
12th Int. Cong. Logi
 Methodology and Philosophy of S
ien
e, LMPS'03Oviedo, Spain, August 7-13, 2003
orresponden
e to: ekeenan�u
la.edu
Edward L. Keenan � Edward P. StablerLinguisti
 Invariants and Language VariationSin
e the publi
ation of Noam Chomsky's �eld founding Synta
ti
 Stru
-tures in 1957, generative grammarians have been formulating and studyingthe grammars of parti
ular languages to extra
t from them what is gen-eral a
ross languages. The idea is that properties whi
h all languages havewill give us some insight into the nature of mind. A widely a
knowledgedproblem to whi
h this work has led is how to re
on
ile the goal of general-ization with language spe
i�
 phenomena and the 
ross language variationthey indu
e. Good s
ien
e requires that 
ross linguisti
ally valid general-izations be based on a

urate, pre
ise and thorough des
riptions of par-ti
ular languages. But su
h work on any given language in
reasingly leadsus to des
ribe language spe
i�
 phenomena: irregular verbs, ex
eptions toparadigms, lexi
ally 
onditioned rules, et
. So this work and 
ross languagegeneralization seem to pull in opposite dire
tions.Here we propose an approa
h in whi
h these two for
es are re
on
iled.Our solution, presented in greater depth in Bare Grammar (Keenan andStabler, 2003), is built on the notion of linguisti
 invariant. On our ap-proa
h di�erent languages do have non-trivially di�erent grammars: theirgrammati
al 
ategories are de�ned internal to the language and may failto be 
omparable to ones used for other languages. Their rules, ways ofbuilding 
omplex expressions from simpler ones, may also fail to be isomor-phi
 a
ross languages. So languages di�er. Nonetheless 
ertain propertiesand relations may be invariant in all natural language grammars, as we willsee below. And it is to these linguisti
 invariants that we should look forproperties of mind.Our approa
h 
ontrasts with that of the most widely adopted linguisti
theories, where the dominant idea is that there is only one grammar, thegrammars of parti
ular languages being, somehow, spe
ial 
ases. This hasled to a mode of des
ription in whi
h grammars of parti
ular languagesare given in a notationally uniform way: the grammati
al 
ategories of alllanguages are drawn from a �xed universal set,1 as are the rules 
hara
-terizing 
omplex expressions in terms of their 
omponents. It has also ledto the postulation of a level of unobservable stru
ture (\LF", suggestingUniversity of California, Los Angeles, Department of Linguisti
s
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al Form"), where stru
tural properties of observable expressions maybe 
hanged in important ways. So this allows that stru
tural generaliza-tions whi
h appear to be false on the basis of observable expressions maybe true at LF where stru
tural properties have been modi�ed. We shall be
on
erned with one su
h 
ase in this paper.1. Linguisti
 InvariantsConsider the minimally 
omplex expressions in (1):(1) a. Casper 
oughedb. Carson sneezedDi�erent linguisti
 theories - GB/Minimalism (Hornstein, 1995), HPSG(Pollard and Sag, 1994), LFG (Bresnan, 2001), Relational Grammar andAr
-Pair Grammar (Aissen, 1987) - di�er with regard to the stru
ture theyattribute to (1a), and of 
ourse the notation they use to express that stru
-ture. But ea
h of these theories would assign the same stru
ture to (1a) and(1b). And it is this latter type of judgment - Under what 
onditions do Xand Y have the same stru
ture? - that forms the basis of the Bare Grammar(BG) approa
h.Consider how we might argue pretheoreti
ally that (1a,b) have the samestru
ture. We agree that repla
ing `Caspar' by `Carson' in (1a) yieldingCarson 
oughed does not 
hange stru
ture. And then repla
ing `
oughed'by `sneezed' deriving thus (1b) does not 
hange stru
ture. So the intuitionis that expressions X and Y have the same stru
ture if ea
h 
an be derivedfrom the other by a su

ession of stru
ture preserving transformations.Here is a more expli
it statement, leading up to our de�nition of in-variant. We think of a grammar as a way of de�ning (and semanti
allyinterpreting) a 
lass of expressions. Spe
i�
ally the syntax of a grammarG is primarily a pair (LexG;RuleG), where, omitting subs
ripts, Lex is a(normally) �nite set of expressions, 
alled lexi
al items, and Rule is a set offun
tions, 
alled generating or stru
ture building fun
tions. LG, the languagegenerated by G, is the set of all expressions you 
an build starting with thosein Lex and applying the stru
ture building fun
tions �nitely many times.Lexi
al items on our view do present some internal stru
ture. Like theexpressions in LG in general, they are partitioned into 
lasses by grammat-i
al 
ategories. So we represent an expression, and in parti
ular a lexi
alitem, as an ordered pair (s;C) where s is a string over the vo
abulary VGof G and C is an element of the set CatG of 
ategory symbols of G. For anyexpression e = (s;C), Cat(e) =df C, its se
ond 
oordinate. Slightly moreformally:De�nition 1. A bare grammar G is a four-tuple, hVG;CatG;LexG;RuleGi;where Lex � V�Cat, and Rule is a set of partial fun
tions from (V��Cat)+into V� � Cat. V� � Cat is the set of possible expressions over G, and thelanguage generated by G, LG, is the 
losure of Lex under Rule.



Linguisti
 Invariants 3For any set K we 
an �nd a grammar G as above su
h that K is the set ofstrings of expressions in LG. So any universal properties of natural languagewill have to be given expli
itly as axioms (or 
onsequen
es of other axioms),they do not follow from the mere formalism we use to express the grammar.De�nition 2. An automorphism of a grammar G is a bije
tion h : LG !LG whi
h �xes ea
h F in Rule, that is, h(F) = F. This just means that Fmaps a tuple hs1; : : : ; sni to sn+1 i� F maps hh(s1); : : : ; h(sn)i to h(sn+1).Fa
t 1 idLG , the identity map on LG, is in AutG, the set of automorphismsof G; so is h�1 whenever h is, and so is g Æh whenever g and h are. So AutGis a group, as expe
ted.De�nition 3. For all s; t 2 LG, s is isomorphi
 to t, noted s ' t, i� h(s) = tfor some h 2 AutG. We write [s℄ for ft 2 LGj s ' tg.We may, when useful, treat [s℄ as the \stru
ture" of s. In pra
ti
e we havenot found this very useful; ', however, is a very useful relation.Fa
t 2 For ea
h G, ' is an equivalen
e relation partitioning LG into blo
ksf[s℄j s 2 LGg.Now, leading up to our de�nition of invariant, observe that whenever g isa fun
tion from a set A to a set B we 
an 
anoni
ally lift g to a map Pgfrom }(A), the power set of A, into }(B) by setting Pg(K) = fg(x)j x 2 Kg.We usually just write g(K) instead of Pg(K). Similarly we 
an extend g toa map g� from A�, the set of �nite sequen
es of elements of A, into B� bysetting g�(a1; : : : ; an) = (g(a1); : : : ; g(an)). Again we usually write g for g�here.De�nition 4. The invariants of a grammar G are the expressions, prop-erties (sets) of expressions, relations between expressions,. . . that are �xed,mapped to themselves, by all the automorphisms of G.So given a grammar, its (logi
al) invariants are those linguisti
 obje
ts(expressions, properties of expressions, relations between expressions, fun
-tions from expressions to expressions,. . . ) whi
h 
annot be 
hanged without
hanging stru
ture.Later we introdu
e the notion of a stable automorphism and de�ne thelinguisti
 invariants of a grammar G to be those linguisti
 obje
ts �xed by allstable automorphisms. But �rst let us learn to use the more general notion(and in any event in our initial examples of grammars the automorphismsand the stable automorphisms 
oin
ide).2. Eng, an illustrative grammar for a fragment of EnglishWe present a very simple grammar Eng in order to illustrate in a 
on
reteway the notions of grammar and invariant de�ned above. It has some propernouns, like John and Bill, some one pla
e predi
ate symbols (P1s), likelaughed and 
ried, some two pla
e predi
ate symbols (P2s), like praised and
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riti
ized. We also have some 
onjun
tions, and and or whi
h form boolean
ompounds of expressions in a fairly obvious way. Finally, Eng has a re
exivepronoun himself that 
ombines with P2s to form P1s, but does not 
ombinewith P1s to form anything. Eng has just two rules: Merge, whi
h 
ombinesnominal elements with Pn+1s to form Pn's (we use P0 where many use `S'for `senten
e'), and Coord whi
h forms boolean 
ompounds with and andor. Formally, Eng=hV;Cat;Lex;Rulei, where these are given as follows:V: laugh, 
ry, sneeze, praise, 
riti
ize, see,John, Bill, Sam, himself, and, or, both, eitherCat: P0, P1, P2, P01/P12, P1/P2, CONJLex: P1 laughed, 
ried, sneezedP2 praised, 
riti
ized, interviewedP01/P12 John, Bill, SamP1/P2 himselfCONJ and, orRule: Merge and Coord, de�ned below.Domain Merge Value ConditionssA tB 7�! s_tP0 A = P01=P12;B = P1sA tB 7�! t_sP1 A 2 fP1=P2;P01=P12g;B= P2So the domain of Merge is the set of pairs h(s;A); (t;B)i, for any s; t in V�and any A,B in Cat meeting the spe
i�ed 
onditions. We summarize theargument that (John laughed;P0) is in LEng using a Fun
tion-Argument(FA) tree in whi
h mother nodes are labeled with the values of generatingfun
tions applied to the labels on the daughter nodes:Merge:(John laughed;P0)(John;P01=P12) (laughed;P1)Linguists more often represent this derivation with slightly less expli
it\standard" tree like the following: P0P01/P12John P1laughedLetting the set of 
oordinable 
ategories 
CEng = Cat � fCONJg and the
lass of nominal 
ategories nCEng = fP1=P2;P01=P12g, we de�ne the othergenerating fun
tion Coord as follows:



Linguisti
 Invariants 5Domain Coord Value ConditionsandCONJ sC tC 7�! both_s _and_tC C 2 
CEngorCONJ sC tC 7�! either_s _or_tC C 2 
CEngandCONJ sC tC' 7�! both_s _and_tP1/P2 C 6= C0 2 nCEngorCONJ sC tC' 7�! either_s _or_tP1/P2 C 6= C0 2 nCEngThis rule is used in the derivation of (John 
riti
ized both himself and Bill,P0), as we see in the following FA derivation tree:Merge:(John 
riti
ized both himself and Bill;P0)(John;P01=P12) Merge:(
riti
ized both himself and Bill;P1)Coord:(both himself and Bill;P1=P2)(and;CONJ) (himself;P1=P2) (Bill;P01=P12)(
riti
ized;P2)3. Some invariants of EngE1. At the lowest level, the only expression that is invariant is (himself,P1/P2). The reason is that it has a unique distribution. It is the onlylexi
al item that 
ombines with P2s to form P1s but does not 
ombinewith P1s to form P0s.E2. At the level of properties, we �nd several interesting invariants. First,the property of being a lexi
al item is invariant. That is, for all auto-morphisms h of Eng, h(LexEng) = LexEng. Indeed one might think thatthe property of being a lexi
al item was invariant in all G, but this isnot the 
ase.E3. For ea
h 
ategory C of Eng, the property of being an expression of
ategory C is invariant. That is, for all h 2 AutEng, h(PH(C)) = PH(C),where PH(C) =df fs 2 LGj s = (t;C) for some string tg. This also isnot a universal invariant, as we see expli
itly later.E4. A more interesting invariant property in LEng is: the property of be-ing an anaphor. Informally anaphors are expressions like himself, bothhimself and Bill, et
. whi
h are obligatorily interpreted as referentiallydependent in a 
ertain way. (Below we provide a properly semanti
,language independent, de�nition of `anaphor'.) We 
an show that the(in�nite) set of expressions in LEng whi
h have this property is �xed byall the automorphisms of Eng.



6 Edward L. Keenan, Edward P. StablerE5. At the level of relations and fun
tions, the binary relation is a 
on-stituent of (CONEng) is invariant, but this is universally invariant inthe sense that for all G, CONG is invariant (as explained in the nextse
tion). Also invariant, but not universally so, is the three pla
e relations is a possible ante
edent of an anaphor t in u. To illustrate the intuitionbehind this relation 
onsider that in the expressions below himself maybe understood as referentially dependent as the underlined nominals inthe expression, and if there is none it is ungrammati
al (indi
ated bythe asterisk):(2) a. John thought that the duke defended himself wellb. *John thought that Mary defended himself well
. John prote
ted Bill from himselfE6. And lastly, as an example of an invariant (partial) fun
tion on LEng
onsider SUBJEng, whi
h maps a P0 to its subje
t it if has one: for anys 2 LEng,Domain(SUBJEng) = Range(Merge) \ PH(P0)SUBJEng(s) = t i� for some u of 
ategory P1; s = Merge(t; u):So SUBJEng(both John and Bill praised Sam, P0) = (both John andBill, P01/P12). But (Either John laughed or Bill 
ried, P0) is notmapped to anything by this fun
tion, sin
e it is not in the range ofMerge.4. Universal invariantsWe referred above to invariants as universal if they are invariant in all G,no matter how implausible G might be 
onsidered as a grammar for a nat-ural language. So these are invariants that follow from our de�nition of agrammar plus that of invariant. But linguisti
ally our interest lies primar-ily in properties, relations, et
. whi
h are empiri
ally invariant { they holdfor all motivated grammars of natural language but admit of formal 
oun-terexamples. We shall argue that is an anaphor and is a possible ante
edentof are two su
h 
ases. But �rst, let us list some universal invariants, sin
ethey pla
e boundary 
onditions on empiri
al invariants and they are veryuseful in showing that one or another property of a parti
ular grammar G isinvariant. In our statements we use `stru
tural' and `stru
turally de�nable'as synonyms of `invariant'. We have the following, for all grammars G:U1. LG is invariant. That is, the property of being grammati
al in G isstru
tural.U2. For any F 2 RuleG, F is invariant (trivially), as is its domain and range.So the property of being derived by any given F 2 RuleG is stru
tural.



Linguisti
 Invariants 7U3. If LexG is invariant then for all n, Lexn is invariant, where we de�nethe 
omplexity hierar
hy Lexn by: Lex0 = LexG and for all n, Lexn+1 =Lexn [ fF(t)j F 2 RuleG; t 2 Lex�n \ Domain(F)g.Note that LG = Sn Lexn and if for all F 2 RuleG;Range(F)\LexG = ;then LexG is invariant.U4. If G is 
ategory fun
tional and ea
h Lex(C) is invariant then ea
hPH(C) is invariant, where Lex(C) =df PH(C) \ Lex and G is 
ategoryfun
tional i� for all F 2 Rule and all n-tuples u; v 2 Domain(F), ifCat(ui) = Cat(vi) all 1 � i � n then Cat(F(u)) = Cat(F(v)).U5. The set of invariant subsets of LG is 
losed under relative 
omple-ment and arbitrary interse
tions and unions, and thus forms a 
ompleteatomi
 boolean algebra (with atoms [s℄). So 
onjun
tions, disjun
tions,and negations of invariant properties are themselves invariant proper-ties. Comparable 
laims hold for R � (LG)n, for all n. Equally, 
rossprodu
ts of invariant sets are invariant.So if the property of being a feminine noun is invariant, and the propertyof being a plural noun is invariant then the property of being a feminineplural noun is invariant, as is that of being a feminine non-plural noun,et
.U6. The is a 
onstituent of relation, CON, is invariant, as are PCON (isa proper 
onstituent of) and ICON (is an immediate 
onstituent of),where for all s; t 2 LG, we de�ne:a. sICONt i� for some u1; : : : ; un 2 LG and some F 2 RuleG, t =F (u1; : : : ; un) and s = ui, some 1 � i � n.b. sPCONt i� for some n � 2 there is a sequen
e v = hv1; : : : ; vniof elements of LG with v1 = s; vn = t and for ea
h 1 � i < n,viICONvi+1.
. sCONt i� s = t or sPCONtU7. The sister of relation is invariant, where, s sister of t in u i� someF(v1; : : : ; vn) is a 
onstituent of u and for some i 6= j, s = vi and t = vj.U8. CC, 
-
ommands, is invariant, where, sCCt in u i� for some 
onstituentv of u, s is a sister of v in u and t is a 
onstituent of v.U6-U8 de�ne linguisti
 notions on expressions, not, as is more usual, onderivations or tree-like stru
tures representing derivations. We give the def-initions more generally than usual be
ause there are a variety of linguisti
phenomena that are not naturally representable with standard trees andin whi
h 
onstituen
y is not re
overable by merely segmenting the derivedstring. Examples are redupli
ation, se
ond position pla
ement of Latin -que`and', and the Dut
h 
rossing verb dependen
ies (see Keenan and Stabler2003, Chapter 3).
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al invariants: Anaphor-Ante
edent relationsFor illustrative purposes we limit ourselves to the simplest environmentin whi
h non-trivial anaphora obtains: that between the two argumentsof a binary relation denoting expression (e.g. a transitive verb). Considerthe data pattern in English below, where the intended ante
edent of theanaphor himself is underlined, and 
onstituen
y is indi
ated by bra
kets forlater referen
e:(3) a. [Every student [
riti
ized himself℄℄b. *[Himself [
riti
ized every student℄℄A �rst attempt to des
ribe these data might use left-right order: \X is apossible ante
edent of an anaphor Y i� X and Y are 
o-arguments and Xpre
edes Y". This 
laim works surprisingly well for quite a range of fairlysimple senten
es in English. But it is 
ross linguisti
ally not valid. Languagessu
h as Malagasy (Austronesian; Madagas
ar) and Tzotzil (Mayan; Mexi
o)whi
h use Verb+Patient+Agent as a pragmati
ally neutral order in simplesenten
es, (4a,b), naturally present anaphors before their ante
edents (5a,b)(4) a. NamonoKilled nythe akoho
hi
ken RabeRabe Malagasy`Rabe killed the 
hi
ken'b. Pi-s-poxtaAsp-3-
are XunXun lithe jPilol-eshaman-
liti
 Tzotzil (Aissen 1987:90)`The shaman treated Xun'(5) a. NamonoKilled tenaself RabeRabe MalagasyRabe killed himselfb. Pi-s-poxtaAsp-3-
are s-ba3-self liart Xun-eXun-
liti
 Tzotzil`Xun treated himself'A more 
omprehensive proposal, a

epted by many linguists as valid fornatural languages in general, would repla
e \X pre
edes Y" with \X 
-
ommands Y". This 
hara
terization of the AA (Anaphor-Ante
edent) re-lation is 
onsistent with the Tzotzil and Malagasy data above. But again itseems insuÆ
iently general to a

ount for a quite widespread language type:the verb is peripheral (usually �nal) and the arguments of the verb 
arrymorphologi
al markings, 
ase markers, whi
h identify the arguments. In theverb �nal 
ase, illustrated below by Korean, the relative order of argumentsis often rather free. We give the examples dire
tly with the anaphors, butnon-anaphori
 nominals may repla
e them without 
hange.(6) [Caki-
asin-ulSelf-emph-a

 [motunall haksayng+tul-istudent+pl-nom piphanhayssta℄℄
riti
ized Korean`All the students 
riti
ized themselves'



Linguisti
 Invariants 9(7) [[Sinampalslap+GF nggen babae℄woman angtop sariliself niya℄3poss Tagalog`The woman slapped herself'There is reasonable eviden
e in these 
ases that the ante
edent of theanaphor does not 
-
ommand it; indeed the anaphor seems to asymmet-ri
ally 
-
ommand its ante
edent. But the important stru
tural regularityhere 
on
erns the 
ase markers. They 
annot be inter
hanged preservinggrammati
ality:(8) *[Caki-
asin-iSelf-emph-nom [motunall haksayng+tul-ulstudent+pl-a

 piphanhayssta℄℄
riti
ized Korean`All the students 
riti
ized themselves'(9) *[[Sinampalslap+GF angtop babae℄woman nggen sariliself niya℄ Tagalog3poss`The woman slapped herself'The 
-
ommand relations have not 
hanged, but the 
ase marking has, re-sulting in ungrammati
ality. So 
ase marking plays a stru
turally importantrole in these languages, and in our models is provably invariant.The appropriate generalization for Korean then is: in simple senten
es,X is a possible ante
edent for an anaphor Y i� X and Y are 
o-argumentsand X is -i marked and Y is -ul marked.2 In Tagalog X is ng marked and Yis ang marked. Based on the Korean data we exhibit a mini-grammar for averb �nal 
ase marking language in whi
h 
ase relations determine the dis-tribution of anaphors. We provide a 
ompositional semanti
 interpretation,in
luding a semanti
, language independent, de�nition of anaphor, therebyestablishing that the expressions we 
all anaphors are indeed interpretedas anaphors. But �rst let us give the language independent de�nition ofanaphor (for the restri
ted 
lass of 
ontexts 
onsidered).6. A semanti
 de�nition of `anaphor'For ea
h domain E we interpret P2s as binary relations over E, representedas fun
tions from E into [E ! f0; 1g℄. Anaphors and ordinary NPs, su
hJohn, most of John's friends, et
. map P2 denotations into [E ! f0; 1g℄.The di�eren
e in the two 
ases 
on
erns what the values of the fun
tionsdepend on. Compare:(10) a. Sam 
riti
ized most of John's studentsb. Sam 
riti
ized himselfIn (10a) whether the denotation of 
riti
ized most of John's students holdsof Sam is de
ided just by 
he
king the set of obje
ts that Sam 
riti
ized.If that set in
ludes a majority of John's students the whole S is true. Wedon't need to know who Sam is. If Bill praised exa
tly the people thatSam 
riti
ized then (10a) and Bill praised most of John's students must
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ontrast it might be that the individuals Sam
riti
ized are just those that Bill praised but (10b) and Bill praised himselfhave di�erent truth values. Formally,De�nition 5. Given a domain E, a binary relation R over E, and x 2 E,xR =df fy 2 Ej (R(y))(x) = 1g:So in set notation, xR = fy 2 Ej (x; y) 2 Rg.Let F map binary relations to properties. Then F satis�es the ExtensionsCondition (EC) i� for all a; b 2 E, all binary relations R; S over E,if aR = bS then F(R)(a) = F(S)(b):And F satis�es the Anaphor Condition (AC) i� for all a 2 E, all binaryrelations R; S over E,if aR = aS then F(R)(a) = F(S)(a):Let D 
ombine with P2s to form P1s. Then D is an anaphor i� all non-trivial 3 interpretations of D satisfy the AC but fail the EC.4So for example, for E with at least two members, the fun
tion SELF frombinary relations to sets given by: SELF(R)(x) = R(x)(x) is easily seen tofail the EC but satisfy the AC.7. Kor, a verb �nal 
ase marking languageConsider the following language Kor, inspired by Korean:V: laughed, 
ried, sneezed, praised, 
riti
ized, saw, -nom, -a

,John, Bill, Sam, himself, and, or, nor, both, either, neitherCat: NP, NPre
, Ka, Kn, KPa, KPn, P0, P1a, P1n, P2, CONJLex: Kn -nomKa -a

P1n laughed, 
ried, sneezedP2 praised, 
riti
ized, interviewedNP John, Bill, SamNPre
 himselfCONJ and, or, norRule: CM (
ase mark), PA (predi
ate-argument) and Coord, as follows.Domain CM Value Conditions-nomKn tNP 7�! t_-nomKPn (none)-a

Ka tX 7�! t_-a

KPa X 2 fNP;NPre
g



Linguisti
 Invariants 11Domain PA ValuesKPn tP1n 7�! s_tSsKPa tP1a 7�! s_tSsKPn tP2 7�! s_tP1asKPa tP2 7�! s_tP1nLetting the 
oordinable, \boolean" 
ategories be
CKor =df Cat� fCONJ;Ka;Kn;KPa;KPngand the nominal 
ategories benCKor =df fNP;NPre
g;we de�ne a 
oordination rule as follows:5Domain Coord Value ConditionsandCONJ sC tC 7�! both_s _and_tC C 2 
CKororCONJ sC tC 7�! either_s _or_tC C 2 
CKornorCONJ sC tC 7�! neither_s _nor_tC C 2 
CKorandCONJ sC tC' 7�! both_s _and_tNPre
 C 6= C0 2 nCKororCONJ sC tC' 7�! either_s _or_tNPre
 C 6= C0 2 nCKornorCONJ sC tC' 7�! neither_s _or_tNPre
 C 6= C0 2 nCKorThe following tree represents the argument that (himself-a

 John-nompraised, P0)2L(Kor).PA:(himself -a

 John -nom praised;P0)CM:(himself -a

;KPa)(-a

;Ka) (himself;NPre
) PA:(John -nom praised;P1a)CM:(John -nom;KPn)(-nom;Kn) (John;NP) (praised;P2)This is the only derivation of this expression, and so, in this expression,(himself,NPre
) 
-
ommands and is not 
-
ommanded by (John-nom,KPn).



12 Edward L. Keenan, Edward P. Stabler8. Some invariants of KorK1. The set Lex is invariant. So by U3, Lexn is invariant for ea
h n.K2. The expressions (-nom,Kn) and (-a

,Ka) are both invariants.Pretheoreti
ally 
ase markers are grammati
al formatives, so the fa
tthat they are provably invariants in Kor supports that our formal notionof invariant identi�es expressions independently judged to be grammat-i
al in nature. So no automorphism 
an inter
hange (-nom,Kn) and(-a

,Ka).K3. The expression (himself,NPre
) is invariant, but (Bill,NP) is not.K4. For all C 2 Cat, the set PH(C) of expressions of that 
ategory isinvariant.K5. The 
o-argument relation is invariant, de�ned by: s 
o-argument t inu i� for some v of 
ategory P2, either PA(s,PA(t,v)) or PA(t,PA(s,v))is a 
onstituent of u.9. Semanti
 interpretation for KorThis se
tion provides L(Kor) with a 
ompositional semanti
s whi
h showsthat senten
es with re
exives are interpreted 
orre
tly in all 
ases. Thosewilling to take our word for this 
an move dire
tly to the next se
tion. Weassume a modest familiarity with a model theoreti
 semanti
s and booleanlatti
es.De�nition 6. Given a non-empty universe E, we let R0 =df f0; 1g, regardedas the boolean latti
e 2 where the � relation 
oin
ides with the numeri
alone. In general Rn+1 is [E ! Rn℄, regarded as a boolean latti
e with �understood pointwise: f � g i� for x 2 E, f(x) � g(x).Type 1 is the set of fun
tions from n+1-ary relations to n-ary ones, forall n: ff 2 [[Rn+1 ![Rn℄j for all n; all r 2 Rn+1; f(r) 2 Rng:De�nition 7. A model for L(Kor) is a pair M = hE;mi, E a non-emptydomain and m a fun
tion mapping elements hv;Ci of Lex into DenE(C),the set of possible denotations of expressions of 
ategory C in M, de�ned asfollows. Note in parti
ular the de�nition of NOM(f); its value at propertiesdetermines its value at relations.



Linguisti
 Invariants 13DenE(NPre
) = ff 2 Type 1j if nontrivial; f satis�es AC and fails ECgDenE(P0) = R0DenE(P1n) = R1DenE(P2) = R2DenE(NP) = Type1DenE(KPa) = Type1DenE(P1a) = [Type1! R1℄DenE(CONJ) = f^C;_Cg, where ^C is the greatest lower boundoperator in DenE(C) and _C is the least upperbound operatorDenE(KPn) = fNOM(f)j f 2 Type1g, where for any f 2 Type1,NOM is the fun
tion with domain R1 [R2su
h that for P 2 R1; NOM(f)(P) = f(P) andfor R 2 R2; h 2 Type1; NOM(f)(R)(h) = f(h(R))1. m at elements of Lex satis�es the following 
onditions:a. for all s 2 Lex(NP), m(s) 2 fIbj b 2 Eg, where for all R 2 Rn+1,Ib(R) = R(b)b. m(-a

;Ka), noted ACC, is the identity map on Type 1.
. m(-nom;Kn) = NOM, de�ned aboved. m(himself;NPre
) = SELF, that map from R2 to R1 de�ned earliere. for all x; y 2 DenE(C), C boolean,m(and;CONJ) = ^C and m(or;CONJ) = _C2. m extends to a fun
tion m� on L(Kor), 
alled an interpretation of L(Kor)relative to M, by:a. m�(CM(s; t)) = m(s)(m�(t))b. m�(PA(s; t)) = (m�(s)(m�(t)) if Cat(s) = KPn and Cat(t) = P1nm�(t)(m�(s)) otherwise
. m�(Coord(s; t; u)) = m(s)(m�(t);m�(u))Using these de�nitions one 
omputes that (11a,b) are logi
ally equivalent(always interpreted the same): for all models M = (E;m), m�(11a) =m�(11b).(11) a. (John-nom Bill-a

 praised;P0)b. (Bill-a

 John-nom praised;P0)PA:(John -nom Bill -a

 praised;P0)CM:(John -nom;KPn)(-nom;Kn) (John;NP) PA:(Bill -a

 praised;P1n)CM:(Bill -a

;KPa)(-a

;Ka) (Bill;NP) (praised;P2)



14 Edward L. Keenan, Edward P. StablerPA:(Bill -a

 John -nom praised;P0)CM:(Bill -a

;KPa)(-a

;Ka) (Bill;NP) PA:(John -nom praised;P1a)CM:(John -nom;KPn)(-nom;Kn) (John;NP) (praised;P2)The logi
al equivalen
e of these senten
es relies on the interpretation of(-nom,Kn). When the nominative KP looks at a P2, in e�e
t, it knowsto wait until the next KP denotation 
omes along. So the interpretationof bound morphology here is 
riti
al. Moreover the same reasoning showsthat the result of repla
ing (Bill,NP) by (himself,NPre
) in (11a,b) are alsologi
ally equivalent:m�(John-nom himself-a

 
riti
ized;P0)= m�(himself-a

 John-nom 
riti
ized;P0)Thus the interpretation of himself as an anaphor does not depend on it being
-
ommanded by its ante
edent. We note that these senten
es, like (11a,b),have isomorphi
 derivation trees (standard or FA). But the expressions arenot isomorphi
 in L(Kor) sin
e automorphisms 
an't map KPn's to KPa's,P1n's to P1a's, et
.10. Two further invariants of KorNow we are in a position to state invariants that involve semanti
 notions.K6. The property of being an anaphor is invariant, where the expressionsinterpreted as anaphors following De�nition 5 are pre
isely those inPH(P1/P2).K7. The Anaphor-Ante
edent relation is invariant in Kor, where we de�ne:s AA t in u i� t is an anaphor and s 
o-argument t in u(AA is invariant be
ause it is de�ned as a boolean 
ompound of invariants).11. Con
luding remarks on KorIt is unproblemati
 that anaphors asymmetri
ally 
-
ommand their an-te
edents. The interpretation of 
ase markers guarantees the right seman-ti
 interpretation (senten
e internally) independent of 
-
ommand. We alsonote that a 
ompositional interpretation of L(Eng) is even easier than ofL(Kor), and that himself in Eng denotes SELF, just as himself in Kor does.So our 
laims about anaphors are 
laims about expressions with the samedenotation.Morphology is stru
tural, independent of 
-
ommand relations withinthe 
lause. The 
ase markers, (-nom,Kn) and (-a

,Ka), are invariant even
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 Invariants 15though the KPs they build do not have �xed stru
tural positions. Spe
if-i
ally a KPa does not always 
ombine with a P2 to form a P1; it also
ombines with P1s to form P0s.Our formulation of Kor abstra
ts away from the 
onditioned variants ofthe 
ase markers: -i/-ka for -nom and -ul/-lul for -a

. This seems reasonablewhen our 
on
ern is syntax and semanti
s, as these di�eren
es in form arephonologi
ally 
onditioned.Still, an interesting option arises when we do distinguish two 
ategoriesof NP in Lex, say NP
 and NPv (a

ording as the string 
oordinate ends ina 
onsonant or a vowel). So Lex would 
ontain (John,NP
) and (Joe,NPv)of di�erent 
ategories, but ones that had the same distribution ex
ept forthe 
hoi
e of 
ase marker: -i, -ul in the �rst 
ase, -ka, -lul in the se
ond.And we would then �nd that if the 
ardinalities of the lexi
al NPv's andNP
's were the same (permitting a bije
tion between them) we 
ould designan automorphism that would map all NPv's to NP
's and 
onversely. Itwould also inter
hange (-i,Kn) with (-ka,Kn) and (-ul,Ka) and (-lul,Ka).The resulting grammar would be one in whi
h not all PH(C) were invariant.12. Categorial symmetry and stable automorphismsThe 
ase of 
onditioned variants noted above for Korean has mu
h moreextensive and systemati
 manifestations in other grammati
al subsystems.In BG for example we present a grammar, Span (Spanish), illustrating ba-si
 adje
tive and determiner agreement with mas
uline (m) and feminine(f) nouns. The Lexi
on arbitrarily distinguishes Nm's and Nf's, and whenadje
tives and determiners 
ombine with them they get marked with an -oor an -a, of 
ategory Agr(m) and Agr(f) respe
tively. The m/f distin
tionis inherited by NPs built from the Nm's and Nf's, and then the P1s showpredi
ate agreement with them.And analogous to the Korean 
ase, if we design the grammar so thatthe number of lexi
al Nm's and Nf's is the same then we 
an �nd an auto-morphism of Span whi
h inter
hanges PH(Nm) and PH(Nf), as well as thederived mas
uline and feminine adje
tives, NPs and P1s. So again not allPH(C) are invariant in Span. However the automorphisms that 
an e�e
tthis 
ategory swapping are unstable in that slight additions to the Lexi
onrule out their existen
e. Thus if we add just one new feminine noun, say(poet,Nf) making no other 
hanges then no automorphism 
hanges 
ategoryand all PH(C) are invariant sin
e then the lexi
al Nm's and the lexi
al Nf'swould have di�erent 
ardinalities, so there 
ould be no bije
tion betweenthem.The possibility of 
ategory 
hanging automorphisms above reveals a 
at-egorial symmetry present, in prin
iple, in natural language. Noun 
lassespartition a subset of the expressions in su
h a way that the blo
ks of thepartition 
an be stru
turally inter
hanged. This possibility is \unstable" inthe sense that many \minor" 
hanges in the language, ones we agree areinsigni�
ant, su
h as adding new lexi
al items, result in languages in whi
hthese blo
ks 
annot be inter
hanged.
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idental possibility would be, we feel, a mistake. A gram-mar with unequal numbers of lexi
al Nm's and Nf's 
ould always be ex-tended by adding new lexi
al items to one in whi
h the numbers evened outagain, permitting 
ategory 
hanging automorphisms. And the ability to addnew 
ontent words freely is a basi
 property of a NL. More generally varioustypes of allomorphy present a similar phenomenon. In English we might dis-tinguish 
lasses of Nouns a

ording to how their plural is formed: with /z/as in dog/dogs, with /s/ as in 
at/
ats, with /@z/ in judge/judges, /f/!/vz/as in leaf/leaves, -on!-a, as in phenomenon/phenomena, no 
hange as insheep!sheep, et
.We will treat agreement and allomorphy by distinguishing among auto-morphisms a

ording as they remain stable under su
h 
hanges. Informally,an automorphism is stable if it remains an automorphism after the additionof new expressions isomorphi
 to old ones. \New" means not indu
ing newderivations of expressions in the original language (thanks to Greg Kobelefor this formulation, and thanks to Philippe S
hlenker for for
ing us to treatallomorphy):De�nition 8. For G = hV;Cat;Lex;Rulei and S ��nite V � Cat,a. G[S℄ =df hV;Cat;Lex [ S;Rulei. Write G[s℄ or Gs for G[fsg℄, s 2 V �Cat. So Gs results from adding s to LexG with no 
hanges in Cat orRule.b. G is free for s in V � Cat i�i. for all t 2 L(Gs), if t 2 LG then :(sCONt), andii. For some h 2 AutGs and some t 2 LexG, h inter
hanges s and tand �xes all other elements of LexGs .iii. G is free for S i� for all s 2 S, G is free for s and Gs is free forS� fsg. (Note that all G are free for ;.)So (b.i) blo
ks adding as new lexi
al items expressions that are already inLG.De�nition 9. h 2 AutG is stable i� h extends to an h0 2 AutG[S℄, all �niteS for whi
h G is free.An expression, a property of expressions,. . . over G is a linguisti
 invari-ant i� it is �xed by all stable automorphisms.Of 
ourse all logi
al invariants of a grammar are linguisti
 invariantssin
e an obje
t �xed by all automorphisms is a fortiori �xed by all stableautomorphisms. But the 
onverse may fail. In Kor enri
hed with the phono-logi
ally 
onditioned 
ase markers PH(NPv) is a linguisti
 invariant but nota logi
al one. Equally ea
h 
ase marker (-i, Kn), (-lul,Ka), et
. is a linguisti
invariant (but not a logi
al one). And in Span PH(Nm) is a linguisti
 invari-ant but not an logi
al invariant, as is ea
h agreement marker (-o,Agr(m)),(-a,Agr(f)).
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lusionWe have provided a way of establishing invariants of natural languages while
ountenan
ing that di�erent languages may have quite di�erent grammars.Our spe
i�
 
laims, that is an anaphor or is a possible ante
edent of areinvariant in all natural languages, are empiri
al, not mathemati
al, andfurther empiri
al resear
h 
ould show them false.In addition our approa
h has led us to formulate several 
on
eptuallynew generalizations about natural language. Here are two, of somewhatdi�erent sorts:Stable Categories In adequate natural language grammars G, ea
h PH(C)is a linguisti
 invariantThesis Grammati
al Formatives are linguisti
ally invariant lexi
al items.The Thesis above o�ers a 
hara
terization of those expressions linguists var-iously 
all \fun
tion words" or \grammati
al formatives". To our knowledgethis is the �rst non-stipulative 
hara
terization of these obje
ts. In 
ontrast,Stable Categories is o�ered as an axiom of a theory of language stru
ture. Itprovides a prin
ipled a

ount of how the expressions of a language may bepartitioned into grammati
al 
ategories. They are sets of expressions �xedby all stable automorphisms.Notes1Advo
ates of this approa
h intend more than the 
laim that we use thesame notation for grammati
al 
ategories in di�erent languages but it isquite un
lear what this \more" is.2In more detail, an expression is -nom marked i� it is suÆxed with -i ifit is 
onsonant �nal and with -ka if it is vowel �nal. It is -a

 marked i� it issuÆxed with -ul if 
onsonant �nal and -lul if vowel �nal. In addition eitherargument (but not both) 
an have their -nom/-a

 suÆxes repla
ed with atopi
 marker -un/-nun preserving the pattern of ante
eden
e. Then a morea

urate statement of the AA relation would be: \...X is -nom marked andY is -a

 marked or topi
 marked, or X is -nom marked or topi
 marked andY is -a

 marked". The important point remains: the relevant fa
tor govern-ing the distribution of anaphor and ante
edent in simple senten
es 
on
ernstheir morphologi
al marking, not their left-right order or 
-
ommand rela-tions.3It is assumed here that the universe E of interpretation always has atleast two elements. The non-triviality 
ondition is intended for 
ases like atleast two of the ten students besides himself, whi
h requires for non-trivialitythat the E 
ontain exa
tly ten students.



18 Edward L. Keenan, Edward P. Stabler4The de�nition of EC and AC and hen
e of anaphor generalizes dire
tlyto maps from n+1-ary relations to n-ary ones just by interpreting a and bas n-tuples rather than \1-tuples".5In head initial languages (Verb initial, or SVO as in English) framing
oordinations follow the English pattern (both X and Y, either X or Y,neither X nor Y), though the more typi
al 
ase is where the 
onjun
tivemorphemes are the same, as in Fren
h: et Jean et Marie, ou Jean ou Marie,ni Jean ni Marie. A 
ase 
an be made that in verb �nal languages the orderis X and Y and, X or Y or, et
. though in our examples from Korean wedid not �nd su
h framing expressions, only in�x 
oordinators. We in
ludethe framing 
onstru
tion to avoid semanti
 ambiguities with iterated 
o-ordinations. We are not really studying either 
oordination or ambiguityhere, but we in
lude 
oordination so that many 
ategories of expression willhave in�nitely many members, for
ing us to avoid non-general de�nitionsby listing 
ases.Referen
esAissen, Judith. 1987. Tzotzil Clause Stru
ture. Reidel, Dordre
th.Bresnan, Joan. 2001. Lexi
al-Fun
tional Syntax. Bla
kwell, Oxford.Chomsky, Noam. 1957. Synta
ti
 Stru
tures. Mouton, The Hague.Hornstein, Norbert. 1995. Logi
al Form: From GB to Minimalism. BasilBla
kwell, Oxford.Keenan, Edward L. and Edward P. Stabler. 2003. Bare Grammar. CSLIPubli
ations, Stanford, California.Pollard, Carl and Ivan Sag. 1994. Head-driven Phrase Stru
ture Grammar.The University of Chi
ago Press, Chi
ago.


