R}

Definition 7. A model for L(Kor) is a pair M = (E,m), E a non-empty
domain and m a function mapping elements (v,C) of Lex into Deng(C),
the set of possible denotations of expressions of category C in M, defined as
follows. Note in particular the definition of NOM(f); its value at properties
determines its value at relations.
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Deng(NPen) = {f € Type 1] if nontrivial, f satisfies AC and fails EC}
DenE(P ) = Ro

DenE(P ) = R1

DenE( ) = R2

Deng(NP) = Typel

Deng(KPa) = Typel

Deng(Pla) = [Typel — R4]

Deng(CONJ) = {Ac, Vc}, where A¢ is the greatest lower bound

operator in Deng(C) and V¢ is the least upper
bound operator
Deng(KPn) = {NOM(f)| f € Typel}, where for any f € Typel,
NOM is the function with domain Ry U Ry
such that for P € Ry, NOM(f)(P) = f(P) and
for R € Ry, h € Typel, NOM(f)(R)(h) = f(h(R))
1. m at elements of Lex satisfies the following conditions:
a. for all s € Lex(NP), m(s) € {I| b € E}, where for all R € Ryy1,
I,(R) = R(b)
b. m(-acc,Ka), noted ACC, is the identity map on Type 1.
¢. m(-nom,Kn) = NOM, defined above
d. m(himself, NP..q) = SELF, that map from R2 to R1 defined earlier

e. for all x,y € Deng(C), C boolean,
m(and, CONJ) = Ac and m(or, CONJ) = v¢

2. m extends to a function m* on L(Kor), called an interpretation of L(Kor)
relative to M, by:
a. m*(CM(s,t)) = m(s)(m*(t))
b, m*(PA(s, 1)) = m*(s)(m*(t)) if Cat('s) = KPn and Cat(t) = Pln
*(t)(m*(s)) otherwise

c. m*(Coord(s,t,u)) = m(s)(m*(t), m*(u))

m

Using these definitions one computes that (11a,b) are logically equivalent
(always interpreted the same): for all models M = (E,m), m*(1la) =
m*(11b).

(11) a. (John-nom Bill-acc praised, P0)
b. (Bill-acc John-nom praised, P0)
PA:(John -nom Bill -acc praised, P0)
CM:(John -nom, KPn) PA:(Bill -acc praised, P1n)

(-nom, Kn) (John,NP) CM:(Bill -acc, KPa) (praised, P2)

(-acc, Ka) (Bill, NP)
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PA:(Bill -acc John -nom praised, P0)
CM:(Bill -acc, KPa) PA:(John -nom praised, Pla)
(-acc,Ka)  (Bill,NP)  CM:(John -nom,KPn) (praised, P2)
(-nom,Kn) (John,NP)

The logical equivalence of these sentences relies on the interpretation of
(-nom,Kn). When the nominative KP looks at a P2, in effect, it knows
to wait until the next KP denotation comes along. So the interpretation
of bound morphology here is critical. Moreover the same reasoning shows
that the result of replacing (Bill,NP) by (himself,NP,¢q) in (11a,b) are also
logically equivalent:

m*(John-nom himself-acc criticized, P0)
= m*(himself-acc John-nom criticized, P0)

Thus the interpretation of himself as an anaphor does not depend on it being
c-commanded by its antecedent. We note that these sentences, like (11a,b),
have isomorphic derivation trees (standard or FA). But the expressions are
not isomorphic in L(Kor) since automorphisms can’t map KPn’s to KPa’s,
Pln’s to Pla’s, etc.

10. Two further invariants of Kor

Now we are in a position to state invariants that involve semantic notions.

K6. The property of being an anaphor is invariant, where the expressions
interpreted as anaphors following Definition 5 are precisely those in
PH(P1/P2).

K7. The Anaphor-Antecedent relation is invariant in Kor, where we define:
s AA tin u iff t is an anaphor and s co-argument t in u

(AA is invariant because it is defined as a boolean compound of invariants).

11. Concluding remarks on Kor

It is unproblematic that anaphors asymmetrically c-command their an-
tecedents. The interpretation of case markers guarantees the right seman-
tic interpretation (sentence internally) independent of c-command. We also
note that a compositional interpretation of L(Eng) is even easier than of
L(Kor), and that himself in Eng denotes SELF, just as himself in Kor does.
So our claims about anaphors are claims about expressions with the same
denotation.

Morphology is structural, independent of c-command relations within
the clause. The case markers, (-nom,Kn) and (-acc,Ka), are invariant even
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though the KPs they build do not have fixed structural positions. Specif-
ically a KPa does not always combine with a P2 to form a P1; it also
combines with P1s to form POs.

Our formulation of Kor abstracts away from the conditioned variants of
the case markers: -i/-ka for -nom and -ul/-lul for -acc. This seems reasonable
when our concern is syntax and semantics, as these differences in form are
phonologically conditioned.

Still, an interesting option arises when we do distinguish two categories
of NP in Lex, say NPc and NPv (according as the string coordinate ends in
a consonant or a vowel). So Lex would contain (John,NPc) and (Joe,NPv)
of different categories, but ones that had the same distribution except for
the choice of case marker: -i, -ul in the first case, -ka, -lul in the second.
And we would then find that if the cardinalities of the lexical NPv’s and
NPc’s were the same (permitting a bijection between them) we could design
an automorphism that would map all NPv’s to NPc’s and conversely. It
would also interchange (-i,Kn) with (-ka,Kn) and (-ul,Ka) and (-lul,Ka).
The resulting grammar would be one in which not all PH(C) were invariant.

12. Categorial symmetry and stable automorphisms

The case of conditioned variants noted above for Korean has much more
extensive and systematic manifestations in other grammatical subsystems.
In BG for example we present a grammar, Span (Spanish), illustrating ba-
sic adjective and determiner agreement with masculine (m) and feminine
(f) nouns. The Lexicon arbitrarily distinguishes Nm’s and Nf’s, and when
adjectives and determiners combine with them they get marked with an -o
or an -a, of category Agr(m) and Agr(f) respectively. The m/f distinction
is inherited by NPs built from the Nm’s and Nf’s, and then the P1s show
predicate agreement with them.

And analogous to the Korean case, if we design the grammar so that
the number of lexical Nm’s and Nf’s is the same then we can find an auto-
morphism of Span which interchanges PH(Nm) and PH(Nf), as well as the
derived masculine and feminine adjectives, NPs and P1s. So again not all
PH(C) are invariant in Span. However the automorphisms that can effect
this category swapping are unstable in that slight additions to the Lexicon
rule out their existence. Thus if we add just one new feminine noun, say
(poet,Nf) making no other changes then no automorphism changes category
and all PH(C) are invariant since then the lexical Nm’s and the lexical Nf’s
would have different cardinalities, so there could be no bijection between
them.

The possibility of category changing automorphisms above reveals a cat-
egorial symmetry present, in principle, in natural language. Noun classes
partition a subset of the expressions in such a way that the blocks of the
partition can be structurally interchanged. This possibility is “unstable” in
the sense that many “minor” changes in the language, ones we agree are
insignificant, such as adding new lexical items, result in languages in which
these blocks cannot be interchanged.
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Ignoring this accidental possibility would be, we feel, a mistake. A gram-
mar with unequal numbers of lexical Nm’s and Nf’s could always be ex-
tended by adding new lexical items to one in which the numbers evened out
again, permitting category changing automorphisms. And the ability to add
new content words freely is a basic property of a NL. More generally various
types of allomorphy present a similar phenomenon. In English we might dis-
tinguish classes of Nouns according to how their plural is formed: with /z/
as in dog/dogs, with /s/ as in cat/cats, with [oz/ in judge/judges, [f/—[vz/
as in leaf/leaves, -on—-a, as in phenomenon/phenomena, no change as in
sheep— sheep, etc.

We will treat agreement and allomorphy by distinguishing among auto-
morphisms according as they remain stable under such changes. Informally,
an automorphism is stable if it remains an automorphism after the addition
of new expressions isomorphic to old ones. “New” means not inducing new
derivations of expressions in the original language (thanks to Greg Kobele
for this formulation, and thanks to Philippe Schlenker for forcing us to treat
allomorphy):

Definition 8. For G = (V, Cat, Lex, Rule) and S Cgpite V X Cat,

a. GI[S] =ar (V,Cat,Lex U S, Rule). Write G[s] or Gs for G[{s}], s € V x
Cat. So Gs results from adding s to Lexg with no changes in Cat or
Rule.

b. G is free for s in V x Cat iff
i. for allt € L(Gs), if t € Lg then =(sCONt), and

it. For some h € Autg, and some t € Lexg, h interchanges s and t
and fizes all other elements of Lexg. .

wi. G is free for S iff for oll s € S, G is free for s and Gy is free for
S — {s}. (Note that all G are free for ).)

So (b.i) blocks adding as new lexical items expressions that are already in
Lg.

Definition 9. h € Autg is stable iff h extends to an h' € Autgs), all finite
S for which G is free.

An expression, a property of expressions,...over G is a linguistic invari-
ant iff it is fived by all stable automorphisms.

Of course all logical invariants of a grammar are linguistic invariants
since an object fixed by all automorphisms is a fortiori fixed by all stable
automorphisms. But the converse may fail. In Kor enriched with the phono-
logically conditioned case markers PH(NPv) is a linguistic invariant but not
a logical one. Equally each case marker (-i, Kn), (-lul,Ka), etc. is a linguistic
invariant (but not a logical one). And in Span PH(Nm) is a linguistic invari-
ant but not an logical invariant, as is each agreement marker (-o,Agr(m)),

(-a,Agr(f)).
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13. Conclusion

We have provided a way of establishing invariants of natural languages while
countenancing that different languages may have quite different grammars.
Our specific claims, that is an anaphor or is a possible antecedent of are
invariant in all natural languages, are empirical, not mathematical, and
further empirical research could show them false.

In addition our approach has led us to formulate several conceptually
new generalizations about natural language. Here are two, of somewhat
different sorts:

Stable Categories In adequate natural language grammars G, each PH(C)
is a linguistic invariant

Thesis Grammatical Formatives are linguistically invariant lexical items.

The Thesis above offers a characterization of those expressions linguists var-
iously call “function words” or “grammatical formatives”. To our knowledge
this is the first non-stipulative characterization of these objects. In contrast,
Stable Categories is offered as an axiom of a theory of language structure. It
provides a principled account of how the expressions of a language may be
partitioned into grammatical categories. They are sets of expressions fixed
by all stable automorphisms.

Notes

! Advocates of this approach intend more than the claim that we use the
same notation for grammatical categories in different languages but it is
quite unclear what this “more” is.

2In more detail, an expression is -nom marked iff it is suffixed with -4 if
it is consonant final and with -ka if it is vowel final. It is -acc marked iff it is
suffixed with -ul if consonant final and -lul if vowel final. In addition either
argument (but not both) can have their -nom/-acc suffixes replaced with a
topic marker -un/-nun preserving the pattern of antecedence. Then a more
accurate statement of the AA relation would be: “...X is -nom marked and
Y is -acc marked or topic marked, or X is -nom marked or topic marked and
Y is -acc marked”. The important point remains: the relevant factor govern-
ing the distribution of anaphor and antecedent in simple sentences concerns
their morphological marking, not their left-right order or c-command rela-
tions.

3Tt is assumed here that the universe E of interpretation always has at
least two elements. The non-triviality condition is intended for cases like at
least two of the ten students besides himself, which requires for non-triviality
that the E contain exactly ten students.
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4The definition of EC and AC and hence of anaphor generalizes directly
to maps from n+1-ary relations to n-ary ones just by interpreting a and b
as n-tuples rather than “1-tuples”.

°In head initial languages (Verb initial, or SVO as in English) framing
coordinations follow the English pattern (both X and Y, either X or Y,
neither X nor Y), though the more typical case is where the conjunctive
morphemes are the same, as in French: et Jean et Marie, ou Jean ou Marie,
ni Jean ni Marie. A case can be made that in verb final languages the order
is X and Y and, X or Y or, etc. though in our examples from Korean we
did not find such framing expressions, only infix coordinators. We include
the framing construction to avoid semantic ambiguities with iterated co-
ordinations. We are not really studying either coordination or ambiguity
here, but we include coordination so that many categories of expression will
have infinitely many members, forcing us to avoid non-general definitions
by listing cases.
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