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Abstract. The standard approach to what I call “proof-theoretic semantics”, which
is mainly due to Dummett and Prawitz, attempts to give a semantics of proofs by
defining what counts as a valid proof. After a discussion of the general aims of
proof-theoretic semantics, this paper investigates in detail various notions of proof-
theoretic validity and offers certain improvements of the definitions given by Prawitz.
Particular emphasis is placed on the relationship between semantic validity concepts
and validity concepts used in normalization theory. It is argued that these two sorts
of concepts must be kept strictly apart.

1. Introduction: Proof-theoretic semantics

Proof-theoretic semantics is an alternative to truth-condition seman-
tics. It is based on the fundamental assumption that the central notion
in terms of which meanings can be assigned to expressions of our lan-
guage, in particular to logical constants, is that of proof rather than
truth. In this sense proof-theoretic semantics is inherently inferential in
spirit, as it is the inferential activity of human beings which manifests
itself in proofs.

Proof-theoretic semantics has several roots, the most specific one be-
ing Gentzen’s (1934) remarks that the introduction rules in his calculus
of natural deduction define the meanings of logical constants, while the
elimination rules can be obtained as a consequence of this definition.
More broadly, it is part of the tradition according to which the meaning
of a term should be explained by reference to the way it is used in our
language.

Although the “meaning as use” approach has been quite prominent
for half a century now and has provided one of the cornerstones of the
philosophy of language, in particular of ordinary language philosophy,
it has never prevailed in the formal semantics of artificial and natural
languages. In formal semantics, the denotational approach, which starts
with interpretations of singular terms and predicates, then fixes the
meaning of sentences in terms of truth conditions, and finally defines
logical consequence as truth preservation under all interpretations, has
always been dominant. The main reason for this, as I see it, is the fact
that from the very beginning, denotational semantics received an au-
thoritative rendering in Tarski’s (1933) theory of truth, which combined
philosophical claims with a sophisticated technical exposition and, at
the same time, laid the ground for model theory as a mathematical
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2 Peter Schroeder-Heister

discipline. Compared to this development, the “meaning as use” idea
was a slogan supported by strong philosophical arguments, but without
much formal underpinning.

There has been a lot of criticism of classical model-theoretic se-
mantics from the denotational side itself. Examples are partial logics
such as situation semantics, and dynamic approaches such as discourse
representation theory and dynamic semantics. These logics reject the
idea that total information about the world is always available and
evaluate formulas with respect to certain information states1. Another
example is Etchemendy’s (1990) critique of classical consequence, which
attracted much attention. However, in mainstream semantics, there
has never been a fundamental reorientation, which could have turned
the “meaning as use” idea into something that resembles a formalized
theory.

Proof-theoretic semantics, as a sidestream development, attempts
to achieve exactly this. As one would expect, it uses ideas from proof
theory as a mathematical discipline, similar to the way truth-condition
semantics relies on model theory. However, just this is the basis of
a fundamental misunderstanding of proof-theoretic semantics. To a
great extent, the development of mathematical proof theory has been
dominated by the formalist reading of Hilbert’s program as dealing
with formal proofs exclusively, in contradistinction to model theory
as concerned with the (denotational) meaning of expressions. This
dichotomy has entered many textbooks of logic in which “semantics”
means model-theoretic semantics and “proof theory” denotes the proof
theory of formal systems. The result is that “proof-theoretic semantics”
sounds like a contradiction in terms even today.

When I first used this term in the 1980s2, it was not very com-
mon, although the idea behind it was there in the Swedish school of
proof theory established by Prawitz and Martin-Löf (see Kahle and
Schroeder-Heister 2005). In the meantime, it has gained some ground
and there have been some occasional references to it. Perhaps it will
become more popular within general philosophy in the backwater of in-
ferentialist approaches such as Brandom’s3, which more explicitly than
ordinary language philosophy attempt to derive denotational meaning
from inferential meaning, i.e. use the idea that meaning is rooted in
proofs as their starting point.

Strictly speaking, the formalist reading of proof theory is not any
more foreign to the understanding of ‘real’ argumentation than model
theory is to the interpretation of natural language. In order to apply
proof-theoretic results, one has to consider formal proofs to be represen-
tations of proper arguments, just as, in order to apply model-theoretic
methods, one has to consider formulas to be representations of proper
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sentences of a natural language like English. English is not per se a for-
mal language, and arguments are not per se formal derivations. In this
sense, the term “proof-theoretic semantics” is not any more provocative
than Montague’s (1970) conception of “English as a formal language”.
Both proof-theoretic semantics and model-theoretic semantics are in-
direct in that they can only be applied via a formal reading of aspects
of natural language. The basic difference lies in what these aspects are:
proof-theoretic semantics starts with arguments and represents them
by derivations, whereas model-theoretic semantics starts with names
and sentences and represents them by individual terms and formulas.

As indicated above, it was the Swedish school of proof theory, which
paved the way for a non-formalist philosophical understanding of proofs.
Although originally dealing with problems of the proof-theory of for-
mal systems, Prawitz and Martin-Löf soon realized that many of the
concepts and methods developed there had a non-technical counterpart
when looking at formal proofs as formal representations of “genuine”
proofs. In taking Gentzen’s remarks on the definitional significance of
introduction and elimination rules seriously, they developed the cor-
nerstones of proof-theoretic semantics.

An immediate predecessor of proof-theoretic semantics was Tait
(1967), who, in his work on the convertibility of terms, developed
concepts which are closely related to those later employed in proof-
theoretic semantics. Another predecessor was Lorenzen (1955), who,
in his operative logic, used arbitrary production rules as definitional
rules from which, by means of an inversion principle4, corresponding
elimination rules can be obtained.

In this paper I shall deal with proof-theoretic validity as one of the
basic technical tools developed within proof-theoretic semantics. As this
notion was essentially developed by Prawitz, my exposition is to a great
extent a re-interpretation and, I hope, an improvement to his approach.
I shall not deal with the broader philosophical background of “anti-
realism” and “verificationism” into which the concept of validity may
be embedded, but mainly with the technical constructs and their (nar-
rower) philosophical motivation. The reason for this is, besides lack of
space, the fact indicated above that the desideratum of proof-theoretic
semantics is not so much a general philosophical understanding of its
position, but the formal development and philosophical clarification of
its fundamental concepts. One result of this restriction is that I cannot
give Dummett’s work the attention it deserves, since his technical no-
tions do not differ considerably from Prawitz’s. I am well aware that he
has made enormous contributions to the philosophical understanding
of proof-theoretic semantics in general. To a considerable extent it is
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due to his work that the general climate is now more in favour of
proof-theoretic semantics than it used to be.5

Validity is a property of derivations, or more general “derivation
structures”, which are considered to be representations of arguments.
The format of these derivations is Gentzen-style natural deduction. In
defining validity, attempts are made to justify arguments by turning
certain proof-theoretic methods and results into semantic conditions,
most prominently the following two: (1) Derivations can be simplified
(or made more “direct”) by certain reduction methods (terminating in
normal derivations). (2) Assumption-free derivations in normal form
are canonical (or “direct”) in the sense that they apply an introduction
rule in the last step. Valid arguments are then defined as derivation
structures which exhibit properties like (1) and (2). However, I shall
strictly distinguish between genuine semantic features and technical
properties used in normalization proofs. This is extremely important, as
Prawitz originally developed his semantic notion of validity along with
adapting certain proof-theoretic concepts proposed by Tait and Martin-
Löf to proofs of strong normalization. My main criticism of Prawitz
will be that in his earlier writings on validity (Prawitz 1971, 1973,
1974) he does not sufficiently distinguish between semantic concepts
and concepts used in proofs of (strong) normalization. I shall argue
that they differ in fundamental respects.6

In spite of much philosophical discussion about meaning and theories
of meaning, no thorough investigation of Prawitz’s validity concept has
been undertaken so far, although this concept is based on very elemen-
tary principles which are very close to Gentzen’s original programme
of justifying natural deduction. This is why I chose this notion as my
topic here. I want to leave open the question of whether validity should
be taken as the ultimate basis of proof-theoretic semantics. I myself
tend to favour a different approach which chooses rules as the unity of
semantic investigation. Whereas in proof-theoretic validity in Prawitz’s
sense, derivations or arguments come first, and rules or consequences
are regarded as steps which preserve the validity of arguments, a rule-
based approach would first distinguish certain individual proof steps
and then compose derivations or arguments from them. Whereas the
first approach is global, dealing with proofs as a whole and imposing
requirements on them, the second approach is local, as it interprets indi-
vidual proof steps without demanding from the very onset that a proof
composed of such single steps have special features. The rule-based
approach has the advantage that the dependency of global features
of arguments on local features of rules can be investigated separately,
which makes this approach more flexible and capable of dealing with
phenomena such as circular reasoning. Ideas in this direction have been
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developed in the context of logic programming jointly with Hallnäs7,
and will be dealt with in subsequent work.

This paper starts with recalling Gentzen’s characterization of nat-
ural deduction and the way this characterization is turned into an
inversion principle by Prawitz. The semantic validity concepts proposed
are contrasted with concepts used in proofs of (strong) normalization,
which were originally introduced by Tait and Martin-Löf. Special em-
phasis is placed on the difference between these concepts and semantic
concepts, by calling those used for normalization “computability” and
only the semantic ones “validity”. Various forms of validity are defined
and compared, among them notions of strict and strong validity which
go beyond Prawitz’s definitions. These notions are then extended to
general derivation structures with arbitrary reductions serving as jus-
tifications, where the definition of a justification differs slightly from
that of Prawitz. Finally, it is argued that proof-theoretic validity and
the resulting notion of consequence is different from, and in a sense
more specific than, constructive validity and consequence based on the
notion of a constructive function.

For lack of space, Martin-Löf’s meaning theory, which may be cor-
rectly viewed as carrying out a whole programme of proof-theoretic
semantics, cannot be dealt with here (see e.g. Martin-Löf 1995, 1998).
For the particular purpose of elucidating proof-theoretic validity, this
seems to me to be justified, since Martin-Löf’s semantics is not explic-
itly concerned with formal notions of proof-theoretic validity. I cannot
discuss Lorenzen’s “operative logic” (1955) either, although it is very
close to Gentzen’s programme (at least “in spirit”). Furthermore, I do
not consider categorical approaches to proof-theoretic semantics. The
discussion about classical vs. intuitionistic logic is left out as well.8

Even a rudimentary account of these items would turn this paper into
a substantial monograph.

As a general framework, I use the implicational fragment of in-
tuitionistic propositional logic, i.e. positive implicational logic, which
suffices to demonstrate and exemplify all basic ideas. An adequate ac-
count of implication provides strong guidelines for the handling of other
logical operators. Implication is the most complicated propositional
operator, sharing crucial properties with universal quantification. The
distinction between open and closed derivations, which will turn out to
be semantically fundamental, is to a great extent due to its presence.
It is intertwined with the notion of “assumption”, which Gentzen gave
a prominent role in logical calculi, and whose proper treatment is the
cornerstone of proof-theoretic semantics.
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Logical preliminaries and notational conventions

In this paper, I stick to Prawitz’s tree-based proof notation and do not
use a term calculus via the Curry–Howard correspondence (although
the typed λ-calculus would be a natural candidate). The tree-based
proof notation is philosophically more natural, as proof terms obtain
their philosophical significance through their reading as codes for “real”
proofs.

Following Prawitz, I shall use the following conventions: If a deriva-

tion D ends with A, I shall also write
D
A

. If it depends on an assumption

B, I shall write
B
D

or
B
D
A

. This means that the notations D,
D
A

,
B
D

and
B
D
A

do not denote different derivations, but just differ in what they make
explicit. The open assumptions of a derivation are the assumptions
on which the end-formula depends. A derivation is called closed if it
contains no open assumptions, otherwise it is called open.

The system of natural deduction I shall use is that described by
Gentzen (1934) and Prawitz (1965). Its positive implicational frag-
ment contains only the schemata of →-introduction and →-elimination
(modus ponens):

[A]

B
→I

A→B
A→B A

→E
B

The reduction of a maximum formula, which is a conclusion of an
application of an introduction inference and at the same time the ma-
jor premiss of an elimination inference, is in our restricted framework
represented as the schema of →-reduction:

A
D
B

A→B
D′

A
B

reduces to

D′

A
D
B

Occasionally I shall also refer to the reductions for other connectives
as described in Prawitz (1965). These reductions will be called the
“standard reductions” (in contradistinction to arbitrary reductions for
generalized derivation structures).

A derivation is in normal form if it cannot be further reduced, which
means that it contains no maximum formula. Prawitz (1965) showed
that by iterated application of reduction steps, every derivation in intu-
itionistic logic can be normalized, i.e. can be rewritten as a derivation in
normal form.9 One corollary of this result is that every closed derivation
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in intuitionistic logic can be reduced to one using an introduction rule in
the last step, as a closed normal derivation is of exactly that form. I call
this the fundamental corollary of normalization theory. As seen below,
the fundamental corollary is philosophically interpreted by requiring
that a valid closed derivation be reducible to one using an introduction
inference in the last step. In this sense, introduction rules describe the
basic meaning-giving inferences.

The normalization result mentioned is also called weak normaliza-
tion. The strong normalization result says that any reduction sequence
terminates in a normal derivation, regardless of the order in which
reductions are performed. Methods used to prove strong normalization
have provided the basis for semantic validity concepts.

2. Gentzen’s programme and Prawitz’s inversion principle

Proof-theoretic semantics in the sense discussed in this paper goes back
to certain programmatic remarks in Gentzen’s Investigations into Nat-
ural Deduction, where he gives a semantic interpretation of his inference
rules.

Gentzen’s remarks deal with the relationship between introduction
and elimination inferences in natural deduction.

The introductions represent, as it were, the ‘definitions’ of the sym-
bols concerned, and the eliminations are no more, in the final ana-
lysis, than the consequences of these definitions. This fact may
be expressed as follows: In eliminating a symbol, we may use the
formula with whose terminal symbol we are dealing only ‘in the
sense afforded it by the introduction of that symbol’. (Gentzen 1934,
p. 80)

This cannot mean, of course, that the elimination rules are deducible
from the introduction rules in the literal sense of the word; in fact, they
are not. It can only mean that they can be justified by them in some
way.

By making these ideas more precise it should be possible to dis-
play the E-inferences as unique functions of their corresponding
I-inferences, on the basis of certain requirements. (Gentzen 1934,
p. 81)

So the idea underlying Gentzen’s programme is that we have “defini-
tions” in the form of introduction rules and some sort of semantic rea-
soning which, by using “certain requirements”, validate the elimination
rules.
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As indicated in the introduction, I shall not discuss in detail the
philosophical reasons which might support Gentzen’s programme. For
that I would have to refer to Dummett’s work and in particular to his
claim that there are two different aspects of language use: one connected
with ‘directly’ or ‘canonically’ asserting a sentence, and another one
with drawing consequences from such an assertion.10 The first is the
primary or ‘self-justifying’ way corresponding to reasoning by intro-
duction rules, whereas the second one, which corresponds to reasoning
by elimination rules, is in need of justification. This justification relies
on the harmony which is required to hold between both aspects: The
possible consequences to be drawn from an assertion are determined
by the premisses from which the assertion can possibly be inferred by
direct means.

Prawitz, in an “inversion principle”11 formulated in his classic mono-
graph on Natural Deduction of 1965, tried to make Gentzen’s remarks
more precise in the following way.

Let α be an application of an elimination rule that has B as conse-
quence. Then, deductions that satisfy the sufficient condition [. . . ]
for deriving the major premiss of α, when combined with deductions
of the minor premisses of α (if any), already “contain” a deduction
of B; the deduction of B is thus obtainable directly from the given
deductions without the addition of α. (Prawitz 1965, p. 33)

Here the sufficient conditions are given by the premisses of the cor-
responding introduction rules. Thus the inversion principle says that
a derivation of the conclusion of an elimination rule can be obtained
without an application of the elimination rule if its major premiss has
been derived using an introduction rule in the last step, which means
that a combination

D
I-inference

A {Di}
E-inference

B

of steps, where {Di} stands for a (possibly empty) list of deductions of
minor premisses, can be avoided.

At first glance, this simply states the fact that maximum formulas,
i.e. formulas being conclusions of an I-inference and at the same time
major premiss of an E-inference (in the example: A), can be removed
by means of certain reductions, which leads to the idea of a normal
derivation. However, it also represents a semantical interpretation of
elimination inferences by saying that nothing is gained by an appli-
cation of an elimination rule if its major premiss has been derived
according to its meaning (i.e. by means of an introduction rule). So the
reductions proposed by Prawitz for the purpose of normalization are at
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Validity Concepts in Proof-Theoretic Semantics 9

the same time semantic justifications of elimination rules with respect
to introduction rules. His inversion principle elaborates Gentzen’s idea
of “special requirements” needed for this justification, by demanding
that elimination rules invert introduction rules in a precise sense.

That it corresponds indeed to what Gentzen had in mind can be
seen by taking a closer look at the example Gentzen gives:

We were able to introduce the formula A→B when there existed a
derivation of B from the assumption formula A. If we then wished to
use that formula by eliminating the →-symbol (we could, of course,
also use it to form longer formulae, e.g., (A→B)∨C, ∨-I), we could
do this precisely by inferring B directly, once A has been proved,
for what A→B attests is just the existence of a derivation of B from
A. (Gentzen 1934, pp. 80–81)

This may be read as follows: Given the situation

A
D
B

A→B
D′

A
B

where D is “a derivation of B from the assumption formula A”, and D′

is the derivation showing that “A has been proved”, so that we can use
A→B to obtain B “by eliminating the →-symbol”. Then by means of

D′

A
D
B

we can infer “B directly, once A has been proved [by means of D′]”, as
“A→B attests [. . . ] the existence of a derivation [viz. D] of B from A”.
According to this reading, Gentzen describes the standard reduction
for implication later made explicit by Prawitz (1965) and used in his
normalization proof.

However, although Gentzen’s remarks are correctly read as outlining
a semantic programme, he himself takes a more formalistic stance,
which is clear from his writings in general and from the continuation
of the passage quoted above:

Note that in saying this we need not go into the “informal sense”
[“inhaltlicher Sinn”]12 of the →-symbol. (Gentzen 1934, p. 81)

Prawitz (1965) deserves credit to have drawn our attention to the
genuine semantic content of Gentzen’s remarks, though this is not
spelled out in detail in his monograph. Only later in Prawitz (1971)
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and in particular in Prawitz (1973, 1974) is it turned into a full-fledged
semantic theory.

3. Normalization, computability and validity

3.1. Normalization and computability

Normalization plays a prominent role in the formal background of
proof-theoretic semantics, in particular the result that normal closed
proofs are in introduction form, i.e. use an introduction inference in the
last step.

Of equal importance is a technical method within normalization the-
ory, which is especially used in proofs of strong normalization. By means
of this method, a certain predicate P of proofs is defined which has the
property that it entails (strong) normalizability. The predicate P has
some flavour of a semantic predicate, and in a kind of correctness proof
it can be shown that every derivation satisfies P , yielding as a corollary
that every derivation is (strongly) normalizable. Such a predicate was
first defined by Tait (1967) under the name “convertibility” and used to
demonstrate (weak) normalizability of terms. Martin-Löf (1971) carried
Tait’s idea over from terms to derivations and defined a corresponding
predicate which he called “computability”, proving (weak) normaliza-
tion for an extension of first-order logic, called the theory of iterated
inductive definitions. At the same time, Girard (1971) used this method
to prove (weak) normalization for second-order logic. Again at the same
time, it was Prawitz (1971) who emphasized its particular usefulness for
proving strong normalization, calling it “strong validity”. Since then,
it has served as the basis of proofs of strong normalization for a variety
of systems.13

In the following I shall speak of computability predicates or the
computability predicate when dealing with this notion as it is used
in normalization proofs, thus adopting Martin-Löf’s terminology. The
term “valid” will be reserved for genuinely semantic notions. I consider
the terminology of Prawitz, who speaks of “validity based on the in-
troduction rules” (1971, p. 284) in contradistinction to “validity used
in proofs of normalizability” (1971, p. 290), somewhat unfortunate. It
is one of the basic claims of this paper that there are fundamental
differences between these two concepts.

I restrict Prawitz’s notion of computability (“validity used in proofs
of normalizability”) to positive implicational logic L, i.e. to the system
with only introduction and elimination rules for implications as prim-
itive rules of inference. Under this restriction, Prawitz’s computability
notion is basically the same as Martin-Löf’s.
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A derivation is in I-form if it uses an introduction rule in the last
step, i.e., if it is of the form

[A]

D
B .

A→B

Using a term employed by Prawitz (1974) and Dummett (1975) and
now common in proof-theoretic semantics, such a derivation is also
called canonical. Let D ≻1 D′ mean that the derivation D reduces to
the derivation D′ by applying a single reduction step to a subderivation
of D.

Definition of computability

(i) A derivation of the form

[A]

D
B

A→B

is computable, if for every com-

putable D′

A
,

D′

A
D
B

is computable.

(ii) If a derivation D is not in I-form and is normal, then it is com-
putable.

(iii) If a derivation is not in I-form and is not normal, then D is
computable, if every D′, such that D ≻1 D′, is computable.

This is a generalized inductive definition. It uses induction on the degree
of the end formula of the derivation (clause i), and, within each degree,
induction on the reducibility relation14 (clauses ii and iii).

The proof of strong normalization then proceeds by establishing the
following two propositions:

Proposition 1 Every computable derivation is strongly normalizable.

Proposition 2 Every derivation is computable.

Proposition 1 is a (nearly) immediate consequence of the definition of
computability. Proposition 2 is based on a kind of correctness proof,
verifying step by step that computability is carried over from the pre-
misses to the conclusion of an inference step. Other formulations of
“computability” differ slightly from the one given here. However, the
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basic features remain the same. The resulting normalization proofs all
proceed via Propositions 1 and 2.

Computable derivations are closed under substitution with com-
putable derivations, i.e., the following lemma holds:

Substitution lemma for computability

If
A1 . . . An

D
B

, is computable, where all open assumptions of D are

among A1, . . . , An, then for any list of computable derivations
Di

Ai

(1 ≤

i ≤ n),

D1 Dn

A1 . . . An

D
B

is computable.

Note that the converse direction of the lemma is trivial, as every as-
sumption Ai is itself a normal, and therefore computable, derivation of
Ai from Ai.

If closure under substitution with computable derivations is called
computability under substitution, the lemma says that computability
implies computability under substitution.

Weaker versions of computability entail (weak) normalization. In-
stead of requiring in clause (iii) that every D′, such that D ≻1 D′, be
computable, we might demand that a certain D′, which is obtained from
D in a particular way (i.e. by performing a particular reduction step)
be computable. This yields the notion defined by Martin-Löf (1971).
We might even weaken this by not referring to a particular procedure
and just postulate in (iii) that D reduces to a computable D′, without
specifying the procedure in the definition (it must then be specified in
the normalization proof, of course).

3.2. From computability to validity

Validity is a core notion of proof-theoretic semantics. Prawitz intro-
duced it as a semantic predicate for derivations, in analogy to truth
as a semantic predicate of propositions in model-theoretic semantics.
He developed it in connection with computability predicates, to which
it bears a strong resemblance. As his terminology (“strong validity”
for “computability” in our sense) suggests, Prawitz actually considers
computability and validity to be concepts on one scale, computabil-
ity being the stronger one. There are several remarks in his 1971,
1973, 1974 papers, where he deals with both notions, which indicate
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that computability is obtained by augmenting validity, some of them
even stating that these extensions make the concept of validity more
plausible or convenient.15 However, Prawitz never explains the exact re-
lationship between these two concepts. In particular, he never attempts
to formally prove that computability (strong validity) implies validity
— a result one should expect to hold if the relationship is as simple as
the terminology suggests. In his publications after 1974, Prawitz never
returns to computability and its relation to validity.

In the following I shall argue that, in spite of many similarities,
and contrary to Prawitz’s opinion, semantically useful validity notions
must differ considerably from computability. Crucial modifications are
necessary to turn computability into validity. I shall make the following
points:

(1) The notion of computability is not suitable as a foundational
semantic notion, because it stipulates normal derivations as com-
putable without further justification.

(2) In order to adjust the notion of computability to serve founda-
tional purposes, closed derivations must be given a distinguished
role in the justification of irreducible (= normal) derivations.

(3) This distinguished role of closed derivations includes, as a semantic
condition, their reducibility to canonical form.

Ad (1): Computability is not a semantic notion
According to clause (ii) in the definition of computability, every nor-
mal derivation which is not in I-form, is computable16. This could be
counted as a semantic clause only if in proof-theoretic semantics we are
prepared to consider non-canonical normal derivations as valid by defi-
nition. However, as we have seen, it is one of the ideas of proof-theoretic
semantics in the sense of Gentzen’s programme to consider introduction
inferences as basic and to justify all other inferences by them. In other
words, only derivations based on introduction rules should be taken for
granted. In any other case the definition of validity should rely on some
justification procedure rather than on the syntactic form of derivations.
This is obviously violated by clause (ii), which simply stipulates irre-
ducible non-canonical derivations as valid. There is no semantic reason
whatsoever to consider non-canonical irreducibility as a definition case
of validity. According to such a definition, the derivation

A→B A
B

would be valid by definition and not by justification, which is not what
is intended. Modus ponens, as an elimination rule, definitely needs
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14 Peter Schroeder-Heister

semantic justification. Of course, for the purpose of proving normal-
izability, clause (ii) is absolutely natural, as normal derivations are
trivially (strongly) normalizable. For semantic purposes, however, we
would have to argue that non-canonical irreducible derivations have
some special status, which exempts them from justification. Since there
is no argument at hand to support this, using normal derivations as a
starting point in defining validity is an ill-guided approach.

In contradistinction to clause (ii), clauses (i) and (iii) make good
semantic sense. In terms of validity, clause (i) says that a canonical
derivation of A→B is valid if its immediate predecessor, a derivation
of B from A, provides a way of transferring every valid derivation of
A into a valid derivation of B, which corresponds to the meaning one
wants to associate with A→B. Furthermore, clause (iii) says that a
non-canonical derivation may be considered as valid if it reduces to a
valid derivation. This reflects the idea that non-canonical derivations
are valid if they reduce to derivations which are already justified as
valid (such as canonical ones).

Therefore the basic flaw in computability, understood as a semantic
notion, is the following implicit assumption:

If D is non-canonical and irreducible (= normal), then D is valid.

Ad (2): Semantically modified computability: open assumptions and
closed derivations
One could try to modify the definition of computability to make it
suitable for a definition of semantic validity. This would mean that
clause (ii) of the definition is dropped and replaced with something
which justifies non-canonical irreducible derivations as valid. An obvi-
ous possibility would be to consider such a derivation as valid if the
replacement of open assumptions with valid derivations yields a valid
derivation of the end formula. This idea would follow the substitution
lemma for computability, according to which computability is the same
as computability under substitution. More formally, clause (ii) would
then read as follows (where we now use the term “valid”, as we are
dealing with turning the computability notion into a semantic concept):

(ii)* A non-canonical irreducible derivation

A1 . . . An

D
B
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where all open assumptions of D are among A1, . . . , An, is valid,

if for every list of valid derivations
Di

Ai

(1 ≤ i ≤ n),

D1 Dn

A1 . . . An

D
B

is valid.

For example, the one step non-canonical irreducible derivation

A→B A
B

would be considered as valid, if for each pair of valid derivations
D1

A→B

and
D2

A
, the derivation

D1

A→B

D2

A
B

is valid. However, a clause like

(ii)* would then no longer proceed by induction on the complexity
of the end formula but on the complexities of the open assumptions
plus that of the end formula, in the example: on the complexities of
A→B, A and B. But then the quantification over all valid derivations
of the open assumptions is no longer feasible, since these derivations
may depend on assumptions of arbitrary complexity. Therefore this is
no viable solution.17

The way out of this problem used in semantic definitions of validity
is to use closed valid proofs rather than arbitrary valid proofs as a
basis. Instead of (ii)*, one would then propose the following clause.

(ii)** A non-canonical non-reducible derivation

A1 . . . An

D
B

where all open assumptions of D are among A1, . . . , An, is valid,

if for every list of closed valid derivations
Di

Ai

(1 ≤ i ≤ n),

D1 Dn

A1 . . . An

D
B

is valid.
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However, even now we are proceeding by induction on the joint com-
plexity of A1, . . . , An, B rather than only the complexity of B, even if
we only quantify over closed valid derivations. This is not compatible
with clause (i), where we proceed by induction on the end formula only.
In order to cope with that, we would also have to change clause (i) to

(i)** A derivation of the form

[A]

D
B

A→B

is valid, if for every closed valid

D′

A
,

D′

A
D
B

is valid

where this is understood as proceeding by induction on the joint com-
plexity of open assumptions plus the end-formula of a derivation.

The definition based on (i)**, (ii)** and (iii) may be called validity*.
In passing from computability to validity* we have interpreted open
assumptions as placeholders for closed derivations.

Ad (3): The reducibility of closed derivations
Unfortunately, validity* does not yet eliminate the possibility that irre-
ducible (= normal) derivations are considered valid without any further
justification. In the case of open derivations, this possibility has been
removed, but not so in the case of closed derivations. Suppose D is a
closed non-canonical derivation which is irreducible. Then clause (ii)**
applies, and, as there are no open assumptions, D is (vacuously) valid*.

One might argue that there are no closed non-canonical irreducible
derivations. However, this is an accidental property of first-order logic
with the standard reductions. Since the notion of validity should in
principle be applicable to more general notions of derivations and reduc-
tions, the formal possibility of closed non-canonical irreducible deriva-
tions must be taken into account. Such a derivation should simply turn
out to be invalid by definition. This is accomplished by transforming a
corollary of the normalization of proofs into a semantic condition:

A closed non-canonical derivation is valid, if it is reducible to a valid
closed canonical derivation.

It was Dummett in particular who repeatedly stressed as a funda-
mental epistemological principle18 that, if something is known in an
indirect (non-canonical) way, it must be possible to turn this indirect
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knowledge into direct (canonical) knowledge. This is part of the reason
why this sort of semantics is also called verificationist, and it is part of
the interpretation of Gentzen’s programme of the primacy of introduc-
tion rules: In the closed case an I-rule derivation can always be found.
With this motivation we arrive at Prawitz’s definition of the validity of
derivations.

3.3. Validity of derivations

We follow Prawitz (1971) in defining validity with respect to atomic
systems S, which are given by production rules for atomic formulas.
Let then L(S) be implicational logic over S, i.e. the system given by
introduction and elimination rules for implication plus the production
rules of S. We may identify L(S) with the set of all derivations in this
system. A system S′ is an extension of S (S′ ≥ S) if S′ is S itself or
results from S by adding further production rules. As a limiting case, we
consider the empty atomic system S0 without any inference rules and
with propositional variables as formulas, and correspondingly L(S0) as
standard implicational logic over propositional variables. Obviously, as
a formal system, L(S0) is the same as L. It will turn out that validity
with respect to S0 is the same as universal validity when defined in
an appropriate way. We say that D reduces to D′ (D º D′), if D′ can
be obtained from D by applying a (finite) number of reduction steps.
As a limiting case, D reduces to itself. In the context of atomic sys-
tems, we also extend the notion of a canonical derivation. A canonical
derivation of an atom of S is a derivation in S, whereas, as before, a
canonical derivation of a complex formula is a derivation in I-form, i.e.
a derivation using an introduction rule in the last step.

Then our first definition of validity corresponding to the one given
in Prawitz (1971) runs as follows:

Definition of S-validity (1)

(i) For atomic A, a closed derivation of A is S-valid, if it reduces to
a derivation in S.

(ii) A closed derivation
D

A→B
is S-valid, if D reduces to a derivation

of the form

[A]

D′

B
A→B

such that for every S′ ≥ S and every closed

S′-valid D′′

A
,

D′′

A

D′

B

is S′-valid.
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18 Peter Schroeder-Heister

(iii) An open derivation
A1 . . . An

D
B

, where all open assumptions of

D are among A1, . . . , An, is S-valid, if for every S′ ≥ S and every

list of closed S′-valid
Di

Ai

(1 ≤ i ≤ n),

D1 Dn

A1 . . . An

D
B

is S′-valid.

This inductive definition proceeds on the joint complexities of the
open assumptions and the end formula of the given derivation.

In view of clause (iii), clause (ii) can be changed to

(ii) A closed derivation of A→B is S-valid if it reduces to a canonical
derivation of A→B whose immediate subderivation is S-valid.

By putting reduction into a clause of its own, the whole definition
can then be equivalently stated as follows:

Definition of S-validity (2)

(I) Every closed derivation in S is S-valid.

(II) A closed canonical derivation of A→B is S-valid, if its immediate
subderivation is S-valid.

(III) A closed non-canonical derivation is S-valid, if it reduces to an
S-valid canonical derivation.

(IV) An open derivation
A1 . . . An

D
B

, where all open assumptions of D

are among A1, . . . , An, is S-valid, if for every S′ ≥ S and for every

list of closed S′-valid
Di

Ai

(1 ≤ i ≤ n),

D1 Dn

A1 . . . An

D
B

is S′-valid.

The equivalence of these two definitions of S-validity is easy to prove.
Obviously, every (not necessarily closed) derivation in S is S-valid, since
every closed S-valid derivation of an atom reduces to a derivation in
S. The second definition corresponds to the one proposed by Prawitz
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(1974, 2005). As explained in the last subsection, the philosophical
motivation behind this definition is that, in the closed case, deriva-
tions in S as well as introduction steps are self-justifying (clauses I
and II), whereas all other steps are justified on the basis that they
reduce to something which is already justified (clause III), or, in the
open case, produce justified closed derivations when combined with
such derivations (clause IV).

The reason for considering arbitrary extensions S′ of S, is to block
arguments for S-validity based on the underivability of certain formu-
las in S. Otherwise, for example, every derivation in L starting with
a propositional variable as an open assumption, should be counted
as S0-valid, because there is no closed derivation of a propositional
variable in S0. In this sense, the consideration of extensions S′ ≥ S

is a monotonicity condition for S-validity. S-valid derivations should
remain S-valid if one’s knowledge incorporated in the atomic system S

is increased.19 In fact, it is easy to show that we have a

Monotonicity theorem for S-validity
A derivation D in L(S) is S-valid iff for every S′ ≥ S, D is S′-valid.

Investigating the consequences of permitting non-monotonicity of S-
validity is beyond the scope of this paper.

As compared to computability, this definition relies on two crucial
insights:

(1) The distinction between closed and open derivations is primary
as compared to that between canonical and non-canonical derivations.
The latter plays the role of a subdistinction within closed derivations.
In the definition of S-validity, we proceed according to the concept tree

canonical

non-canonical
closed

open

whereas the definition of computability rests on

canonical

reducible

irreducible
non-canonical

In S-validity, closed canonical derivations are self-justifying, carrying
the burden of semantic justification. In computability, this holds of
non-canonical irreducible (= normal) derivations.20
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(2) The reduction clause for closed derivations (clause III) uses
an existence condition corresponding to weak normalization, which is
again due to the self-justifying character of closed canonical derivations.
Whereas in computability, self-justifying derivations are by definition
tied to the reducibility concept, viz. as derivations which are irreducible,
in S-validity self-justifying derivations are defined independently of
reducibility and are not trivially available when a derivation is not
reducible, which means that we have to postulate their existence as a
result of reduction.

For our case of implicational logic we can easily show the following:

Soundness theorem for S-validity For any S, every derivation in
L(S) is S-valid.

3.4. Validity and universal validity

Universal validity will be defined for derivations in L. Intuitively, a
derivation in L should be universally valid if it is S-valid for every
S. For that, we must interpret derivations of L in L(S). Let an S-
assignment v be a mapping of propositional variables to S-formulas.
Then for an L-derivation D, Dv is the L(S)-derivation resulting from
D by replacing every propositional variable with the corresponding S-
formula assigned to it via v. We can then say that D is valid in S

under v, if Dv is S-valid in the sense defined in the previous section. D
is then called valid in S if it is valid in S under every v, and it is called
universally valid, if it is valid in S for every S. Now the following can
be shown to hold:

Proposition Let D be a derivation in L. Then D is universally valid
iff D is S0-valid.

Proof We use the fact that when L is interpreted in L(S), every ex-
tension S′ ≥ S can be viewed as an interpretation of an extension of
S0 via an assignment.

Therefore, from now on we shall use the term “valid” terminologically
as meaning universal or S0-validity.

Then as a corollary of the soundness theorem for S-validity we have
the following:

Soundness theorem for validity Every derivation in L is valid.

As we have a corresponding theorem for computability (Proposi-
tion 2), and as we are so far only considering derivations in implicational
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logic, computability and validity coincide in the sense that any com-
putable derivation (i.e. any derivation in implicational logic) is a valid
derivation (i.e. a derivation in implicational logic) and vice versa. So
extensionally, computability and validity coincide. We can differentiate
between them when we consider more general notions of derivation
structures. Then we can give actual counterexamples which show that
computability and validity differ not only with respect to their contents,
but are in fact extensionally different concepts (see Section 6). This fur-
ther substantiates our claim that, contrary to Prawitz, computability
is at best a forerunner to validity but not a semantic concept in itself.

3.5. Validity concepts which imply normalizability: strict

and strong validity

Our basic semantic argument against computability and for validity was
that irreducible derivations should never be counted as valid without
further justification, i.e. the implication

irreducible implies valid

should not hold by definition. One might, however, expect that the
implication

valid implies normalizable

holds21. According to the present definition of validity, normalizability
is not implied by validity. If we consider intuitionistic logic with no
introduction rule for absurdity ⊥, then according to our definition

of validity, ⊥
D

is vacuously valid for any D with ⊥ as the only open

assumption, even if D is not normalizable. Now one might argue that
a semantic justification of open derivations in terms of substitution
with closed valid derivations should only be applied if the derivation
is reduced as far as possible, and not already in a situation, where D
can still be reduced. This means that the substitution justification in
clause (IV) of the definition of S-validity should be put into action only
if all possibilities of obtaining a justification by means of reduction are
exhausted, i.e., when the derivation in question is irreducible. Calling
this notion “strict S-validity” (or “strict validity” [simpliciter] for the
universal concept), we reach the following definition:

Definition of strict S-validity

(I) Every closed derivation in S is strictly S-valid.
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(II) A closed canonical derivation of A→B is strictly S-valid, if its
immediate subderivation is strictly S-valid.

(III) A closed non-canonical derivation is strictly S-valid, if it reduces
to a strictly S-valid canonical derivation.

(IV) An open reducible derivation is strictly S-valid, if it reduces to a
strictly S-valid derivation.

(V) An open irreducible derivation
A1 . . . An

D
B

, where all open as-

sumptions of D are among A1, . . . , An, is strictly S-valid, if for

every S′ ≥ S and for every list of closed and strictly S′-valid
Di

Ai

(1 ≤ i ≤ n),

D1 Dn

A1 . . . An

D
B

is strictly S′-valid.

The difference to the definition of S-validity is that clause (IV) is split
up into clauses (IV) and (V), where the new clause (IV) demands the
reduction of reducible open derivations, while the new clause (V) is
the old clause (IV), but applied only to the irreducible case. So the
conceptual tree of this definition is the following one

canonical

non-canonical
closed

reducible

irreducible
open

which contrasts sharply with computability, where the reducible/ir-
reducible distinction is a subdistinction of non-canonical derivations.

I speak of “strict” rather than “strong” S-validity to distinguish it
from Prawitz’s notion of strong validity, which corresponds to com-
putability, and from associations with strong normalization. Further-
more, I should like to reserve “strong S-validity” for a notion defined
below for which this association is justified. Strict S-validity as consid-
ered here is indeed a notion on the same scale as S-validity. It is obvious
that strict S-validity implies S-validity, but not necessarily vice versa.22

The corresponding universal notion of strict validity (simpliciter) is
defined as in the previous subsection (3.4).

Let us define (weak) normalizability inductively as follows:
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Definition of normalizability

(i) Every canonical derivation is normalizable if its immediate sub-
derivation is normalizable.

(ii) Every non-canonical normal derivation is normalizable.

(iii) Every non-canonical reducible derivation is normalizable, if it re-
duces to a normalizable derivation.

We can then formulate as a theorem that strict validity implies (weak)
normalizability.

Theorem Every strictly valid derivation is normalizable.

By strong S-validity we denote a further strengthened concept, which
implies strong normalization.

Definition of strong S-validity

(I) Every closed derivation in S is strongly S-valid.

(II) A closed canonical derivation of A→B is strongly S-valid, if its
immediate subderivation is strongly S-valid.

(III) A closed non-canonical derivation D is strongly S-valid, if D is
reducible, and if every D′, such that D ≻1 D′, is strongly S-valid.

(IV) An open reducible derivation D is strongly S-valid, if every D′,
such that D ≻1 D′, is strongly S-valid.

(V) An open irreducible derivation
A1 . . . An

D
B

, where all open as-

sumptions of D are among A1, . . . , An, is strongly S-valid, if for

every S′ ≥ S and for every list of closed and strongly S′-valid
Di

Ai

(1 ≤ i ≤ n),

D1 Dn

A1 . . . An

D
B

is strongly S′-valid.

Obviously, strong S-validity implies strict S-validity.
A corresponding universal notion of strong validity (simpliciter) is

defined as in the previous subsection (3.4). We extend the definition
of normalizability to a definition of strong normalizability by replacing
“if it reduces to” with “if every derivation it reduces to in a single step
is” in clause (iii) of this definition. In analogy with the case of strict
validity, we can show that strong validity implies strong normalizability.
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Theorem Every strongly valid derivation is strongly normalizable.

There are also soundness theorems for strict and strong [S-]validity.

Soundness theorems for strict and strong [S-]validity
All [S-]derivations are both strictly and strongly [S-]valid.

With strict and strong validity we have obtained concepts which are
semantically satisfying and at the same time imply weak and strong
normalization, respectively.

4. Validity and computability based on elimination rules

A central idea of proof-theoretic semantics is to consider one set of rules
as basic and justify derivations based on other rules with respect to this
first set of rules as valid. The standard approach is to consider the in-
troduction rules as primitive or “self-justifying” (Dummett). However,
as envisaged by Prawitz23, one might try an approach from the opposite
direction, starting with elimination inferences. Prawitz’s presentation
is very sketchy. I reconstruct it as follows:

According to the I-rule conception, if in
D
A

the formula A is the

conclusion of an introduction rule whose premiss derivation is S-valid,
then D is S-valid by definition. If A is not derived by an introduc-
tion rule, D is S-valid if it can be reduced to an S-valid derivation.
Analogously, one might postulate within an E-rule conception that, if
all applications of elimination rules to the end-formula A of D yield S-
valid derivations, then D is itself S-valid by definition. If no elimination
rule can be applied to A, then D is S-valid if it can be reduced to an
S-valid derivation. (Obviously, the latter case only arises when A is
atomic.)

This suggests the following definition.

Definition of S-validity based on elimination rules

(I) Every closed derivation in S is S-validE.

(II) A closed derivation
D

A→B
of A→B is S-validE, if for every S′ ≥ S

and every closed S′-validE
D′

A
, the (closed) derivation

D
A→B

D′

A
B

is S′-validE.

(III) A closed derivation
D
A

of an atomic formula A, which is not a

derivation in S, is S-validE, if it reduces to a derivation in S.
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(IV) An open derivation
A1 . . . An

D
B

, where all open assumptions of D

are among A1, . . . , An, is S-validE, if for every S′ ≥ S and for

every list of closed S′-validE
Di

Ai

(1 ≤ i ≤ n),

D1 Dn

A1 . . . An

D
B

is S′-

validE.

Clause (IV) is identical with clause (IV) in the definitions of S-validity
in Section 3.3, i.e., open assumptions in derivations are interpreted in
the same way as they were previously. Clauses (I) and (III) can be
conjoined to form the single clause

(I/III) A closed derivation
D
A

of an atomic formula A is S-validE, if it

reduces to a derivation in S.

Using the main reductions, it can again be shown that all derivations
in L(S) are S-validE .

As Prawitz remarks, this approach only works for logical constants
with “direct” elimination rules such as →, ∧ and ∀. There is no way to
extend this to constants like ∨ and ∃ with “indirect” elimination rules.

Corresponding to the procedure in Section 3.5, notions of strict S-
validityE and strong S-validityE can be defined such that strict S-
validityE implies weak normalizability and strong S-validityE implies
strong normalizability.24

There is also a corresponding notion of computability based on elim-
ination rules for the purpose of strong normalization proofs. Actually,
this notion is more common in today’s presentations than computabil-
ity based on introduction rules, as long as one does not have to deal
with ∃ or ∨. For example, Troelstra and Schwichtenberg (1996) define
computability as follows:

Definition of computability based on elimination rules

(1) For atomic A,
D
A

is computableE, if
D
A

is strongly normalizable.

(2)
D

A→B
is computableE, if for every computableE

D′

A
,

D
A→B

D′

A
B

is computableE.
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Similar to computability based on introduction rules, this notion
again has the feature that normal derivations — here even normalizable
ones — are considered computableE without further justification, which
is natural for proving normalization, but cannot be used for a semantic
foundation.

As a characteristic feature of the defintions of validityE and comput-
abilityE , it might be noted that the notion of reduction does not come
in until the atomic stage is reached (in the definition of computabilityE

in the form of a derivation being strongly normalizable). In the termi-
nology of terms, one might say that everything is played down to the
atomic level by means of term application, whereas the I-rule concep-
tions were based on what corresponds to term substitution.

The approach sketched here is not the only possible and perhaps
not even the most genuine way of putting elimination rules first. If one
really tried to dualize the I-rule approach by putting “deriving from”
rather than “deriving of” in front, one should develop ideas such as
the following: A closed derivation from A should be a derivation of

absurdity from A, and a derivation
A
D
B

should be justified, if, for every

closed valid derivation
B

D′ from B,

A
D
B

D′

is a closed valid derivation

from A, etc. This, however, would be in conflict with the asymmetry of
derivations, which usually have exactly one end formula, but possibly
more than one open assumption. So full dualization would perhaps
lead to some variant of a single-premiss/multiple-conclusion logic. A
genuine E-rule approach might be desirable if one wanted to logically
elaborate ideas like Popper’s falsificationism by establishing refutation
as the basis of reasoning.25

5. Derivation structures, justifications and arguments

The soundness theorems for derivations in L are interesting metalogical
facts. However, of a semantic notion of validity we expect more than
that. Validity should be a distinguishing feature, telling that some
derivations are valid while others are not. This is quite analogous to the
notion of truth which states that some propositions are true, whereas
others are not true. A result showing that every proposition is true,
making truth a general feature of propositions, would be considered
inadequate. Similarly, there should be a more general notion of deriva-
tion within which the notion of validity determines a subclass. It is easy
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to construct such derivations by simply combining arbitrary rules, not
only the rules which belong to L. For example, a single-step derivation
in L of the form

A→B
B

should turn out not to be valid, because for certain S ≥ S0, not every
closed S-valid derivation of A→B becomes a closed S-valid derivation
of B when B is appended at the end of this derivation.26 This means
that we must be able to talk about arbitrary derivations which are not
built according to a previously given set of rules. This is important
particularly if one would like to pose the question of completeness, i.e.
the question of whether every valid derivation can be represented in
L. As long as [S-]validity is only defined for L or L(S), completeness
is absolutely trivial. It simply says that every [S-]valid derivation is
a derivation, as there are no candidates for derivations which are not
in L or L(S). This problem does not arise when we are dealing with
computability and normalizability only. Computability, as an auxiliary
concept to prove normalization, is not necessarily a concept which aims
at classifying derivations as computable and non-computable, at least
not primarily. In the context of computability, we would simply like to
show that all derivations exhibit the property of being normalizable.

Since by “derivations” one normally understands derivations in a
given system, one should choose a different term for candidates of
derivations. I propose talking of derivation structures27. Hence, the
purpose of this section is to define a notion of a derivation structure
and of the [S-]validity of derivation structures in such a way that deriva-
tions in L or L(S) become special derivation structures generated by
particular rules of inference. Such a definition will also require general-
izing the notion of reducing a derivation, which in the standard case is
only defined for elimination inferences (in the implicational fragment
only modus ponens), provided its major premiss results from applying
an introduction rule. In principle, reductions should be definable for
derivation structures ending with any non-introduction inference.

In order to develop a notion of derivation in a generalized sense,
we make use of concepts from the theory of natural deduction and
extend them to arbitrary formula trees. A derivation structure over the
language of implicational logic (and possibly over atomic systems S as
well) can be defined as follows: A derivation structure is a formula
tree together with a discharge function. A discharge function for a
formula tree is a function which associates with every top formula28

a formula occurring below (on the same branch in the tree).29 The
intended reading is the following. Suppose A1, . . . , An and B occur in
the tree as follows:
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AA ¢¢

B
...

AA ¢¢
A1

AA ¢¢
An

where each Ai is the value of the discharge function f for top-formulas
Ci1, . . . , Cimi

, i.e. f(Ci1) = . . . = f(Cimi
) = Ai. Then B is inferred as

a conclusion from the premisses A1, . . . , An, where at this application,
for each i (1 ≤ i ≤ n), the assumptions Ci1, . . . , Cimi

in the derivation
of each Ai are discharged. This means that the step depicted can be
viewed as governed by the following inference rule:

[C11, . . . , C1m1
]

A1 . . .

[Cn1, . . . , Cnmn
]

An
R .

B

Conversely, an inference rule of the form R can be used to create a
step in a derivation structure, where the Cij above the Ai describe the
appropriate discharge function f(Ci1) = . . . = f(Cimi

) = Ai, where if
all Cij are missing there is no discharge function with value Ai, and
where in the absence of all Ai we are left with B as an axiom. In this
way, inference rules can be extracted from a derivation structure, and
we can check if a given set of inference rules allows us to generate this
derivation structure. This means that every occurrence of a formula
in a derivation structure uniquely determines a rule leading to it; in
particular, it uniquely determines the rule applied in the last step. This
rule is the most specific rule which just describes the derivation step in
question. Borrowing a term from the philosophy of science, it may be
called the minimal covering rule of this derivation step. We may then
define a generality order on rules, according to which rules which are
more general than the minimal covering rule allow one to generate this

derivation step as well. For example, the rule
[C]

A
B

may be considered

more general than the rule A
B

, as it not only allows one to pass from

A to B, but also to discharge the assumption C at the same time. So

if A
B

is the minimal covering rule of a step in a derivation structure,

this step may also be viewed as resulting from the application of
[C]

A
B

.
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The possible generality orders depend on various parameters. In the
given example, it is essential that “vacuous discharging” of assumptions
be permitted. This implies in particular that issues of substructural
logics may come into play. I cannot discuss these points here. In what
follows I shall apply the usual structural conventions common in natural
deduction, such as viewing sequences of assumptions [Ci1, . . . , Cimi

] as
sets, permitting vacuous discharging of assumptions etc.30

It should be emphasized that rules are understood as “concrete
rules” rather than rule schemata. Others (such as Prawitz 1973, p. 231)
would speak of instances of rules instead. Thus, when talking of modus
ponens

A→B A
B

in a general fashion, I would refer to this as a rule schema, whereas,
if modus ponens for particular formulas A and B is meant, I speak
of a rule. There are various options for capturing the notion of a rule
in relation to that of a derivation structure. In the terminology used
here, a rule of the form R might be applied in the last step of different
derivation structures. Such a derivation structure may be written as

[C11, . . . , C1m1
]

D1

A1 . . .

[Cn1, . . . , Cnmn
]

Dn

An

B

(for concrete D1, . . . ,Dn) and viewed as an application of R. This means
that even a (concrete, non-schematic) rule is uniform in the sense that
all applications follow the same pattern. A different view would be
to define a rule simply as a set of such patterns, meaning that the
applications of a rule are in no way structurally related.31

According to our definition,

A→B
B

is a (very simple) derivation structure. Therefore, once we have defined
S-validity and validity for derivation structures, we are in the position
to state that this derivation structure is not valid. Now why should

A→B
B

be invalid, whereas a corresponding instance

A→B A
B

of modus ponens is obviously valid? Both rules share the feature that
they are not (self-justifying) introduction rules. However, for modus
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ponens a reduction procedure is available which helps generate a valid
derivation when valid derivations of the premisses are given, whereas
for

A→B
B

no such procedure is at hand. So non-validity is due to the lack of
appropriate reductions. On the other hand, the one-step derivation
structure

A→(B→C)

B→(A→C)
(⋆)

should be counted as valid, even if it is not a derivation in L and no
standard reduction applies. Here, to ensure validity, we must add a new
reduction, which is different from the standard reduction. For example,
if we use the reduction step

D
A→(B→C)

B→(A→C)

reduces to

D
A→(B→C)

(1)

[A]

B→C

(2)

[B]

C (1)
A→C (2) ,

B→(A→C)

(⋆⋆)

then the derivation (⋆) would indeed turn out as valid according to our
definition of validity.32

So what needs to be changed is not so much the notion of validity
itself, but the notion of reduction the definition of validity refers to. This
fits in very well with the general idea of reduction. Reductions serve as
justifying procedures for non-canonical steps, i.e. for steps, which are
not self-justifying. When we consider validity for arbitrary derivation
structures, we should not only consider the topological structure of
derivations, but also generalize their reductions. This means that a
more appropriate concept would be that of a derivation structure com-
bined with a set of permitted reductions, which need not coincide with
the set of standard reductions used in the normalization of derivations
in L.

This is exactly the step taken by Prawitz (1973) and in his later
publications (see Prawitz 2005). I present it in modified form, where
the modifications do not only affect terminology. By an argument I
understand a pair 〈D,J 〉, where D is a derivation structure and J is
a justification consisting of a set of reductions. This conforms with our
previous talking of derivations in a particular system like L, as in such
a system certain standard reductions are available.

A reduction is a pair
D1 ⊲ D2 ,
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also read as
D1 reduces to D2 ,

which associates a derivation structure D2 with the derivation struc-
ture D1, such that D2 has the same end formula as D1 and no open
assumptions beyond those in D1 (but possibly less assumptions). We
say that this reduction is assigned to D1, or that it is a reduction for
D1. If it belongs to a justification J , we say that it is assigned to D1 via
J . If D1 is an application of a rule R, we call D1 ⊲ D2 a reduction for
R (remember that an application of a rule R is a derivation applying
this rule in its last step). By J (R) or JR we denote the subset of
J containing all reductions for R via J . Conversely, if jR is a set
of reductions for R, then we may compose some J as the union of
all jR for a given set of rules R. It is not expected that jR comprise
reductions for all potential applications of R; as a limiting case, jR

may even be empty. Furthermore, it is not excluded that there might
be more than one reduction for the same derivation structure. This
corresponds to the idea that there might be “alternative justifications”
for the same derivation structure. Reductions for introduction rules
are also not excluded in principle, although they are of no real use as
introduction rules are self-justifying without any need for reduction.
The only constraint we have to impose on a justification J is that it
be closed under substitution in the following sense.

Closure under substitution:
If the reduction

A1 . . . An

D
⊲

A1 . . . An

D′

is in J , then for any
D1

A1

, . . . ,
Dn

An

,

D1 Dn

A1 . . . An

D

⊲

D1 Dn

A1 . . . An

D′

is in J as well.

So a justification J in our sense is nothing but a proof reduction system,
for which closure under substitution holds.33 If J is a justification, then
J ′ is called an extension of J (J ′ ≥ J ) if J ′ results from J by adding
reductions such that closure under substitution continues to hold. In
other words, an extension of J is any superset of J which is itself a
justification.

This definition differs considerably from Prawitz’s, as he uses a so-
called “consistency” requirement for justifications which restricts the
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formation of extensions, and perhaps even disallows alternative reduc-
tions for the same derivation structure. As I see it, this consistency
requirement plays a role only if strong normalization is the aim, which
is not in the centre of interest when the semantic concept of validity
is defined. Adding reductions for the same derivation structure may
only be detrimental to strong validity, as this introduces new reduction
sequences not previously considered.

Normally, the set jR of reductions for R will be given schematically,
which means that it does not depend on the particular application of
R. When R is an instance of a uniform rule schema, the reductions for
R are often given schematically in the more general sense that they are
independent of the particular formula which occurs in R, as in the case
of the standard reduction for implication

mp :

A
D
B

A→B
D′

A
B

⊲

D′

A
D
B

.

(If we wanted to specialize this to particular formulas A and B, we
would write mpA→B.) However, this is not mandatory, and it is not
excluded that different applications of the same rule or applications
of different rules which are instances of the same rule schema receive
entirely different reductions. Only with respect to the substitution of
derivation structures for open assumptions are reductions schematic,
as required by closure under substitution.

A derivation structure D reduces in one step to a derivation structure
D′ (D ≻1 D′), if D′ results from D by finitely often applying a reduction
to a substructure of D. Here, a substructure of D is a subtree of D with
the discharge function f restricted to assumptions whose values under
f occur above the end formula of D. A derivation structure D reduces to
a derivation structure D′ (D º D′), if D′ is identical with D or results
from D by a finite number of one-step reductions. It is important to
note that reductions apply to derivation structures, given a justification
J . So we could more explicitly write D ºJ D′ rather than D º D′.
Reductions cannot change or generate justifications, which means that
a notion such as 〈D,J 〉 º 〈D′,J ′〉 is not defined.

Let L∗(S) be the logic of arguments over S, which may be identified
with the set of arguments 〈D,J 〉, where the derivation structure D is
built up from implicational formulas over formulas of S as atoms, and
J is a justification whose reductions are defined for such derivation
structures. As a limiting case, we again have L∗(S0), in short L∗, which
uses only propositional variables as atoms. Standard implicational logic
L would then be obtained by considering the set of all 〈D,J 〉 such that
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D is a derivation in standard implicational logic, whereas J is fixed for
all derivations and comprises exactly the standard reductions.

Then the S-validity of arguments 〈D,J 〉, which is the same as the
S-validity of derivation structures D with respect to justifications J ,
is defined as follows:

Definition of S-validity for arguments

(I) Every closed derivation in S is S-valid with respect to J (for every
J ).

(II) A closed derivation structure

A
D
B

A→B

is S-valid with respect to

J , if its immediate substructure
A
D
B

is S-valid with respect to J .

(III) A closed non-canonical derivation structure is S-valid with respect
to J , if it reduces, with respect to J , to a canonical derivation
structure, which is S-valid with respect to J .

(IV) An open derivation structure
A1 . . . An

D
B

, where all open assump-

tions of D are among A1, . . . , An, is S-valid with respect to J ,
if for every S′ ≥ S and J ′ ≥ J , and for every list of closed

derivation structures
Di

Ai

(1 ≤ i ≤ n), which are S′-valid with

respect to J ′,

D1 Dn

A1 . . . An

D
B

is S′-valid with respect to J ′.34

In clause (IV), the reason for considering extensions J ′ ≥ J of justi-
fications, in addition to extensions S′ ≥ S of atomic systems, is again,
in my view, a monotonicity constraint. It is obvious that the following
holds:

Monotonicity of S-validity (for arguments)
An argument 〈D,J 〉 in L∗(S) is S-valid iff for every S′ ≥ S and J ′ ≥
J , 〈D,J ′〉 is S′-valid.

The corresponding universal concept is then defined as follows: If
v is an assignment of S-formulas to propositional variables, then for
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a J comprising reductions for arguments in L∗, J v is defined as the
set of reductions which acts on derivations Dv in the same way as J
acts on D (i.e., J v is the homomorphic image of J under v). Then an
argument 〈D,J 〉 in L∗ is defined universally valid iff for every S and
every v, 〈Dv,J v〉 is S-valid. Again we can prove:

Proposition Let 〈D,J 〉 be in L∗. Then 〈D,J 〉 is universally valid iff
〈D,J 〉 is S0-valid.

This means that we can continue to use the term “valid” (now with
respect to some J ) interchangeably for both universal and S0-validity.

It is obvious how notions of strict S-validity for L∗(S) and of strict
validity for L∗ can be defined. We can also prove (weak) normalization
from strict validity. However, as mentioned above, for strong validity,
problems arise with our unrestricted notions of justifications J and
extensions J ′ ≥ J .

Suppose J is the set of standard reductions. Then it is obvious that
all derivations in L(S) are valid arguments with respect to J , and all
derivations in L are universally valid with respect to J . So the “new”
concept of validity is a generalization of the “old” concept, which yields
the same results for derivations in standard implicational logic.

The basic difference between derivations in the old sense and argu-
ments is, of course, that soundness no longer holds in every case; it
simply depends on the justifications provided, as was intended by the
introduction of the general notion of an argument.

Returning to our previous example, we can now specify what is
meant by the validity of the one-step derivation

A→(B→C)
.

B→(A→C)
(⋆)

This derivation is obviously valid with respect to the standard reduc-
tions of implicational logic extended with the reduction given by (⋆⋆)35.
We may ask whether completeness of intuitionistic logic, or at least of
minimal or positive implicational logic holds in the sense that for any
derivation structure, which can be justified as valid (i.e., which is valid
with respect to some justification), a derivation in L of its end formula
from its open assumption formulas can be found. That this is indeed
the case was posed by Prawitz as a conjecture (1973, p. 246), without
his being able to indicate so far how it might be proved.

In addition to validity in the sense sketched here, Prawitz also defines
a notion of computability for arguments, which he (unfortunately) calls
strong validity. It is not surprising that he is able to establish strong
normalization of minimal logic with respect to the general context
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of arbitrary justifications, given a notion of “consistent” extensions
of justifications. I cannot present this here. From my point of view,
his general computability concept suffers from the same defect as did
the less general computability concept dealt with in Sections 3 and 4.
Again, Prawitz has to consider irreducible non-canonical arguments as
strongly valid, the only difference being that irreducibility is now taken
with respect to a justification J , which is not confined to the standard
reductions (1973, p. 239; 1974, p. 74).

6. The relationship between computability, validity and
normalizability: counterexamples

In Section 3, we claimed that computability and validity are crucially
different, particularly by arguing that normal derivations need to be
justified semantically. However, at that stage we were not able to give
counterexamples establishing this difference, as extensionally the con-
cepts were identical, comprising all derivations in L. Now with respect
to the generalized concept of an argument, we can provide counterex-
amples.

We understand the computability of an argument 〈D,J 〉, i.e. the
computability of D with respect to a justification J , in the following
sense, which leads to weak normalization, and compare it with the
validity of D with respect to J .

Definition of (weak) computability of arguments

(i) A derivation structure of the form

[A]

D
B

A→B

is computable with re-

spect to J , if for every J ′ ≥ J and every D′

A
computable with

respect to J ′,

D′

A
D
B

is computable with respect to J ′.

(ii) If a derivation structure D is not in I-form and is normal (=
irreducible) with respect to J , then it is computable with respect
to J .

(iii) If a derivation is not in I-form and is not normal with respect
to J , then D is computable with respect to J , if D reduces with
respect to J to a D′ which is computable.
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Counterexample 1: Computability of 〈D,J 〉 does not imply

validity of 〈D,J 〉

We construct an argument 〈D,J 〉 in such a way that 〈D,J 〉 is closed,
non-canonical and normal, and therefore computable, but not valid.
Choose a closed non-canonical derivation structure D ending with a
non-atomic formula, e.g.,

(1)

[B→C]
(→I)(1)

(B→C)→(B→C)
.

B→C

Choose J in such a way that with D no reduction is associated (e.g.,
take J to be empty). Then 〈D,J 〉 is computable, because it is irre-
ducible. However, 〈D,J 〉 is not valid, because it cannot, as required
for validity, be reduced to a canonical derivation structure, since no
reduction for D is available in J .

Counterexample 2: Validity of 〈D,J 〉 does not imply

computability of 〈D,J 〉

We consider 〈⊥,→〉-logic, i.e. a system with a logical constant ⊥, for
which there is no introduction rule. In such a system, the derivation

⊥
A

, and therefore

(1)

[⊥]

A (1)
⊥→A

is valid with respect to any J . Now for

some B, let J be chosen in such a way that B
⊥

is irreducible. Let J

furthermore be chosen such that
B
⊥
A

reduces to itself with respect to

J , i.e., the reduction for
B
⊥
A

is non-terminating. Then

(1)

[⊥]

A (1)
⊥→A

is not

computable with respect to J , because for computable B
⊥

,
B
⊥
A

is not

computable (with respect to J ).36

It can easily be seen that these counterexamples also hold for strict
validity instead of validity. Furthermore, they hold for strong validity,
when computability is defined in the strong sense (demanding in clause
(iii) that all one-step reductions lead to computable derivations).
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It might be added that Counterexample 1 is at the same time a
counterexample showing that normalizability does not imply validity.37

Similarly, Counterexample 2 shows that normalizability does not im-
ply computability. The latter is not surprising, as computability is a
stronger concept than normalizability, using infinite branching when
quantifying over substitution instances of open derivation structures.

7. Logical consequence and the validity of inference rules

It is natural that the S-validity of an inference rule

A1 . . . An

A

with respect to a justification J , should mean that the one-step deriva-
tion structure of the same form is S-valid with respect to J . We
can even define the S-validity of an inference rule which allows the
discharging of assumptions, such as the generalized rule

[C11, . . . , C1m1
]

A1 . . .

[Cn1, . . . , Cnmn
]

An .
B

This rule is called S-valid with respect to J , if for all S ≥ S0, all

J ′ ≥ J , and every list of derivation structures

Ci1 . . . , Cimi

Di

Ai

(1 ≤

i ≤ n), which are S-valid with respect to J ′, the derivation structure

D1 . . . Dn

B
is S-valid with respect to J ′.

This gives rise to a corresponding notion of consequence.38 Instead
of saying that the rule

A1 . . . An

A

is S-valid with respect to J , we may say that A is a consequence of
A1, . . . , An with respect to S and J (A1, . . . , An |=S,J A); if we consider
universal validity with respect to J , we may speak of consequence
with respect to J (A1, . . . , An |=J A); and finally, if there is some
J such that universal validity holds for J , then we may speak of
logical consequence (A1, . . . , An |= A). Corresponding to the case of
rules discharging assumptions, we obtain a notion of consequence

Γ1 ⇒ A1, . . . ,Γn ⇒ An |=S,J A
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for sets of formulas Γi. This is to express that the rule

[Γ1]

A1 . . .

[Γn]

An

A

is S-valid with respect to J , i.e., we have some notion of implication
in the antecedent of |=, which is independent of whether the logical
constant of implication is available in our language.

This goes crucially beyond any classical notion of consequence. In
proof-theoretic semantics, we use (mostly implicitly) some structural
notion of implication throughout, which is due to the fact that rules
can discharge assumptions. As a structural concept it is comparable
to the comma as a structural conjunction. This structural notion of
implication (“⇒ ” in my terminology) has been used in generalized
concepts of inference rules. It is also important for the formulation of a
basic sequent calculus in theories of definitional reflection (see Hallnäs
1991, 2005, Schroeder-Heister 1991b, 1993).

It should be emphasized that it is extremely misleading to write a
valid rule or consequence as

A1 . . . An j
A

with j being understood as the justification of the step from A1, . . . , An

to A. In simple (or “direct”) cases like modus ponens

A→B A mp
B

the reduction mp (which is actually a reduction schema) is indeed a
justification of this single step. However, in a case like

A→(B→C)
j

B→(A→C)

with j being the reduction given by (⋆⋆), j alone does not suffice to
justify this step, as the result of using j, given a valid derivation of the
premiss A→(B→C), uses modus ponens. So the result of applying j is
valid only if the modus ponens reduction mp is available. This again
means that the step

A→(B→C)

B→(A→C)

is justified only with respect to some J , where J comprises both j and
the modus ponens reduction mp. Thus

A→(B→C)
{j, mp}

B→(A→C)
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or
A→(B→C) |={j,mp} B→(A→C)

would be an appropriate notation. What is involved in the justification
of single inference steps is often a whole reduction system, not a single
justifying reduction.

This makes proof-theoretic consequence differ from constructive con-
sequence according to which

A1 . . . An

A

might be defined as valid with respect to a constructive function f , if
f transforms valid arguments of the premisses A1, . . . , An into a valid
argument of the conclusion A. Actually, it is not always possible to
extract such a constructive function from our proof reduction system,
as a reduction system J serving as a justification need not be determin-
istic, which means that it merely generates a constructive relation on
arguments. In any case, the notion of a justification as a proof reduction
system presents an intensional analysis of the transformation of argu-
ments which is more fine-grained and more specific than approaches
based on the abstract notion of a constructive function.

Notes

1 See Muskens et al. (1997), Blamey (2002) and the references therein.
2 First in print in Schroeder-Heister (1991c).
3 See especially Brandom (2000), where the relationship to Dummett’s and Gen-

tzen’s approaches is expressed very clearly.
4 Actually, the term “inversion principle” was coined by Lorenzen.
5 For similar reasons I do not deal with projects like that of Tennant, who com-

bines an anti-realist meaning theory with an alternative approach to relevant logic
(see Tennant 1987, 1997).

6 In his later writings, in which he focuses on semantic aspects, Prawitz does not
explicitly return to the relationship with normalization.

7 See Hallnäs (1991, 2005), Hallnäs and Schroeder-Heister (1990, 1991), Schroeder-
Heister (1991a, 1992, 1993, 1994b).

8 Tait (2005) presents some ideas on how to deal with classical logic in proof-
theoretic semantics.

9 In addition to Prawitz (1965), the monographs by Tennant (1978), Troelstra
and Schwichtenberg (1996) and Negri and von Plato (2001b) can be recommended
as introductory references.

10 See especially Dummett (1991).
11 Named following Lorenzen (1955).
12 Quotes by Gentzen.
13 See the recent paper by Joachimski and Matthes (2003), which contains many

references to the literature.
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14 More precisely: induction given by the operator associating with a set of deriva-
tions X of a formula the set of those derivations which reduce in one step to a
derivation in X.

15 See Prawitz (1971), p. 289; Prawitz (1973), p. 238.
16 In other renderings of computability, all normal derivations are computable by

definition, not only those which are not in I-form. For the definition of computability
chosen here, this follows as a lemma.

17 It is bound to fail due to the impredicative character of the substitution lemma,
when it is turned into a definition. “Impredicative” here means that computability
is defined by quantifying over all substitution instances obtained by substituting
arbitrary computable derivations.

18 In the context of natural deduction derivations it is called the “fundamental
assumption”, see Dummett (1991), p. 254.

19 I suppose that Prawitz had something similar in mind (see Prawitz 1971, p. 276).
In later papers he ceases to consider extensions S′ ≥ S, considering only extensions
of justifying procedures (see Section 5).

20 This does not mean that the S-validity of closed and of open derivations is
defined separately. These two cases occur intertwined in the same derivation. This
is due to the fact that the immediate subderivation of a closed canonical derivation
of A→B is a derivation of B from the assumption A.

21 This is not exactly the converse “valid implies normal”, which is, of course,
wrong.

22 Again some emphasis has to be placed on “necessarily”, as in the case of intu-
itionistic logic, all derivations are strictly S-valid, i.e., strict S-validity and S validity
coincide in this case.

23 Prawitz (1971), p. 289f. [= appendix A.2].
24 However, in the case of strict S-validityE (but not in the case of strong S-

validityE), we would have to distinguish between reducible and irreducible deriva-
tions not only in the open case, but also in the closed case, i.e., clause (II) should

only be applicable if
D

A→B
has been reduced as far as possible, meaning that it

is irreducible. Otherwise, we cannot prove that
D

A→B
is weakly normalizable given

that
D

A→B

D′

A

B

is weakly normalizable. (In the case of strong normalizability this

is trivial.)
25 Dummett (1991, Ch. 13, p. 283–286) attempts to develop some kind of a “gen-

uine” E-rule approach (within the standard setting of derivations with multiple
premisses and single conclusions).

26 For example, if A and B are propositional variables, we may choose S as having
no axiom and A ⇒ B as the only inference rule. Then there is an S-valid derivation
of A→B, but no S-valid derivation of B.

27 Prawitz (1973) speaks of “argument schemata” (with arguments being closed
argument schemata), Prawitz (2005) of “argument skeletons” (with arguments being
argument skeletons together with justifications).

28 More precisely, we should talk of top formula occurrences. I do not always
terminologically distinguish between formulas and their occurrences. It will always
be clear from the context what is meant.

Validity-Concepts06.tex; 16/06/2009; 16:53; p.40



Validity Concepts in Proof-Theoretic Semantics 41

29 The use of discharge functions was introduced by Prawitz (1965, p. 20–31). Here
it is used in the generalized form as proposed in Schroeder-Heister (1984a).

30 A corresponding notion of rule and derivation structure is spelled out in detail
in Schroeder-Heister (1984a,b).

31 Prawitz 1973 (p. 31) follows such a general approach, calling (〈D1, . . . ,Dn〉, A)

an inference (= rule instance), whenever
D1 . . . Dn

A
is a derivation structure.

32 Step (⋆) is reduced not directly, but indirectly by invoking modus ponens in the
reduction result. See the final remarks in Section 7.

33 Technically, this proof reduction system can be viewed as a higher-order term
rewriting system (it is of higher order due to the assumption structure corresponding
to λ-abstraction).

34 See Prawitz (1973, p. 236), (1974, p. 73), (2005). Prawitz does not consider
extensions of atomic systems S.

35 It is not valid with respect to (⋆⋆) alone — see the final remarks in Section 7.

36 The intuitive reason for this behaviour is the following:
⊥
A

is always valid as

there is no closed valid derivation of ⊥. However, for open normal derivations
B

⊥
,

the reduction of
B

⊥
A

can be made non-terminating by means of an appropriate J .

(Note that we do not choose
B

⊥
to be simply ⊥, because then the example would

not work for strict validity, as the reduction for
⊥
A

would not terminate.)

37 Actually, normalizability is implied by computability, but this fact is not used
in the counterexample.

38 See also Prawitz (1985).
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application à l’élimination des coupures dans l’analyse et la théorie des types’, in
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