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Abstract

This paper deals with the problem of giving a principled characteriza-
tion of the class of logical constants. According to the so-called Tarski-Sher
thesis, an operation is logical iff it is invariant under permutation. In the
model-theoretic tradition, this criterion has been widely accepted as giving a
necessary condition for an operation to be logical. But it has been also widely
criticized on the account that it counts too many operations as logical, failing
thus to provide a sufficient condition.

Our aim is to solve this problem of overgeneration by modifying the in-
variance criterion. We introduce a general notion of invariance under a sim-
ilarity relation and present the connection between similarity relations and
classes of invariant operations. The next task is to isolate a similarity relation
well-suited for a definition of logicality. We argue that the standard argu-
ments in favor of invariance under permutation, which rely on the generality
and the formality of logic, should be modified. The revised arguments are
shown to support an alternative to Tarski’s criterion, according to which an
operation is logical iff it is invariant under potential isomorphism.
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On the traditional semantic account of logical consequence, a sentence φ is
said to follow from a set Γ of sentences iff, for every uniform reinterpretation
of the extra-logical expressions in Γ and φ, if all sentences in Γ are true, then
φ is true. What is nice with this semantic definition of logical consequence is
that it is purely extensional. It operates a reduction of logical truth to some kind
of general truth, thanks to the quantification over all interpretations, without any
need to appeal to metaphysical notions of possibility or necessity. What is more
problematic though is that it rests crucially on the distinction between logical and
extra-logical expressions. To get the account of logical consequence right, it is thus
mandatory to know where the line should be drawn, unless one is ready to accept
that we have nothing but a relative concept of logical entailment.

We aim here at giving a principled characterization of the class of (possible de-
notations for) logical constants. The first section is devoted to a presentation of the
standard semantic approach to the problem in terms of invariance. In agreement
with equally standard objections in the literature, we argue that Tarski’s thesis, ac-
cording to which permutation invariance is a necessary and sufficient condition for
logicality, should be revised because it overgenerates by counting too many oper-
ations as logical. The second section introduces a general framework to discuss
the connection between notions of similarity between structures and the operators
which are invariant under these notions of similarity. The problem is to find suitable
constraints on the similarity relations to be used for a characterization of logicality.
This is done in the third section. We introduce two main constraints, closure under
definability and absoluteness, which are shown to yield a nice map of the landscape
of all available similarity relations. These two constraints provide the basis of two
arguments in favor of a certain revision of Tarski’s thesis. These arguments are
given in the fourth section, which is devoted to an evaluation of the consequences
of such a revision upon the relationship between logic and mathematics.

1 The semantic road to logicality

1.1 Characterizing logical constants

Some demarcations of the class of logical constants will clearly not do. The fol-
lowing example by Etchemendy (1999) makes clearly the point:

(1) If Leslie was a president of the US, then Leslie was a man.

Let us assume furthermore that “if ... then ”, “president of the US” and “man”
belong to the logical vocabulary, and that “Leslie” does not. In this case, (1) is a
logical truth iff the following is true:

(2) For all x, if x was a president of the US, then x was a man.

(2) happens to be true, due to very contigent features of the history of the United
States. Therefore, (1) is a logical truth, relative to the chosen demarcation. But this
choice is clearly inadequate, because it makes the property of being a logical truth
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depend on substantive facts about the world which have nothing to do with logic.
Etchemendy’s point is more far-reaching than this example might suggest. He
thinks that no choice of logical expressions will do, because it is congenial to the
semantic definition of logical consequence that logical truth is defined in terms of
some general truths. For example,

(3) If John is tall, then Greg is tall.

is a logical truth iff, for the standard choice of logical constants, the following is
true:

(4) ∀x, y∀P (Px→ Py)

Intuitively, (3) is not logically true. But (4) might be true if our background set
theory was so weak that it would fail to provide enough extensions for predicates.

Now, this point can indeed be granted to Etchemendy. But, as remarked by
Shapiro (1998), this just shows that the adequacy of the demarcation makes sense
only with respect to the setting in which the formalization is to take place. In
this respect, no absolute foundation of logical truth is achieved, but, inside a given
setting, a satisfactory account of the realm of logical truths, as opposed to empirical
or mathematical truths, might be nonetheless possible.

What would be a satisfactory account? Something more than “getting the def-
inition of logical consequence right” is at stake. A raw list of expressions may be
such that taking exactly these expressions as logical would result in a definition of
logical consequence matching our intuitions. It will not be sufficient as an expla-
nation of logical truth. We do want to know both which sentences are logically true
and what makes them so. Therefore, the demarcation is to be attained through a
conceptual analysis of what it is to be logical. The story should go roughly like this.
Logic being what it is, logical expressions have to enjoy some special properties.
Then the explanation of the distinctive nature of logical truth hinges on the fact
that only expressions with these properties should occur essentially in a sentence
for it to be logically true. In this case, something more than extensional adequacy
would indeed be achieved: the formalization would provide an explanation of what
makes for the difference between the realm of logic and other kinds of truths.

Various strategies have been proposed to tackle this issue. Some of them do
not fit into the model-theoretic picture. This applies in particular to proof-theoretic
approaches and claims like “an expression is logical if its use is entirely determined
by rules of a certain form”.1 Other solutions are pragmatic rather than stricto sensu
semantic; given some nice model-theoretic properties of logics, the set of logi-
cal constants is taken to be the largest set compatible with these.2 This paper is
devoted to a discussion of the purely semantic route. The aim is to provide a char-
acterization of logicality as a property of semantic values available as denotations

1Dummett (1991) or Došen (1994) are good examples.
2Quine’s (1986) insistence on completeness exemplifies such a pragmatic state of mind.
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for logical expressions. To put it bluntly, what is so special about the interpreta-
tion of logical constants that forces us to keep them fixed when testing for logical
entailment?

1.2 Tarski’s thesis

The standard semantic account of logicality is couched in terms of invariance. Let
us see what the claim exactly is, how it can be justified, and what are its conse-
quences.

Tarski’s thesis. Given a set M , an operation QM acting on M is logical iff it is
invariant under all permutations.

To make sense of this thesis, quantifiers need to be viewed as higher-order
predicates: they yield truth values when applied to predicate extensions. A
unary monadic quantifier is thus interpreted on a domain M by an operation
QM : ℘(M) → {T, F}. QM is said to be invariant under permutation iff for
all permutations π, for all A ⊆ M , QM (π(A)) = QM (A). For example, we can
interpret ∃ on a domain M by an operation Q∃ defined by Q∃(A) = 1 if A 6= ∅,
and Q∃(A) = 0 if A = ∅ (where A ⊆ M ). Now, let π be a permutation, the
image π(A) of a non-empty subset A will always be another non-empty subset,
and the empty set will always be mapped to the empty set. So ∃ is invariant under
permutation, hence logical. On the contrary, let a and b be two elements of M , the
operation Qa,b defined by Qa,b(A) = T iff a ∈ A or b ∈ A grants a special role
to a and b. It is not invariant under permutation, and it should not count as logical,
because it is sensitive to the difference between a and b on the one hand and the
other objects in the domain on the other hand.

As it stands, the claim about logical constants is underspecified: Tarski’s thesis
is just a thesis about logical operations. We still need a story about the logical sym-
bols themselves. Sher (1991) suggests the following connection between logicality
as a property of operations and logicality as a property of interpreted symbols:

Tarski-Sher thesis. An interpreted symbol Q is logical iff :

• Q is of type level at most 2 (i.e. Q is of the same syntactic type of a proposi-
tional connective or of a first-order quantifier).

• Q is interpreted by an operator Q associating to each domain M an opera-
tion Q(M) of the appropriate semantic type.

• Q is invariant under bijections across domains.

The shift from Tarski’s thesis about logical operations to the Tarski-Sher3 thesis
about logical symbols is not as trivial as it may seem. The type restriction could

3“Tarski’s thesis” and the “Tarski-Sher thesis” are sometimes used synonymously in the literature.
It is clear that the core of the Tarski-Sher thesis is Tarski’s thesis. Since the idea of permutation
invariance was put forward by Tarski as early as 1966, it seems fair to attribute this thesis to Tarski.
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be challenged: why should we not deal with higher-order languages and higher-
order logical constants? The fact that it is sufficient for a symbol to be logical
that its denotation be logical could be challenged as well. First, it has been argued
that a logical symbol should have something like a logical intension, in a sense
which is not so easy to make precise. Second, it has also been argued that a logical
symbol should have a uniform logical denotation : logical operations exhibiting a
wildly heterogenous behavior across domains of different size should be banned.
Notwithstanding the interest of these problems,4 we shall focus here on what we
take to be the central issue concerning the Tarski-Sher thesis, namely Tarski’s thesis
itself. We shall first be concerned with ex ante justifications for the thesis, before
discussing, ex post, the adequacy of its consequences with respect to what logic is.

Invariance under permutation can be justified along two different lines. They
are often confused in the literature. However, from a conceptual point of view, it
is worth distinguishing them. The first one, endorsed by Tarski (1986), is based
on a conceptual analysis of the generality of logic. The second one tries to capture
the idea that logic is formal. It can be found in Sher (1991) as well as in previous
mathematical works on generalized quantifiers (Mostowski 1957).

The idea that a theory can be characterized by the class of transformations
under which it is invariant was successfully proposed by Felix Klein in order to
unify and classify the field of geometry. The notions of Euclidean geometry are
invariant under transformations of space that preserve distance (the isometric trans-
formations) and more generally under those that preserve ratios of distances (the
so-called similarity transformations). The point of the Erlangen Program is to
turn this into a definition: the study of Euclidean geometry is just the study of the
notions that are invariant under similarity transformations The class of transforma-
tions under consideration can be narrowed down or widened up. For example, if
all transformations which preserve collinearity – similarity transformations are just
a subclass of these – are allowed, this will characterize a more general geometry,
namely affine geometry. Affine geometry is more general in the sense that it can
distinguish fewer objects (all triangles are the same) and has fewer theorems. The
next move is to extend this beyond geometry and to assume that it is relevant to try
such a characterization for all kinds of theories, as has actually also been done in
the field of physics. Then, a characterization of logic will come up as a result of
the following argument:

On the other hand, Tarski does not consider explicitly the question of logical symbols, which was
addressed in Sher’s book. Since there are many reasons, even maybe some good ones, to accept
Tarski’s thesis while rejecting Sher’s view, it seems equally fair to us to isolate explicitly a “Tarski-
Sher thesis” about logical symbols.

4See Bonnay (2006) for a more detailed discussion of these issues and how they relate to the one
issue on which we focus here, namely overgeneration.
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The generality argument
G.1 The distinctive feature of logic among other theories is that it is the

most general theory one can think of.
G.2 The bigger the group of transformations associated with a theory, the

more general the theory.
G.3 The biggest group of transformations is the class of all permutations.

The logical notions are the notions invariant under permutations.

The idea of G.1 is to characterize logic through its position in our conceptual
scheme. Logical notions can be used in any other field, logical laws are used in
any axiomatic theory, so that none of these should come with any restriction on
the kind of objects to which they apply. We have seen that in the setting of the
Erlangen Program, generality is gained by enlarging the family of transformations:
this is the point of G.2. Now a characterization of logic is at hand: it ensues from an
answer to the question, what is the biggest group of transformations? The answer,
provided by G.3, is Tarski’s answer (1986): it is just the class of all permutations
of the universe onto itself. Note that G.3 is as secure as a mathematical fact can
be: it follows from the definition of a transformation group that the biggest group
of transformation acting on a set is the group of all one-one functions onto this
set. Geometries are characterized by transformations respecting some structure of
space, be it measure ratios or collinearity. Abstracting from any kind of special
feature of the universe in order to get to the most general notions, we just end up
with all permutations.

The other justification by Sher and others rests on different assumptions:
The formality argument

F.1 Logic deals with formal notions, as opposed to non formal ones.
F.2 Formal notions are those which are insensitive to arbitrary switchings

of objects.
F.3 A notion is insensitive to arbitrary switching of objects iff it is invari-

ant under permutation

The logical notions are the notions invariant under permutation.

By contrast with G.1, F.1 is an ontological claim. Logic is characterized di-
rectly in terms of the kind of objects it deals with. However, logic, in some sense,
is not about any special kind of objects; it is topic neutral. Therefore, it can just be
said to be about the formal features of reality, those that make sense for every kind
of objects or properties. Next, an account has to be provided of what it is to be
formal. G.2 suggests that non formal properties5, as opposed to formal ones, are

5Properties which are not formal might be dubbed ‘empirical’. However, this does not seem
completely correct. ‘x is a God’ is certainly not a formal property, but one might be reluctant to
consider it to be an empirical property. This is the reason why in F.1 we say that ‘Logic deals with
formal notions, as opposed to non formal ones’ rather than ‘as opposed to empirical ones’.
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sensitive to the identity of objects. For example, “red” is an non formal, empirical
predicate, and it distinguishes between things which are red and things which are
not. If it applies to some object, say this apple, and if the object under considera-
tion is arbitrarily replaced by another one, say this chair, there is no reason why it
should still apply to it (the apple’s being red does not force the chair’s being red).
On the contrary, a formal property should not distinguish among objects. It should
be preserved under arbitrary switchings. But then – this is G.3 – a permutation
precisely performs such switchings. Therefore, formal properties can be singled
out as being precisely those that are invariant under all permutations.

Both arguments share a common structure: they start with an intuition about
what it means to be logical (G.1 and F.1), then they push forward the analysis of
this intuition by formalizing it (G.2 followed by G.3, F.2 followed by F.3). Both
arguments converge towards permutation invariance, and the convergence is non-
trivial. As a matter of fact, the intuitive starting points are different, but both argu-
ments conclude on the basis of the formalization of these intuitions that invariance
under permutation is the right criterion to characterize logicality. This agreement
suggests that Tarski’s thesis is conceptually well-motivated.6

1.3 The overgeneration problem

What kind of notions are logical on this account? The standard quantifiers of first-
order logic (FOL) are interpreted by such invariant operations. But there are a
lot of new quantifiers that turn out to be logical, and the realm of permutation
invariant operations goes far beyond FOL. Let Qmost be a monadic quantifer such
thatQmostx φ(x) is true in a model iff most of the objects in the model satisfy φ(x).
The operator Qmost is invariant under permutations, but it is not definable in FOL.
The same goes for the set-theoretic quantifier Q>ℵ0 (“there are uncountably many
objects such that”). It is interpreted by an operator Q>ℵ0 which associates with
every set M an operation Q>ℵ0 (M) yielding the value “true” iff its argument is
an uncountable set. Q>ℵ0 is invariant under permutation, but it is not definable in
FOL, and actually, the downward Löwenheim-Skolem property will fail for any
logic containing Q>ℵ0 .

We have just given some examples of logical quantifiers. But it is possible to
give a much more accurate account of the nature of logic, once Tarski’s thesis has
been accepted. Let us draw a comparison with propositional calculus (PC). The
functional completeness theorem for PC states that every truth-function is definable
using the standard logical constants of PC, say ∧, ∨,→ and ¬. Therefore, PC is
all there is to truth-functional logic. There is no such standard result for FOL, es-
sentially because there is no standard answer to what FOL is about, which would
be similar to the claim that PC is about truth-functions. The Tarski-Sher thesis
does bring an answer to this question, and it becomes possible to ask whether a
logic – FOL itself or an extension of FOL – is functionaly complete with respect

6A thorough discussion of the relationships between this kind of arguments and more traditional
views about logic can be found in MacFarlane (2000).
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to what FOL is about. We are thus interested in picking a logical language en-
joying functional completeness with respect to permutation invariant operations.
More precisely, any appropriate choice of syntax and logical expressions should be
such that, on the one hand logical expressions are permutation invariant, and, on
the other hand, every permutation invariant operation is definable in purely logical
terms. This can be done in infinitary logic. We shall use the standard notation Lκ,λ,
where κ and λ are cardinals. Lκ,λ is the logic with the same basic connectives as
FOL in which conjunctions of fewer than κ-sentences are allowed, and quantifica-
tion over sets of fewer than λ variables are allowed. Lω,ω is just FOL. ∞ indicates
that sets of arbitrary size are allowed. L∞,∞ is therefore the strongest infinitary
logic, whose sentences are built out of arbitrary big sets (proper classes are not
allowed) of sentences and variables.

Theorem 1 (McGee, 1996). An operation QM acting on a domain M is invariant
under permutation iff it is definable in L∞,∞.

So on the Tarski-Sher Thesis, logic is quite powerful, at least as powerful as
L∞,∞.7 And here comes the criticism: it might be actually too powerful, or more
powerful than logic really is.

On Tarski’s criterion, the quantifier Qℵ1 , which tests whether there are exactly
ℵ1 objects satisfying a formula, is logical. Intuitively, something has gone wrong.
Being of size ℵ1 is a notion which belongs to set theory, not to logic. As pointed
out by Feferman (1999), an unfortunate consequence is that logical notions will not
be robust with respect to the background set theory. For example, the conditions
of application of Qℵ1 highly depend on set-theoretic facts about higher infinites.
Being of size ℵ1 is not an absolute notion, its meaning depends on which sets exist:
a given set can be uncountable in a countable modelM of ZFC, because there is
no bijection in |M| between this set and ℵ0 , and uncountable in an extension
of M in which there is such a bijection. In the same line, Feferman (1999) has
also remarked that the restriction to first-order-like operations is only apparent,
because “L∞,∞ accomodates second-order quantification as a logical operation
across domains” (p. 37). Therefore it is possible to express inL∞,∞ the Continuum
Hypothesis and other substantial set-theoretic claims.

The situation is even worse than that. Consider a topological space S and the
operationContS : ℘(S×S)→ {T, F} defined, forR ⊆ S×S byContS (R) = T
iffR is a continuous function. As desired, the operationCont is not invariant under
permutation because it takes into account the underlying topological structure of
the space S, which does not put all points on a par. But for an arbitrary set M ,
consider the operation Cont′M : ℘(℘(M)) × ℘(M ×M) → {T, F} defined for
O ⊆ ℘(M) and R ⊆ M × M by Cont′M (O, R) = T iff the family O is a
topology on M and R is a continuous function on 〈M,O〉. Cont′M is invariant
under permutation and, if the domain set is allowed to vary, Cont′ is invariant

7Note however that operations across domains cannot be defined unless one allows for proper
classes in the syntax. We will go back to this point in the last section.
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under bijection. Thus, by making the topological structure explicit, we can turn
continuity into a logical notion.

As a matter of fact, every structure or class of structures can now be described
up to isomorphism in one shot by a tailor-made logical operation:8

Fact 1. Let K be a class of structures of a given similarity type. If K is closed
under isomorphism, there is a language L, whose logical symbols are interpreted
by bijection invariant operators, and a sentence φK of L such that for every model
M,M∈ K iff φK is true inM.

Proof. For simplicity, assume that K is a class of relational structures of the form
〈M,R〉. We define the operation QK ,M over a set M by setting, for R ⊆M ×M ,
QK ,M (R) = T iff 〈M,R〉 is in K. This operation can be used as the interpreta-
tion of a binary generalized quantifier QK endowed with the following satisfaction
clause:

A � QKx, y φ(x, y) [σ] iff QK ,M (||φ(x, y)||A,σ) = T

where σ is an assignment on A and ||φ(x, y)||A,σ is the interpretation of φ over
A according to σ, that is the set of pairs 〈a, b〉 of elements of A such that A �
φ(x, y) [σ][x := a][y := b].

We consider a first order language L extended with the quantifier QK . Since
K is closed under isomorphism, QK is bijection invariant. Conversely, the class
K is trivially characterized by the sentence QKxy Rxy: 〈M,R〉 � QKxy Rxy iff
〈M,R〉 ∈ K by definition of QK .

Every class of structures, like our classK, which is closed under isomorphism thus
gives rise to a logical quantifier, like QK . In this sense, every mathematical notion
gives rise to a closely related9 logical notion. The question whether a given class
of structures is elementary is trivialized, and the very idea of a difference between
logical and mathematical notions becomes elusive.

All this suggests that Tarski’s criterion overgenerates and counts too many op-
erations as logical. First, since the aim is to distinguish the realm of logic proper, a
proposal which conflates logical notions and mathematical notions does not seem
to be on the right track. At least from a methodological standpoint, one should look
for alternative proposals to see whether it is possible to do justice to the intuitive
idea that logic is more basic than the whole of mathematics, and more basic than
set theory. Second, if logic is to be used as a framework to develop alternative

8In this section, we try to remain as neutral as possible with respect to the setting we choose. A
more detailed presentation of invariance criteria and of the setting in which we discuss them will be
given in the next section.

9This qualification is necessary. ‘Being 0’ for example, as a notion applying only to the ‘genuine’
zero is not invariant under permutation. However, the higher-order correlate ‘being an empty-set’ and
the relativized version ‘being the smallest element in a structure isomorphic to the natural numbers’
come out as invariant.
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mathematical theories, it should be neutral with respect to issues which are not
mathematically settled, such as the Continuum Hypothesis. Therefore, permuta-
tion invariance, though it is a necessary condition for being logical, does not seem
to provide a sufficient condition. This situation is not very comfortable. We have
seen that Tarski’s thesis was well-motivated through the formality and the general-
ity arguments. But, unfortunately, its consequences are hard to accept. Should we
nonetheless accept those consequences, as suggested by Sher, or are there reasons
to think that the conceptual analysis has gone wrong somewhere?

We choose not to bite the bullet. Both the generality and the formality argu-
ments are actually more problematic than it might seem at first sight. The argument
in terms of generality rests on the assumption that invariance under the biggest class
of transformations yields maximal generality. The idea is that the group of all per-
mutations is as “big” as one might wish, because in that case the transformations do
not respect any extra-structure, such as e.g. the topological structure of the space.
Let us have a closer look at this idea. Permutation invariance just says that as soon
as there is an automorphism linking 〈M,A〉 and 〈M,A′〉, a quantifier Q acting on
M has to give A and A′ the same value. On the one hand, this is indeed liberal,
because no further structure beyond the extensions A and A′ on M is taken into
account. But on the other hand, this is quite demanding: for 〈M,A〉 and 〈M,A′〉
to be similar from a logical point of view, they have to share exactly the same
structure – they have to be isomorphic. Now there are a lot of other concepts of
similarity between structures which are used in model theory and in algebra which
are far less demanding. Instead of requiring the structure to be fully preserved, they
lower the requirement to some kind of approximate preservation. Why should we
refrain from resorting to these other concepts? To sum up, even if one grants that
generality is a good way to approach logicality, there is no evidence that the class
of all permutations is the best applicant for the job.

The problem with the justification in terms of formality is not with the ade-
quacy of the formalization, but rather with the adequacy of the intuitive starting
point itself. It is reasonable to think of logic as being formal, namely free from
‘empirical’ content. But why should we take this to be sufficient to characterize
logic as opposed to mathematics or set-theory? After all, there is more to con-
tent than permutation sensitive content. The problem with a quantifier like Qℵ1
is precisely that it encapsulates too much “set-theoretical content”. Formality is a
property of logic that is shared by set-theory and other branches of mathematics: it
is not a surprise that taking formality as the starting point of an analysis of logical-
ity yields a collapse of logic into mathematics. A proper analysis of the distinctive
feature of logic should take into account the fact that it is even more “content-free”
than set-theory.
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2 Generalized invariance

In this section, we aim at introducing a general setting to discuss invariance criteria
for logicality.

2.1 Invariance under a similarity relation

The main idea is to consider invariance under arbitrary definitions of what it means
for two structures to be similar, without restricting attention to groups of transfor-
mations in Klein’s sense.10 First, instead of looking at the interpretation of gener-
alized quantifiers as families of boolean-valued operations on sets, we will think
of them just as classes of structures. If Q is a unary monadic quantifier of type
((e, t), t), its denotation Q yields an operation QM on each set M which sends
subsets of M (objects of type (e, t)) to objects of type t, that is, either T or F .
Alternatively, Q will be viewed as the class of structures of the form 〈M,P 〉 such
thatQM (P ) = T . For example, on this account, the denotationQ∃ of ∃ is the class
of structures of the form 〈M,P 〉 such that P is a non-empty subset of M . Note
that truth-functions fit into this picture if booleans are part of the structures in one
way or the other. One option would be to work with multi-sorted structures and
two separate domains, the domain of objects and the domain of truth-values. For
simplicity, we prefer to consider booleans as genuine parts of the structure over
a set: we will take them to be the interpretation of 0-ary predicates. By a natu-
ral generalization of the notion of interpretation of an n-ary predicate for n 6= 0,
there are only two possible values for a 0-ary predicate, namely ∅ and {∅}, that
we will construe respectively as false and true. On this account, the denotation
of the disjunction ∨ is the class of structures of the form 〈M,T, T 〉, 〈M,T, F 〉 or
〈M,F, T 〉. Finally, for any operator Q and for any structureM, we will use the
notationQ(M) to indicate thatM is in the classQ. All operators we consider will
be finitary operators, namely classes of structures with a finite number of constants
and a finite number of relations of finite arity.11

A similarity relation S is a relation between structures respecting signatures
(i.e. S is a family of relations Sσ between σ-structures for all signatures σ). The
notation isM SM′.

We are interested in the invariance of operators under similarity relations. We
say that an operator Q is S-invariant iff, for any structuresM,M′, ifM SM′,
then Q(M) iff Q(M′). For example, let us say that M Auto M′ iff there is
an automorphism betweenM andM′, and thatM IsoM′ iff there is an isomor-

10This general view on invariance is implicit in van Benthem (2002). Van Benthem insists on the
close connection between the invariance approach and definability results. Moreover, he notes that
“Any reasonable invariance analysis must postulate some relevant equivalence relation on models”
(2002, p. 431). Our generalization basically consists in letting any kind of relation come into play.
As we will see, equivalence relations do play a special role though. Abstract equivalence relations
have also been considered in abstract model theory: for an overview, see Makowsky and Mundici
(1985).

11In principle, generalization to the infinite case should be straightforward.
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phism betweenM andM′. It is clear thatAuto-invariance is just invariance under
permutation in the previous sense, and that Iso-invariance is just invariance under
bijection. Looking for an alternative to Tarski’s thesis, we want to defend a claim
of the form:

An operator Q is logical iff it is S-invariant.

for a certain similarity relation S. The point is therefore to find an S such that it is
possible to give conceptual arguments in favor of S in the spirit of the formality and
generality arguments, and such that S-invariance does not overgenerate as badly as
does Iso-invariance.

2.2 The Galois connection for invariance

Before considering particular similarity relations, it will be useful to gain a better
understanding of the framework and to look into the duality between classes of
“quantifiers” (classes of operators) and similarity relations. Given a similarity rela-
tion S, there is a class of operators which is naturally associated with S, namely the
class of all operators which are S-invariant, that we shall note Inv(S). In the other
direction, given a class of operators K, there is a similarity relation which is natu-
rally associated withK, namely the biggest similarity relation leaving all operators
inK invariant, that we shall note Sim(K) and formally define byM Sim(K)M′
iff for all Q ∈ K, Q(M) iff Q(M′).

Let K be the class of all classes of operators. We shall look at K as an ordered
class, by setting K ≤ K ′ iff K ⊆ K ′. In the same way, let S be the class of all
similarity relations. We shall also look at S as an ordered class, by setting S ≤ S′

iff S′ ⊆ S (i.e. iff for allM,M′, ifM S′M′ thenM SM′). Intuitively, S is
lower than S′ iff S is less fine-grained than S′ (S identifies more structures than
S′).

Sim : K → S and Inv : S → K are two “symmetric” functions which
allow us to go from classes of operators to similarity relations and the other way
around. How symmetric are they? It is easy to check that Inv and Sim are both
monotone: if K ≤ K ′, then Sim(K) ≤ Sim(K ′), and if S ≤ S′ then Inv(S) ≤
Inv(S′). However, Inv and Sim are not inverses: in general, it is not the case
that Sim(Inv(S)) = S and Inv(Sim(K)) = K. Therefore, Inv and Sim do not
provide an isomorphism between our two ordered structures. But one can show the
following fact:

Fact 2. For any class K of operators and any similarity relation S, Sim(K) ≤ S
iff K ≤ Inv(S).

Proof. Only if. Assume Sim(K) ≤ S. It follows that Inv(Sim(K)) ≤ Inv(S).
But K ≤ Inv(Sim(K)). Therefore K ≤ Inv(S).

If. Assume K ≤ Inv(S). It follows that Sim(K) ≤ Sim(Inv(S)). But
Sim(Inv(S)) ≤ S. Therefore Sim(K) ≤ S.
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〈K,S, Sim, Inv〉 is thus a Galois connection (or, in terms of category theory,
Sim and Inv are adjoint functors). This makes precise the “symmetry” between
Sim and Inv. It follows immediately from the Galois connection that Inv(S) =
Inv(Sim(Inv(S))) and Sim(K) = Sim(Inv(Sim(K))). Moreover, we have
an isomorphism between Inv(Sim(K)) and Sim(Inv(S)). Finally the so-called
kernel operator Sim ◦ Inv : S → S is of special interest:

Fact 3. Sim(Inv(S)) is the reflexive, transitive and symmetric closure of S.

Proof. Let M and M′ be two structures such that M Sim(Inv(S)) M′. We
assume for contradiction that there is no sequenceM1 , ...,Mn of structures such
thatM =M1 ,M′ =Mn and for all i, 1 ≤ i ≤ n,Mi SMi+1 orMi+1 SMi .
Let Orb(S,A) be the operator defined by Orb(S,A)(M) iff there is such a se-
quence fromM to A. Clearly, Orb(S,A) is S-invariant, therefore Orb(S,A) is
in Inv(S). By hypothesis, we have that Orb(S,A)(M) but not Orb(S,A)(M′).
This contradictsM Sim(Inv(S))M′.

Thus, Inv(S) = Inv(Sim(Inv(S))) tells us that a similarity relation and the
smallest equivalence relation containing it induce the same class of operators.

There are two main differences between generalized invariance and Klein’s
idea of invariance by a group of transformation. The first one is that similarity re-
lations are not equivalence relations, so that we loose the “group” idea. However,
we have just seen that this is not a substantial point, because we can always look at
Sim(Inv(S)), which is an equivalence relation, instead of looking at S. The sec-
ond difference is that elements of a group of transformations were transformations,
namely one-one function from a set onto itself. Two structures were considered as
similar if one could be transformed into the other by a transformation in the group:
this means that similarity is always induced by a bijection. Generalized invariance
is much more liberal with respect to that: any kind of relation between structures,
be it grounded in a bijection or not, can be used as a similarity relation.

The nice thing is that we now have a wide range of possible choices of S,
so that we might hope that solving the overgeneration problem while sticking to
the invariance approach is possible. On the other hand, any choice of S must
be philosophically motivated, and we need therefore to organize the landscape of
invariance and classes of operators on a conceptual basis.12 The next section will
be devoted to this task. We will look for plausible constraints on S when S is to be
used as a criterion for logicality.

2.3 Invariance under homomorphism

Before closing this section, we should remark that S-invariance admit as particular
cases some of the alternatives to Tarski’s thesis that have been put forward in the

12We are especially indebted to Solomon Feferman and Philippe Schlenker for suggesting that we
should provide a detailed account of conceptually meaningful constraints on similarity relations and
for helping us to do so.

13



literature.
Feferman’s proposal (1999) is to move from isomorphisms to strong homo-

morphisms:13

Definition 1 (Strong Homomorphism). Let M and M′ be two structures of the
same signature σ, a strong homomorphism fromM ontoM′ is a surjective func-
tion f : |M| 7→ |M′| such that :

• For any constants a in σ, f(aM) = aM
′
.

• For any function symbol g of arity n in σ, for any n-uplet −→a of elements of
|M|, f(gM(−→a )) = gM

′
(f(−→a )).

• For any relation symbol R of n > 0 in σ, for any n-uplet −→a of elements of
M, −→a ∈ RM iff f(−→a ) ∈ RM′ .

• For any predicate symbol p of arity 0 in σ, pM = pM
′
.

We shall say that M SHom M′ iff there is a strong homomorphism from
M onto M′. Note that SHom is not an equivalence relation, but that, once
again, Inv(SHom) = Inv(Sim(Inv(SHom))), Sim(Inv(SHom)) being the
smallest equivalence relation containing SHom. The motivation for choosing
S = SHom has to do with the overgeneration problem. Because cardinality quan-
tifiers should not all count as logical, it is tempting to suggest that logical operations
should be insensitive to cardinality issues. This is precisely what is achieved by the
shift from Iso to SHom. The injectivity requirement is left out, so that similarity
relations are allowed which identify different objects. These intuitive motivations
fit in the conceptual analysis which has been set in the previous section. In terms
of generality, Feferman’s choice for S fares indeed better than Iso, because every
isomorphism is a strong homomorphism, while the converse is false. A reason for
not looking below SHom is nevertheless still to be provided. In terms of lack of
content, Iso-invariance neutralizes empirical content, and, as we have just seen,
SHom-invariance neutralises both empirical content and “numerical” content, at
level of finite and infinite cardinalities. This makes sense if logic is taken to be both
formal and blind to numbers. The claim might however seem a bit too strong: the
(set-theoretic) reasons to reject Qℵ1 do not necessarily constitute reasons to reject
∃!5 as well.

An other independent reason for choosing SHom is the following. SHom
allows for comparisons between all domains, in contrast with Iso which might

13Casanovas (2007) recently proposed a detailed analysis of the various versions of invariance
under homomorphisms that could be used. In particular, he makes it clear that the criterion is quite
sensitive to the type-theoretic setting (functional or relational) in which the operations expressed.
Casanovas also puts forward a notion of invariance under homomorphism of its own that cuts across
first-order logic itself. This notion of invariance could be analyzed as invariance under a similarity
relation in our sense (see Bonnay, 2006, for a detailed discussion). However, we do not consider as
very attractive an invariance criterion which bans operations which are definable in pure first-order
logic.
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connect only domains of the same size. Because of this special feature, one can
hope that a SHom-invariant operation really means the same thing on every do-
main. In particular, a quantifier acting like ∃ on finite domains and like ∀ on infinite
ones is Iso-invariant, but it is not SHom-invariant.

The following claim is now lurking around:

SHom thesis for logicality. An operation Q is logical iff it is SHom-invariant.

Actually, this is not the view that Feferman (1999) upholds. He rather supports the
following:

Monadic SHom thesis for logicality. An operation Q is logical iff it is λ-
definable from monadic SHom-invariant operations.

Judging from the consequences, The monadic SHom thesis looks far more
plausible than the simpler SHom thesis:

Theorem 2. An operation QM acting on a domain M is SHom-invariant iff it is
definable in L−∞,∞.14

Theorem 3 (Feferman, 1999). An operation Q is λ-definable from monadic
SHom-invariant operations iff it is definable in FOL−.

Theorem 2 shows that SHom overgenerates nearly as much as Iso. It charac-
terizes the same infinitary language, except that equality has to be dropped from
the stock of logical constants. Now, this is not so significant a change, because, as
shown by Quine (1986, p. 63), identity can be simulated in a quantificational lan-
guage. It can be defined in a Leibnizian spirit as the greatest congruence relation
for the language under consideration. In FOL, this works only if the number of
extra-logical expressions is finite, but in L−∞,∞, even the qualification is unneces-
sary.

The interest of SHom as used in the SHom thesis for logicality is thus quite
limited. Things are different with Feferman’s thesis. Feferman’s claim yields a
nice characterization result, but only at the cost of putting additional constraints
on the characterization. First, invariance concerns a restricted class of operations,
the monadic ones. Then, some more machinery is needed to get polyadic oper-
ations from these, which is why typed λ-calculus comes into play. As a conse-
quence, it is not sufficient to motivate the shift from Iso to SHom. Feferman
needs two more arguments to support his thesis: one to justify the restriction to
monadic operations, another one in favor of the logicality of the class of λ-terms
which is used. Feferman does not explictly discuss the second point, but the lack
of argument here is relatively harmless. Since SHom-invariance is preserved by
λ-definability, if one is to accept SHom for monadic types, one should accept the
closure under λ-definability. But the first point is more tricky: if SHom enables

14This answers an open question raised by Feferman (1999, question 6.1 p. 47). L− is the equality
free version of L. The proof is omitted here.
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one to disregard exactly the features of objects which logic disregards, why should
one demand more than that and restrict the application of SHom-invariance? Fe-
ferman’s argumentation is based on linguistic datas. He considers that “natural
language evidence supports the view of quantifiers as, first and foremost, monadic
operators” (1999, p. 47). Following ideas put forward by Montague, Barwise and
Cooper (1981) have shown that monadic generalized quantifiers provide very ef-
ficient tools for a formal semantics of natural language sentences. Sentences are
basically formed by combining a verb phrase and a noun phrase. In the sentence

Most critics are pedantic.

the semantic interaction of the noun phrase “Most critics” with the verb phrase
“are pedantic” is commanded by the determiner of the noun phrase. “Most” is
construed as a quantifier of type 〈1, 1〉which applies to the two predicates provided
by “critics” and “pedantic”. In more complex sentences, like

Most critics reviewed just four films.

a polyadic quantifier of type 〈〈1, 1〉, 2〉 has to be constructed out of the monadic
quantifiers “Most” and “Four”. The centrality of monadic quantification boils down
to the fact that polyadic quantifiers are obtained in general by lifting monadic quan-
tifiers in one way or the other.

This line of argument raises two questions. First, why should natural language
evidence come into play in a characterization of logic? Second, does the fact about
lifting really support the restriction to λ-definability from genuine monadic logical
quantifiers?

Answers to these questions have to take into account another linguistic fact.
This fact is stated by Keenan and Westerståhl : “On [...] natural notions of ex-
pressive power, monadic quantifiers are not sufficient to express quite common
constructions [...] involving polyadic quantifiers ” (1997, p. 890). Relevant cases
include branching quantification:

Quite a few of the boys in my class and most of the girls in your class have
dated each other.

or reciprocals, such as exemplified by

Most of the boys in your class like each other.

As a consequence, the claim that monadic quantification is all there is to natu-
ral language quantification can be sustained only if quite powerful ways of lifting
monadic quantifiers are used. In particular, λ-definability, which is used in the
monadic SHom thesis, will not do the job. As a consequence, any defender of the
thesis faces a dilemma:

• Either natural language evidence is relevant to the project of a characteriza-
tion of logicality. But then, logic should be expressive enough to account
for how polyadic quantifiers can be defined from monadic ones. This is not
compatible with Feferman’s account of logic, as shown by theorem 3.
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• Or the semantics of complex natural language sentences is not relevant to
this projet. But then, there is no good reason for the restriction to monadic
quantification.

One could try to escape the dilemma by arguing that natural language evidence
is relevant as long as monadicity is concerned, but that liftings do not have to be
provided by purely logical means. In this case, the argument from natural language
unfortunately appears quite ad hoc. There is still hope that one could come up
with a characterization of logicality which would be purely in terms of invariance
and would not rely on type restrictions. The next section is devoted to a further
exploration of this route.

3 Constraints on similarity relations

Now we go back to generalized invariance and introduce two constraints on sim-
ilarity relations suitable to characterize logical operations. The first one, closure
under definability is meant to qualify the idea of maximal generality in our frame-
work. The second one, absoluteness, is meant to complement the idea that logical
notions are (nearly) devoid of content.

3.1 Some interesting similarity relations

First, we shall introduce some similarity relations that will be used below, in or-
der to give an idea of the kind of proposals that can be made. We shall actually
highlight two kinds of similarity relations: a first family of very liberal similarity
relations, a second family of similarity relations which are “local” variations on the
idea of “being isomorphic”. In what follows, M = 〈M,R1 , ..., Rn , a1 , ..., am〉
and M′ = 〈M ′, R′1 , ..., R′n , a′1 , ..., a′m〉 are arbitrary structures (without func-
tions, for the sake of simplicity), equipped with n relations and m constants.

Definition 2 (Univ). The similarity relation Univ is defined byM UnivM′ iff
M andM′ have the same signature.

Intuitively, Univ is the universal similarity relation, which identify any two struc-
tures to which an operator of a given type could be applied to. It is the smallest
element of K.

Definition 3 (Bool). The similarity relationBool is defined byMBoolM′ iff for
all i ∈ {1, ..., n} such that Ri inM and R′i inM′ are 0-ary relations, we have
Ri = R′i .

Intuitively, Bool is the boolean similarity relation, which identify any two struc-
tures whose boolean part is identical, that is any two structures which agree on
extensions of O-ary relations.
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Definition 4 (App). The similarity relation App is defined byM AppM′ iff for
all i ∈ {1, ..., n}, j1 , ..., jk ∈ {1, ...,m}, we have that (aj 1 , ..., aj k ) ∈ Ri iff
(a′j 1 , ..., a

′
j k ) ∈ R′i where m is the arity of Ri and R′i .

Intuitively,App is the smallest similarity relation respecting functional application.
Two structures which are App-similar satisfy exactly the same atomic formulas of
a language whose signature is the signature of the structures, and also exactly the
same ∆0 formulas of that language. App respects booleans as a special case of
functions applied to zero arguments.

We now define some less liberal similarity relations which refine on Iso by
requiring the identity of formal features only at a local level. Two structures M
andM′ are locally similar if there is an isomorphism between two substructures
ofM andM′. For example, a structureM containing a copy of Z will be locally
similar in this sense to another ordered structure containing a copy of Z as well.
This idea cannot make sense as a criterion of similarity, because the other parts of
M and M′ can be very different. One has to guarantee that any local similarity
can be extended to other parts of the structures as well. This leads to similarity
relations which are far less demanding than Iso.

Definition 5 (Partial isomorphism). Let M and M′ be two structures, and f :
|M| → |M′| a function. f is a partial isomorphism betweenM andM′ iff there
are two substructures A and A′ of M and M′ such that f is an isomorphism
between A and A′.

The idea of local resemblance can be captured by requiring the existence of
families of partial isomorphisms satisfying certain properties. In particular, we can
require that it is always possible to extend the partial isomorphisms in any direction
a finite number of times. We get the following definition where the ordinal α is a
parameter precising what is meant by “always possible”15 :

Definition 6 (α-isomorphism). Let α be an ordinal,M andM′ two structures, an
α-isomorphism I fromM toM′ (notation I :M≈ αM′) is a sequence

I0 ⊇ I1 ⊇ ... ⊇ Iβ ⊇ ... ⊇ Iα
s.t. for any β ≤ α, Iβ is a non-empty set of partial isomorphisms, and if β + 1 ≤
α and f ∈ Iβ+1 , then for any a ∈ |M| (resp. b ∈ |M′|), there is a partial
isomorphism g ∈ Iβ such that f ⊆ g and a ∈ dom(g) (resp. b ∈ rng(g)).

By requiring that partial isomorphisms can be infinitely extended, we get:

Definition 7 (Potential isomorphism). A potential isomorphism I between two
structures M and M′ (notation I : M ≈ pM′) is a non empty set of partial
isomorphisms such that :
for all f ∈ I and a ∈ |M| (resp. b ∈ |M′|), there is a g ∈ I with f ⊆ g and
a ∈ dom(g) (resp.b ∈ rng(g)).

15We use Feferman’s (1972) definitions.
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Here are corresponding similarity relations. For an ordinal α, the similarity relation
Isoα is defined by M Isoα M′ iff there is an α-isomorphism between M and
M′. The similarity relation Isop is defined byM Isop M′ iff there is a potential
isomorphism between M and M′. These similarity relations are standard tools
in model theory; they are used as semantic correlates of elementary equivalence
for certain languages. Note however that the shift from results about elementary
equivalence to results about invariants is not trivial. For example, consider Isoω.
Two structures are Isoω-similar iff they satisfy exactly the same sentences of FOL.
However, if we look at the logic of Isoω -invariants operators, we will not get FOL:
there are Isoω-invariant operators (e.g. “being infinite”) which are not definable in
FOL.

Finally, note that these similarity relations are linearly ordered by ≤:

Fact 4. Univ ≤ Bool ≤ App = Iso0 ≤ Isoα ≤ Isoα′ ≤ Isop ≤ Iso, where α
and α′ are ordinals such that α ≤ α′.

We also have:

Fact 5. App ≤ SHom ≤ Iso

But ≤ is only a partial ordering. In particular, Isop and SHom are unrelated.
First, SHom 6≥ Isop : let A = 〈{1, 2, 3}, {1, 3}〉 and B = 〈{1, 2}, {1}〉 be two
structures, we have A SHom B but we do not have A Isop B. Second, Isop 6≥
SHom. If we look at M = 〈Q,≤〉 and M′ = 〈R,≤〉, we have M Isop M′
but we do not haveM SHomM′. This highlights the fact that Isop and SHom
correspond to two really different weakenings of Iso. By shifting to SHom, one
keeps a global similarity relation, but liberalizes over Iso by discarding equality.
By shifting to Isop , one goes from a global to a local idea of similarity, and there is
no special treatment for equality. It would be possible to define and study “equality-
free” versions of Isop and the Isoα.

3.2 Closure under definability and generality

This section is devoted to an enquiry into the limits of generality in the framework
of generalized invariance, and it will rely upon the particular similarity relations
we have just introduced as special landmarks.

3.2.1 Generality in our framework

The generality argument characterizes logic as the most general theory in our con-
ceptual scheme. In Klein’s setting, there is a correspondence between groups of
transformation and the generality of invariants: the bigger the group (i.e., in our
setting, the lower the associated similarity relation), the more general the invari-
ants. Because all considered groups are groups of transformations, the minimal
element, which corresponds to maximal generality, is the groups of all one-one
and onto transformations, corresponding in our setting to the similarity relation
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Iso (or Auto if the domain is kept fixed). By generalizing the idea of invariance
under a group of transformations to the idea of invariance under a similarity rela-
tion, we have opened up a domain of new similarity relations which do not corre-
spond to any group of transformation in Klein’s sense. As a consequence, Iso is no
longer the lowest element with respect to the ordering ≤ on S: we have seen that
Isop ≤ Iso, Isoω ≤ Iso, App ≤ Iso, etc... What happens to the formalization of
the idea of maximal generality in this setting? Two questions should be answered:

• Why do similarity relations provide a more liberal notion of similarity than
Kleinian groups of transformations?

• How can the requirement of generality be applied in the new setting? Which
is the similarity relation whose invariants are the most general notions, can
it be used as a logicality criterion?

Concerning the first point, it is important to distinguish two parameters that
determine the liberality of a similarity relation:

i) the amount of extra-structure which has to be preserved.

ii) the degree to which structure is to be preserved.

What do we mean by “extra-structure”? Invariance under bijection (Iso) is
more liberal than invariance under homeomorphism, because invariance under bi-
jection allows for arbitrary switchings of elements of the domains, whereas homeo-
morphisms are continuous transformations which preserve some implicit structures
of the domains thought of as sets of points, namely their topological structure. In
this sense, homeomorphisms preserve some extra-structure which is not explicit
on the structures considered, whereas the similarity relation Iso, corresponding to
invariance under bijection, is only sensitive to the explicit formal features of the
structures to which the operators are applied. For this reason, Iso is indeed the
lowest similarity relation with respect to the first parameter: no extra-structure is
preserved under Iso.

However, by thinking in terms of similarity relations instead of groups of trans-
formation, we discover the significance of an other parameter: the degree to which
structure (implicit “extra-structure” or explicit structure) is to be preserved. Iso
reflects full formal similarity: two structures which are isomorphic are exactly
identical to one another as structures, the only difference consisting in the nature
of the elements of their domains. On the contrary, we have seen that two structures
which are potentially isomorphic are not fully identical: they are just similar in the
sense that they are always, so to speak, locally isomorphic. Isop is thus lower than
Iso, because it is more liberal than Iso with respect to the second parameter of lib-
erality, namely the degree to which structure preservation is required. Note that the
two parameters are independent. One could think of a potential version of home-
omorphisms for example, in which partial preservation of the implicit topological
structure would be required.
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Now which is the smallest similarity in S, i.e. which is the similarity relation
which is the most liberal with respect to both parameters? By definition, it is
Univ. But of course, in some sense, Univ is a trivial relation of similarity, which
discards all the formal features of structures. It comes therefore as no surprise that
Inv(Univ) is a very meager class of operators: it will contain only trivial operators
which contain either all the structures of a given signature, or none of them.

There is an important conceptual lesson to be drawn from this trivial mathe-
matical fact. In the setting of generalized invariance, it does not make sense to
require full generality without qualification, because the most general notions are
as much useless as they are general. We do not think that this is an unwelcome
feature of the framework. On the contrary this is as it should be; there is no reason
why requiring utmost generality should not result in a total loss of content. Logical
notions are the most general notions which deal with certain kind of features; but
in order to make sense of the generality of logic, one has to say what matters to
logic. For example, the difference between true and false is central to the project
of defining what logical consequence is: in this respect, it seems fair to restrict
one’s attention to similarity relations which do not conflate true and false, i.e. to
similarity relations which preserve the boolean parts of structures (these are the S
such that Bool ≤ S). The class of operators Inv(Bool) is just the class of all
truth-functions: this is as expected. One can try to go a bit higher than Bool. It
seems fair as well to consider only similarity relations S such that App ≤ S: func-
tional application is the semantic correlate of syntactic concatenation, and it seems
a very basic semantic feature of languages, nearly as basic as the difference be-
tween being true and being false. Logic should therefore be sensitive to functional
application as well. Inv(App) is the class of operators which are λ-definable from
Inv(Bool), and, again, this is not a surprise.

3.2.2 Introducing closure under definability

All this seems to be fairly limited: we do not go really further than propositional
logic, and the correspondence between similarity relations and classes of operators
is so immediate that the conceptual gain of the invariance approach seems to be
dangerously close to zero. We now wish to introduce two constraints on generality
that will prove to be much more substantial.

First, if we accept that the operations of FOL are indeed logical operations, we
have to choose a similarity relation that is sensitive to basic set-theoretic features of
the structures. In particular, it is clear that if we think that the existential quantifier
is logical, two structures 〈M,P 〉 and 〈M ′, P ′〉 such that P is a non-empty subset
of M and P ′ is the empty set should not be considered as logically similar. One
way to capture this very minimal kind of structural similarity would be to say that
for two structures to be logically similar, it must be impossible to see that they are
different just by looking at an arbitrary individual in one of the structures. Or, that
if two structuresM andM′ are similar, then if we pick an arbitrary individual say
a in |M|, it must be possible to pick another individual a′ inM′ such that a and a′
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share the same properties. A similarity relation satisfying this property is a relation
S such that Iso1 ≤ S.

Second, the invariants of a similarity relation should be closed under defin-
ability. Let us explain this. Given a similarity relation S, Inv(S) is the class of
S-invariant operators. We are interested in the class Inv(S) as the putative class of
logical operators. This means that we want to use the operators in Inv(S) as build-
ing blocks for the logical part of a language. Now, given a language, it is possible
to define in it certain operators in a purely logical way. For example, let us consider
the classK of operators containing just the existential and universal quantifiers, the
operator for equality and the boolean operators. The logic associated withK is just
FOL. Now, in FOL, it is possible to define new logical operators. For example,
the purely logical formula “∃x, y, z ((Px∧Py∧Pz)∧ (x 6= y∧x 6= z∧y 6= z))”
defines the operator Q≥3 (“there are at least three”), which is the class of all struc-
tures of the form 〈M,P 〉 where P is a subset of M containing at least three ele-
ments. Even if Q was not in K, it was “implicitly” there, because it is definable in
a language based on K.

Operators which are definable in a purely logical manner are logical. We just
do not see how a non-logical element could creep in the logical elements of the
definition and make the defined operator non logical. This is what we might call
the principle of closure under definability:

Principle of closure under definability. An interpreted symbol definable only by
means of logical constants is a logical constant.

Le us make this mathematically precise. Let K be a class of operators. The logic
LK associated with K consists in first-order variables and logical constants inter-
preted by operators in K. For any signature σ, we thus obtain a language LK (σ)
with extra-logical symbols corresponding to σ, whose interpretation varies freely,
and logical symbols whose interpretation is taken fromK and is kept fixed. For ex-
ample, let Q ∈ K be a class of structures of the form 〈M,R〉 where R ⊆M ×M ,
LK contains a logical symbolQwhich is interpreted byQ. To recall the point made
in the proof of Fact 1, the clause for Q in the recursive definition of satisfaction for
LK is the following one:

M � Qx, y φ(x, y) [σ] iff Q(M, ||φ(x, y)||M,σ)

where ||φ(x, y)||M,σ is the interpretation of φ overM according to σ, that is the
set of pairs 〈a, b〉 of elements ofM such thatM � φ(x, y) [σ][x := a][y := b].

Conversely, given a logic L and an operator Q – for simplicity, we assume the
type of Q is the same as before – we shall say that Q is definable in L iff there is
a sentence φQ of L(R) such that :

Q(〈M,R〉) iff 〈M,R〉 � LφQ

Closure under definability can be construed as an operation on classes of operators
which adds to a given class K of operators all the operators which are definable
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from operators inK in this sense. More precisely, we define a functionC : K → K
by taking C(K) to be the class of operators definable in LK . C ◦ Inv : S → K
is the composition of Inv with C. To simplify notations, we shall denote this
function by CInv.

We are interested in similarity relations S which induce classes of operators
Inv(S) providing a stock of denotations for logical constants. If we accept the
principle of closure under definability, we should require that these similarity re-
lations be such that CInv(S) = Inv(S).16 To put in another way, as long as
invariant operators are used as building blocks of the logical part of a language, we
should not consider similarity relations whose invariants are not closed under de-
finability. This requirement is far from being trivial. In particular, it is not satisfied
by Isoω, the similarity relation corresponding to elementary equivalence in FOL.

Fact 6. CInv(Isoω) > Inv(Isoω).

The proof is an elementary exercise in model theory:

Proof. We shall consider the operator Q≥ℵ0 . Q≥ℵ0 is Isoω-invariant: let
〈M,P 〉 and 〈M ′, P ′〉 be two structures such that we have Q≥ℵ0 (〈M,P 〉) but not
Q≥ℵ0 (〈M ′, P ′〉) (thus, |P | ≥ ℵ0 where as |P ′| < ℵ0 ). There is an integer n such
that |P ′| = n, but then it is not the case that 〈M,P 〉Ison+1 〈M ′, P ′〉, hence it is not
the case that 〈M,P 〉Isoω〈M ′, P ′〉. We shall now consider the operator Q′ defined
by the sentence “R is an equivalence relation ∧ ∃xQ≥ℵ0 y xRy” (Q′ picks out the
relational structures 〈M,R〉 such that R is an equivalence relation with an infinite
equivalence class). Since Q≥ℵ0 ∈ Inv(Isoω), we have that Q′ ∈ CInv(Isoω).
It is now sufficient to show that Q′ is not Isoω-invariant. We construct two L(R)-
structuresM = 〈M,R〉 andM′ = 〈M,R′〉 such that:

• The interpretation of R on both models is an equivalence relation.

• M contains an infinite number of R-equivalence classes of arbitrary big fi-
nite cardinality, but no infinite equivalence class.

• M′ is just asM but it contains also an infinite equivalence class.

It is clear thatM Isoω M′. But we have that Q′(M′), whereasM is not in
Q′.

Here is now the theorem that tells us what are the consequences of our require-
ments on the range of available similarity relations17:

16Note that CInv(S) = Inv(S) is stronger than the principle of closure under definability itself,
because it encapsulates the assumption that logical operations are to be characterized in terms of
invariance.

17The proof is given below.
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Theorem 4. Isop is the lowest similarity relation S such that Iso1 ≤ S and
CInv(S) = Inv(S).

If S is an equivalence relation, we have that CInv(S) = Inv(S) if and only if
Sim(CInv(S)) = S. Thus, Theorem 4 tells us that Isop is the smallest similarity
relation extending Iso1 which is a fixed point for Sim ◦ CInv18. Or, in more
vernacular terms, Isop is the lowest similarity relation extending Iso1 which is
closed under definability is Isop . As a consequence, if we accept both the preced-
ing argument according to which a good similarity relation S for logicality must
satisfy Iso1 ≤ S, and the argument in favor of the principle of closure under defin-
ability as well, then we should only be interested in similarity relations S such that
Isop ≤ S ≤ Iso. Note also that Iso is a fixed point for Sim ◦CInv. Since Iso is
the greatest similarity relation we consider, Iso is trivially the greatest fixed point
for Sim ◦ CInv. Because of the conceptual interest of closure under definability,
it would be nice to know more about the structure of fixed points for Sim ◦ CInv
between Isop and Iso.

3.2.3 What happens to the Galois connection

At a conceptual level, it seems thus quite natural to close Inv(S) under definability.
But, on the mathematical level, things get much more complicated. As a matter of
fact, the shift from Inv to CInv breaks the symmetry between classes of operators
and similarity relations. The Galois connexion is lost. We had that Inv(S) ≤
Inv(Sim(Inv(S))). This property is preserved:

Fact 7. For any similarity relation S, CInv(S) ≤ CInv(Sim(CInv(S))).

Proof. Inv(S) ≤ CInv(S), therefore Sim(Inv(S)) ≤ Sim(CInv(S)) by
monotonicity of Sim. Moreover CInv(S) = CInv(Sim(Inv(S)), since
Inv(S) = Inv(Sim(Inv(S))). Therefore CInv(S) ≤ CInv(Sim(CInv(S))).

We had also the other direction, namely Inv(Sim(Inv(S))) ≤ Inv(S). This
property is lost :

Fact 8. There are similarity relations S such that CInv(Sim(CInv(S))) 6≤
CInv(S).

Proof. Take S to be Iso1 . CInv(Iso1 ) is just the class of operators definable in
FOL. Therefore, Sim(CInv(Iso1 )) is Isoω. We have seen earlier an example of
operator, Q≥ℵ0 which is in Inv(Isoω) (and therefore, a fortiori, in CInv(Isoω).
But Q≥ℵ0 is not definable in FOL, hence it does not belong to CInv(Iso1 ).

18We are indebted to Henri Galinon for the suggestion to think in terms of fixed points.
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The lesson to be drawn is that closure under definability is a very strong re-
quirement in the context of the invariance approach. It breaks the natural symmetry
between similarity relations and classes of operators. This symmetry is recovered
for a limited class of similarity relations, namely the fixed points of Sim ◦ CInv,
for which we do have that CInv(Sim(CInv(S))) ≤ CInv(S). Among those
fixed points, Isop plays a special role as the smallest one for which Inv(Isop) is
not too meager (but note that App is also a fixed point).

3.2.4 Closure under level 1 projection

At the heart of Theorem 4, there is a more elementary fact19 which has its own
conceptual interest. In order to force Isop ≤ S, we do not need the full power
of closure under definability. Closure under projection, which is the restriction of
closure definability to existential quantification, is actually sufficient.

We shall label Pr the function which, given an operator Q consisting in a class
of structures of the form 〈M,R1 , ...Rn , a1 , ...am , b〉 yields the operator Pr(Q)
defined by Pr(Q)(〈M,R1 , ...Rn , a1 , ..., am〉) iff there is a b ∈ M such that
Q(〈M,R1 , ...Rn , a1 , ..., am , b〉). A class of operators K is closed under level
1 projection iff for all Q ∈ K, Pr(Q) ∈ K. We then define what it means for a
similarity relation to commute with projections (this is the main idea involved in
potential isomorphisms and bisimulations).

Definition 8 (commutation with level 1 projections). A similarity relation com-
mutes with level 1 projections iff, for any structures A, B such that A S B, for any
expansion A, a of A by a constant a ∈ A, there is a b ∈ B such that A, a S B, b .

The main fact behind 4 is precisely that closure under definability with re-
spect to existential quantification is equivalent to the back and forth mechanism
expressed by commutation with projections:

Fact 9. For any similarity relation S, Inv(S) is closed under level 1 projection iff
S commutes with level 1 projections.

Before proving Fact 9, let us establish the link with potential isomorphisms:

Fact 10. For any similarity relation S such that App ≤ S, if Inv(S) is closed
under level 1 projection, then Isop ≤ S.

Proof. Let S be a similarity relation such thatApp ≤ S and Inv(S) is closed under
level 1 projection. We want S ≤ Isop . LetA, B be two structures such thatA S B.
We need to show that A IsopB. By definition of Isop , this amounts to finding a
non empty set I of partial isomorphisms between A et B satisfying the back and
forth property. We set I = {f : A→ B/A, a1 , ..., an S B, f(a1 ), ..., f(an)}. By
hypothesis, A S B, therefore I is non-empty, since it contains the empty function.

19We are indebted here to Johan van Benthem for showing to us what the core of our previous
somewhat inelegant proof was.
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Now I has the back and forth property, since S commutes with level 1 projections,
(by fact 9). Finally, since App ≤ S, the f in I are partial isomorphisms.

Theorem 4, that we recall here, follows from fact 10:

Theorem. Isop is the lowest similarity relation S such that Iso1 ≤ S and
CInv(S) = Inv(S).

Proof. Let S be a similarity relation such that Iso1 ≤ S and CInv(S) = Inv(S).
We show first Isop ≤ S. Since Iso1 ≤ S, Q∃ ∈ Inv(S). As a consequence,
for all Q, if Q ∈ Inv(S), then Pr(Q) ∈ CInv(S). But CInv(S) = Inv(S),
therefore Inv(S) is closed under level 1 projection. Iso1 ≤ S implies trivially
App ≤ S, therefore fact 10 tells us that Isop ≤ S.

It remains to check that CInv(Isop) = Inv(Isop). It is sufficient to show
that ≡ LInv(Isop)

, the relation of elementary equivalence for the logic LInv(Isop)

whose logical constants denote Isop-invariant operators, is Isop . The proof is by
induction on the complexity of formulas. The induction hypothesis is the following
one:

IfM,−→a Isop M′,
−→
a′ thenM � φ(−→a ) iffM′ � φ(

−→
a′ )

The crucial step is the case where φ is of the form Q−→x ψ(−→x ,−→y ).
We assume M,−→a Isop M′,

−→
a′ . We have to show that M � Q−→x ψ(−→x ,−→a ) iff

M′ � Q−→x ψ(−→x ,
−→
a′ ).

Now assume M � Q−→x ψ(−→x ,−→a ). We want M′ �

Q−→x ψ(−→x ,
−→
a′ ). Since Q is Isop-invariant, it is sufficient to show

that 〈M, ||ψ(−→x ,−→a )||M〉 Isop 〈M ′, ||ψ(−→x ,
−→
a′ )||M′〉.

We take as potential isomorphism I between these two structures the set of
finite partial isomorphisms between M,−→a and M′,

−→
a′ . I is non-empty and has

the back and forth property. We need to show that the f ∈ I are indeed partial
isomorphisms for 〈M, ||ψ(−→x ,−→a )||M〉 and 〈M ′, ||ψ(−→x ,

−→
a′ )||M′〉.

But this is precisely what the induction hypothesis says: by definition of poten-
tial isomorphism, we have thatM,−→a ,

−−−−−→
Dom(f) Isop M′,

−→
a′ ,
−−−−−→
Rng(f), and there-

fore for any sequence −→c of elements of Dom(f) and its image
−−→
f(c), a sequence

of elements of Rng(f), we do have thatM � ψ(−→c ,−→a ) iffM′ � ψ(
−−→
f(c),

−→
a′ ).

To conclude on the mathematical background of Theorem 4, here is the proof
for Fact 9:

Proof. LetM be a structure and S a similarity relation. We note Orb(S,M) the
orbit of M with respect to S, i.e. the class of structures M′ such that there is a
S-path fromM toM′. Orb(S,M) is an operator.

There are two directions:
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i) If S commutes with level 1 projections, Inv(S) is closed under projection.
We assume Q ∈ Inv(S), we want to show Pr(Q) ∈ Inv(S), i.e for any
structures A and B such that Pr(Q)(A) and A S B, we have Pr(Q)(B).

a) Q ∈ Inv(S)

b) A S B
c) Pr(Q)(A)

d) Q(A, a) for an a ∈ A by c) and the definition of Pr.

e) A, a S B, b for a b ∈ B by b) and commutation for S.

f) Q(B, b) by a) and e).

g) Pr(Q)(B) by definition of Pr and f).

ii) If Inv(S) is closed under level 1 projection, S commutes with level 1 projec-
tions. Let A and B be two structures such that A S B. Let a ∈ A, we need to
find a b ∈ B such that A, a S B, b.

a) A S B
b) Orb(S,A, a) ∈ Inv(S) by definition of Orb.

c) Pr(Orb(S,A, a)) ∈ Inv(S) by closure under projection for Inv(S) and
b).

d) Pr(Orb(S,A, a))(A) by definition of Pr.

e) Pr(Orb(S,A, a))(B) by a), c) and d).

f) Orb(S,A, a)(B, b) for a b ∈ B, by definition of Pr and e).

g) A, a S B, b by definition of Orb and f).

The discussion of the philosophical significance of Theorem 4 for the revision
of Tarski’s thesis will be postponed until the last section. But it shall be already
clear that the generality approach can be up to some point rescued from trivializa-
tion.

3.3 Formality revisited

3.3.1 Formality and lack of content

Is the formality argument bound to fall into the trap of overgeneration? Or is it
possible to use the setting of generalized invariance to prevent it from falling into
that trap? Following the diagnosis proposed at the end of the previous section, the
problem with the formality argument is that it fails to distinguish between logic
and mathematics. The point is not that any account of logicality should lead to
a refutation of logicism; this assumption would be as ad hoc as the opposite one.

27



The point is rather that it is not legitimate to seek a characterization of logicality on
the basis of a property – namely formality – which is obviously common to logic,
set-theory and mathematics in general. Logicism might come as a consequence of
the conceptual analysis of what it is to be logical. But it should not be the starting
point of such an analysis. Which kind of strengthening of formality should one
consider?

Let us go back to the intuition relating logicality and formality. Logic is ex-
pected to be non committing. Logical truths are tautologies which do not put any
constraint on how the world should be. Logical notions have no empirical basis.
The concept “cat” is an empirical concept; mastering this concept involves spe-
cial recognitional abilities, like being able to distinguish a meowing animal from a
barking animal. On the contrary, the concept associated with existential quantifi-
cation does not require any mundane abilities: it is sufficient to be able to tell the
difference between an empty set and a non empty set.

The basic intuition underlying the formality argument could then be rephrased
as: “Logical notions are (nearly) deprived of content”, or “logical notions are non
substantial”. But the shift from lack of content to formality might not be as in-
nocuous as it seems: being formal means being deprived of any kind of content
which is sensitive to the identity of objects. But the overgeneration problem stems
from the fact that formal notions are far from being deprived of content, full stop.
“Being of size ℵ1 ” is a formal notion conveying a rich mathematical content or
a rich set-theoretical content. Now the problem is that this might be a dead-end.
If one construes the concept of “content” in a sufficiently liberal way, no notion
is absolutely deprived of content. “Being non-empty”, which is synonymous with
“being of cardinality at least 1” also conveys a bit of set-theoretical content, just
like “being of cardinality at least ℵ1 ”. Still, there is a difference between “being
of cardinality at least 1” and being of cardinality at least ℵ1 ”: the content of the
second notion is clearly more problematic than the content of the first notion. In
particular, as we explained earlier, the second notion depends on the exact extent
of the set-theoretical universe (again, see Feferman, 1999, p. 38), whereas the first
notion does not. A non-empty set living in a given modelM of ZFC will remain
non-empty, no matter how you shrink or extendM into a smaller or bigger model
of ZFC.

To sum up, we do not wish to argue that logical notions are fully deprived
of set-theoretic content, but we would like them to be free from problematic set-
theoretic content.

3.3.2 Absoluteness and lack of problematic set-theoretic content

How could we make sense of the idea of problematic set-theoretic content, in the
setting of generalized invariance? The idea is that if the only difference between
two formally identical structures is set-theoretically problematic, these two struc-
tures should be logically similar. Iso itself does not pass the test. Given a model
M of ZFC and a structure 〈A,P 〉 inM, the question whether 〈A,P 〉 belongs to
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Qℵ1 is the question whetherM � 〈A,P 〉 Iso 〈card(A),ℵ1 〉. But this similarity is
problematic from a set-theoretic point of view. It might be the case that the answer
is negative inM – becauseM is not rich enough to contain a bijection between
the set P and the cardinal ℵ1 – and positive in a generic extension ofM, in which
such a bijection exists. Therefore, Iso is a typical example of a set-theoretically
problematic similarity relation, whose extension depends on the specific features
of the model of set theory one is working with.

So, basically, what we expect from a notion of similarity suitable for a char-
acterization of logicality is that it does not suffer from the same defects as Iso.
How can we capture this? As remarked by Feferman (1999), the notion of abso-
luteness, introduced by Gödel (1940), gives at least a necessary condition for being
insensitive to problematic set-theoretical features:

Definition 9 (persistent formula). Let T be a theory in the language of set theory,
a formula P (x1 , ..., xn) is persistent with respect to T iff for any models M =
〈M,∈〉 andM′ = 〈M ′,∈′〉 of T such thatM is a submodel ofM′ and if a ∈′ b
and b ∈ M then a ∈ M , ifM � P (a1 , ..., an) thenM′ � P (a1 , ..., an) (where
the a1 ,...,an are elements of M ).

Definition 10 (absolute formula). Let T be a theory in the language of set theory,
a formula P (x1 , ..., xn) is absolute with respect to T iff both P (x1 , ..., xn) and
¬P (x1 , ..., xn) are persistent.

Typically, the formulas “x is transitive”, “x is an ordinal”, “x is a limit ordinal” are
absolute with respect to ZFC, whereas “x is a cardinal” or “x is of size ℵ1 ” are not
absolute with respect to ZFC. We now apply the idea20 to the case in point, namely
to similarity relations:21

Definition 11 (absolute similarity relation). A similarity relation S is absolute with
respect to T iff S is definable in T by a formula which is absolute with respect to
T .

Isop is absolute with respect to ZFC (essentially because it depends on the ex-
istence of finite partial isomorphisms), but Iso is not (Iso is persistent, but not
absolute, because an isomorphism can appear when the model grows bigger).

On the syntactic side, Kreisel and Feferman proved (see Feferman, 1968) that
absolute formulas with respect to the theory T are ∆1 with respect to T . This
provides another argument for absoluteness. Our definition of what it means to
be logically similar has to be cashed out in set-theoretic terms. But even if this
point it granted, it is desirable that the definition remains as simple as possible,
so that the distinction between the more elementary realm of logic and set-theory
is preserved. Requiring that the definition of the notion of logical similarity is

20We are indebted here to Gabriel Sandu, who draw our attention to Barwise’s papers on absolute-
ness and suggested that we should apply the idea to our similarity relations.

21Similarity relations are relations on the set-theoretic universe V . The theories T we consider are
supposed to be true in V .

29



∆1 amounts precisely to requiring that we do not rely to heavily on unbounded
quantification over sets.

Since our plan is to use absoluteness as a requirement on similarity rela-
tions, we should therefore ask which kind of similarity relations meet this re-
quirement. Before answering the question, we shall introduce a few notations.
When Q is an absolute operator, φQ(x) is an absolute formula defining it. Simi-
larly, for an absolute similarity relation S, we note φS (x, y) an absolute formula
defining S. φIso(x, y) is a (persistent) formula of ZFC for “x and y are iso-
morphic”. Similarly, φIsop will be an (absolute) formula of ZFC for “x and y
are potentially isomorphic”. We use the notation “S ≤ Iso” for the formula
∀x, y φIso(x, y) → φS (x, y). By “model of ZFC” we mean a transitive set in
which the axioms of ZFC are true. A CTM is a countable (and transitive) model of
ZFC. Here is now the answer to our question, provided by the following theorem:

Theorem 5 (Barwise, 1973, p. 31). Isop is the greatest similarity relation S such
that S is absolute with respect to ZFC and ZFC ` “S ≤ Iso”.

Theorem 5 provides a characterization of Isop which is dual to the one provided
by theorem 4. Isop was the lowest similarity relation closed under definability, it
appears now to be the greatest absolute similarity relation.

Note that if S is an absolute similarity relation with respect to ZFC, defined
by a formula φS (x, y), then for any transitive modelM of ZFC and for all struc-
tures A and B which are elements of M, we will have that M � φS (A,B) iff
A S B. So in particular, the difference between Iso and Isop which matters to us
is that being potentially isomorphic is determinately true or false in all transitive
models, whereas being isomorphic is not. From a conceptual of view, the absolute-
ness requirement will be all the more cogent if transitive models of set theory are
granted a special status.22 After all, consider a straightforward realist view about
sets, according to which there is one and only one intended model of ZFC, V , the
universe of all sets. Maybe then absoluteness is not as natural a requirement as we
said it is. What seems ‘problematic’ with operations like Qℵ1 might be nothing
more than a side-effect of unfortunate limitations on our knowledge of set theory,
rather than a problem with Qℵ1 itself. A dual point can be made if there are no
intended models of set theory at all. Consider non transitive models of ZFC. A
set can be infinite in one model and have a non standard integer as its cardinality in
another model, so thatQ=ℵ0 would look just as problematic asQℵ1 . Now consider
the following view. Our intentions are unable to pick out exactly one model of ZFC
as the intended model of set theory, so that the naive realist picture is wrong. But
it would be equally wrong to consider that all models fit our intentions. All well-
founded models fit our intentions, none of which doing it better than the others. In
this case, we shall be particularly happy with the absoluteness requirement: it ex-
presses the idea that ‘being logically similar’ should have a determinate truth-value
in all models of set theory that fit our intentions.

22We are grateful to an anonymous reviewer for making this point.
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Before closing this section, let us say a word about the relationship between
absoluteness as a property of similarity relations versus absoluteness as a property
of operators. Absoluteness has been studied in the literature on set-theoretic log-
ics (see the presentation in Väänänen, 1985). In this framework, absoluteness is
applied to the satisfaction relation of a logic defined in set-theory. If the syntax
is finitary, this amounts to requiring that the operators interpreting the logical con-
stants are themselves absolute. What is the connection with our approach, in which
absoluteness is applied to similarity relations? Is this equivalent, i.e. is the class of
Iso-invariant absolute operators the same as the class of Isop-invariant operators?
Using the ideas of the proof of theorem 5, one can show that Isop-invariance is a
necessary condition for an Iso-invariant operator to be absolute:

Theorem 6. Let Q be an operator absolute with respect to ZFC, if ZFC `
∀x, y (φIso(x, y) → (φQ(x) ↔ φQ(y))) then ZFC ` ∀x, y (φIsop (x, y) →
(φQ(x)↔ φQ(y))).

However, the converse is not true, there are operators Q definable in ZFC with
ZFC ` ∀x, y (φIsop (x, y) → (φQ(x) ↔ φQ(y))) such that Q is not absolute
(Väänänen, p.c.). Using the notation Abs for the class of absolute and provably
Iso-invariant operators, this means that Abs  Inv(Isop), i.e. Isop does not
provide a characterization in terms of invariance of Abs. Does this mean that we
should look for a better candidate than Isop? Or should absoluteness be cashed
out as a constraint which applies directly to invariant operators? What happens if
we choose a weaker set theory? We leave these questions open for future research.

4 A new thesis for logicality

To sum up, the previous section has been devoted to a critical examination of gener-
ality and formality as intuitive characterizations of logicality. As a result, two con-
straints on similarity relations, closure under definability and absoluteness, have
been proposed. In both case, Isop , the similarity relation corresponding to poten-
tial isomorphism, plays a special role as the lowest or the greatest similarity relation
satisfying these constraints modulo some mild additional assumptions. Does this
justify a revision of Tarski’s thesis in which Isop would replace Auto or Iso?

4.1 Logical operators and invariance under potential isomorphism

First, we present a modified version of the generality argument, in which we take
into account the fact that maximal generality would lead to triviality:23

23Our revised arguments have lost some of the elegant simplicity of the formality and the generality
arguments. We think that they could be rephrased in more vernacular terms, but at the cost of either
of clarity or brevity.
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The mild generality argument
MG.1 Logic deals with very general notions, but not only with trivial no-

tions.
MG.2 The truth-functions, functional application and first-order existential

quantification are logical operators.
MG.3 The good notion of invariance for logicality is to be provided by a

similarity relation S such that S is closed under definability.
MG.4 The good notion of invariance for logicality is to be provided by the

lowest similarity relation compatible with MG.2 and MG.3.

The logical notions are the Isop-invariant notions.

MG.1 corrects G.1 by demanding that some non-trivial notions be recognized
as logical. This takes into account the fact that G.1 escaped triviality just because
of the lack of generality of the kleinian setting in which the generality argument
took place. MG.2 and MG.3 provide the needed constraints. Some notions which
are commonly assumed to be logical have to be invariants of the similarity rela-
tion to be chosen. Moreover, this similarity relation should abide by the principle
of closure under definability. MG.4 captures the idea of maximal generality, be-
cause the ordering on the class of similarity relations mirrors the generality of the
associated theories. The conclusion of the mild generality argument follows then
from its premisses by theorem 10. Note that, as remarked in paragraph 3.2.1, note
that the shift from Iso to Isop is perfectly in line with the Kleinean picture Tarski
had in mind. Invariance under isomorphism as we defined it is Tarski’s invariance
under bijection: what is preserved by isomorphism is the structure explicit in log-
ical operations and extra-structure (e.g. topological structure) is disregarded. The
same holds with Isop-invariance: what is preserved under potential isomorphism
is the structure explicit in logical operations and extra-structure (e.g. topological
structure) is disregarded.

The formality argument should also be modified, to take into account the fact
that logical notions should not encapsulate any problematic set-theoretical content:

The lack of content argument
LC.1 Logic deals with notions which are deprived of non formal content

and of problematic set-theoretic content.
LC.2 The good notion of invariance for logicality is to be provided by a

similarity relation S such that S ≤ Iso.
LC.3 The good notion of invariance for logicality is to be provided by a

similarity relation S such that S is absolute with respect to ZFC.
LC.4 The good notion of invariance for logicality is to be provided by the

greatest similarity relation S satisfying LC.2 and LC.3.

The logical notions are the Isop-invariant notions.

LC.1 supplements the premiss F.1 of the formality argument by dismissing
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contents which are properly set-theoretical. LC.2 captures the first part of LC.1, it
is the counterpart in our setting of F.2 and F.3. LC.3 captures the second part of
LC.1. We have seen in the previous section that absoluteness is a natural way to
formalize independence with respect to which sets exists. LC.3 thus sets the limits
of the identification of logic and mathematics: the logician might use the resources
provided by set theory, but he should refrain from using notions whose extension is
problematic. The requirement of absoluteness is relative to ZFC, because we take it
to be the standard background set theory. This point is debatable. If the aim is really
to minimize the dependency of logic on set theory, it would be wiser to choose a
weaker set theory (e.g. KP). LC.4 claims that the constraints stated by LC.2 and
LC.3 are jointly not only necessary but also sufficient to determine which is the
good similarity relation for logicality. The formality argument has it that LC.2 is
sufficient on its own. But LC.2 is unable to do justice to the idea that logic is not
the same as mathematics. It is therefore more plausible that LC.2 is sufficient if is
supplemented by a criterion reflecting the specific feature of logic inside the formal
sciences. This is precisely the role of the absoluteness requirement put forward by
LC.3, and this gives us hope that the overgeneration problem might be solved. The
conclusion of the lack of content argument follows from its premisses by theorem
5.

Starting from different intuitions, we still recover the convergence of the gen-
erality and the formality argument. The mild generality argument and the lack of
content argument both support the following thesis:

Isop thesis for logicality. An operator Q is logical iff Q is Isop-invariant.

Tarski’s thesis and the Isop thesis disagree on the similarity relation to be chosen to
characterize the invariance properties of logical constants. They do not completely
disagree though.24 The two theses yield the same result on structures which are
not too big. As a matter of fact, if M and M′ are at most countable structures,
M IsoM′ if and only ifM Isop M′. The nature of the disagreement between a
proponent of Tarski’s thesis and an advocate of our revised version of it could be put
in the following way. Both agree that, concerning small “surveyable” structures,
two structures are logically similar iff they are formally similar. This accounts for
the generality of logic, which does not take into account any special feature of
the domains of the structure, and for the formality of logic, which is insensitive
to the identity of the objects. When it comes to bigger structures, the proponent
of Tarski’s thesis thinks that the natural way to extend this similarity relation is to
require again full formal similarity: two structures are logically similar iff they are
isomorphic. On the contrary, the proponent of the Isop thinks that this is going to
grant a significance to logically unsignificant differences. For him, what is essential
in the similarity relation acting on small structures is the idea of an arbitrary ω-long
inspection of the structures. Two big structures should be considered as logically

24We are indebted here to Gila Sher for the suggestion to discuss the common part of the two
theses.
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similar as long as they pass this test, and differences coming only from cardinality
issues involving higher infinites should not come into play. This is the reason why
two structures are logically similar if and only if they are potentially isomorphic.

4.2 The logic of invariance under potential isomorphism

The last paragraph has been devoted to an ex ante justification of the Isop-thesis
for logicality. Ex post, we have to look into the consequences of the thesis, in or-
der to see whether the conflict with some of our intuitions regarding logicality has
been solved, or if the overgeneration problem is still there. To give some exam-
ples, the quantifier Qℵ0 (“there are exactly ℵ0 x such that...”), Q>ℵ0 (“there are
uncountably many x such that...”) are not Isop-invariant. Q∃ of course, and Q≥ℵ0
(“there are infinitely many x such that...”) are Isop-invariants. QWF , the unary
relational quantifier testing whether a relation is well-founded, is Isop-invariant
as well. More generally, what is the logic of Isop-invariance? In abstract model
theory, Isop-invariance, as a relation of elementary equivalence, is known as the
Karp property:25

Definition 12 (Karp property). A logic L has the Karp property iff, for all struc-
turesM,M′, ifM Isop M′, thenM≡LM′

Since Isop is closed under definability, the Karp property provides a bound on the
expressivity of any logic whose logical constant abide by the Isop thesis:

Fact 11. Let L be a logic whose logical constants denote Isop invariant operators,
L has the Karp property.

There is an analogon to the “functional completeness” results for L∞,∞ with re-
spect to invariance under bijection and L−∞,∞ with respect to invariance under ho-
momorphism:

Theorem 7 (Barwise, 1973). An operator Q is Isop-invariant iff for any set M ,
QM is definable in L∞,ω.

Note however that this kind of result is weaker than Feferman’s result for
FOL− and invariance under homomorphism restricted to monadic operators. His
result establishes the global definability of invariant operators: there is one for-
mula of FOL which defines the operation QM of an operator Q, whatever M .
By contrast, the three results for Iso, SHom and Isop bear only upon the local
definability of invariant operators: for every set M , there is a (different) formula
defining the operation QM . Obviously, global definability implies local definabil-
ity, but the converse is not true in general. QWF is Isop-invariant. It is locally
definable in L∞,ω (every order type is definable in L∞,ω), but it is not globally

25We are indebted here to Dag Westerståhl for suggesting us to make more explicit the link with
standard results in abstract model theory.
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definable in L∞,ω: every formula φ(R, ...) which has arbitrarily big well-founded
models admits a non well-founded model.

How could we recover global definability for Isop-invariance? First note that,
similarly to what happens with Feferman’s result, the restriction to monadic oper-
ators would make things easier:

Theorem 8. The class of operators λ-definable from monadic Isop-invariant op-
erators is globally definable in Lℵ1 ,ω.

Proof. We shall just sketch the proof, which relies on the same idea as Feferman’s
proof for his Theorem 5.14 (1999, p. 42). It is sufficient to show that each monadic
Isop-invariant operator is definable in Lℵ1 ,ω. Let Q be such an operator. Q is a
class of structures of the form 〈M,P 1 , ..., P n〉 where each P i for i ∈ {1, ..., n} is
unary. Since Q is Iso-invariant, the fact that a given modelM is or is not in Q is
fully determined by the cardinality of each boolean compound of the P 1 , ..., P n .
But sinceQ is Isop-invariant, we have more than that: its behavior must be uniform
with respect to boolean compounds of infinite cardinality. Therefore the behavior
of Q is fully determined by the value belonging to {0, ..., n, ...,ℵ0} associated
with each boolean compound – this values correspond to the cardinality of the set
up to potential isomorphism. Each value is described by a sentence of Lℵ1 ,ω (either
“there are exactly n objects” or “there are infinitely many objects”). There are 2n

different boolean compounds, so there are only ℵ0
2n

= ℵ0 different possibilities.
Hence, Q can be described by a disjunction of size ℵ0 of Lℵ1 ,ω-formulas, which
is again a formula of Lℵ1 ,ω.

However, for the reasons mentioned in section 2, we do not think that the restriction
to monadic operators is conceptually motivated. Is there a natural logicL extending
L∞,ω such that Isop-invariant operators are globally definable in L? This is an
open question. We have seen that global definability in L∞,ω failed for QWF .
In a sense, it would be sufficient to drop QWF and related operators to recover
global definability. Let us see this. In abstract model theory, a logic L is said to
be bounded if and only if, for any L-sentence φ(R, ...) having only models with
well-ordered R, there is an ordinal α such that the order type of R is always less
than α. By extension, we shall say that a class K of operators is bounded iff the
logic LK associated with it is bounded. The following is a mere rephrasing of
Lindström’s theorem:

Theorem 9. If K is a bounded class of operators such that Inv(Iso1 ) ≤ K ≤
Inv(Isop), K is globally definable in L∞,ω.

Proof. It is sufficient to check that the standard proof of Lindström’s theorem can
be adapted. We give a sketch, following the proof by Flum (1985, Theorem 3.1,
p. 106). One assumes for contradiction that there is a quantifier Q in K such
that Q cannot be defined in L∞,ω. For each ordinal α, there is a sentence χα of
L∞,ω which is the disjunction of the formulas φαM describing the α-isomorphism
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type of the structuresM such that Q(M). By hypothesis, none of the χα defines
Q. This means that for each α, there are α-isomorphic models Aα and Bα such
that Q(Aα) but not Q(Bα). By coding partial isomorphisms (this is doable in LK

because Inv(Iso1 ) ≤ K) and by using the logical constant Q denoting Q, one
gets an LK -sentence ψ which is true exactly in the modelsM = 〈V,W,R, I, ...〉
(where V and W are unary, R and I binary), such that:

• the V -part ofM is in Q, the W -part ofM is not in Q

• R is an ordering

• I is a function and for each a in the field of R, the image I(a) of a by I is
a non-empty set of partial isomorphisms between the V -part and the W -part
ofM.

• The sequence I(a) with a in the field of R has the back and forth property.

For each ordinal α, ψ has a model in which R is well-ordered of order type α.
Since LK is bounded by hypothesis, ψ has a non-well-ordered modelM′. Its V -
part is in Q, but its W -part is not. Because M′ is not well-ordered, there is an
infinite descending sequence with respect to R. Hence, the V -part ofM′ and the
W -part ofM′ are potentially isomorphic. This contradicts K ≤ Inv(Isop).

This theorem says that any not too meager class K below Inv(Isop) which does
not contain QWF and similar operators is globally definable in L∞,ω. In the other
direction, would it be sufficient to add something like QWF or a fixed point opera-
tor to L∞,ω in order to get global definability for the full class Inv(Isop)?

4.3 Logic, mathematics and the overgeneration problem

The overgeneration problem presented in the first section follows from the collapse
of logic onto mathematics that results from Tarski’s thesis. The incentive to revise
Tarski’s thesis comes from the need to account for the intuitive difference between
logic and mathematics. Now that we have put forward a conceptually motivated
alternative to Tarski’s thesis, the question is: what is the picture of the relationship
between logic and mathematics according to the Isop thesis for logicality, and does
it look right? Here are a few facts following from the Isop thesis which are relevant
to the discussion:26

i) The issue of the logicality of cardinality quantifiers is addressed in a selective
way: only quantifiers which do not distinguish among infinite cardinals pass
the test.

ii) All arithmetical truths are logical truths.
26We omit here The precise meaning of these statements and their mathematical justifications.
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iii) Not all mathematical truths are logical truths.

iv) Second-order logic is not a genuine logic.27

Even if L∞,ω is much more powerful than FOL , the shift from Iso to Isop
seems more significant than the shift from Iso (and L∞,∞) to SHom (and L−∞,∞).
The Isop thesis for logicality sets the boundary between logic and mathematics
somewhere between arithmetic and set theory. Regarding the “natural logic” un-
derlying natural language, this seems to be a reasonable place to draw the line. On
the one hand, the language of arithmetic indeed belongs to natural language. Num-
ber words are regular words, on a par with other determiners and adjectives. The
mastery of logical consequence in natural language requires some arithmetical abil-
ities. For example, the inference from “three men and two women came” to “five
men and women came” (we assume the group reading for the second sentence)
seems to be a logical inference that any competent speaker should accept. The
difference between the finite and the infinite is also in the lexicon: “finitely many”
or “an infinite number of” are perfectly standard determiners, which do not belong
only to the highly specialized language of mathematicians. Moreover, the infer-
ences associated with the distinction between the finite and the infinite seem also
to be part of the semantic competence of speakers, at least up to some point. For
example, a competent speaker should recognize that the sentence “many French
movies favor introspection” does not imply the sentence “infinitely many French
movies favor introspection”. On the other hand, set theory proper, and its specific
questions, like the Continuum Hypothesis or Large Cardinals axioms clearly lack a
counterpart in everyday discourse. The notions they involve do not belong at all to
our basic semantic competence. As a matter of fact, even if the notions of “set” or
“belonging to” can be conveyed in ordinary English, it seems highly implausible
that a competent speaker should be able, on the basis of its semantic competence,
to accept or reject the Continuum Hypothesis.

As a consequence, even if Isop-invariance is quite liberal, specially if one has
in mind FOL as the standard target, it seems that the overgeneration problem is
at least eased, if not solved, by the shift from Iso-invariance to Isop-invariance.
Moreover, the fact that we do not get exactly FOL does not seem to be a problem
to us. After all, linguists know that a lot of arguments which are intuitively valid in
English cannot be adequately formalized in FOL. Consider the following one:

Most French movies favor introspection.
Most French movies are commercial failures.

There are French movies which favor introspection and which are
commercial failures.

27As a matter of fact, Second-order logic can express cardinality properties which are not invariant
under potential isomorphism, and, for that reason, is out of the picture of logical operations that we
drew here. However, a systematic development of generalized invariance to higher-order operations
is still missing.
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The determiner “Most” is not definable in FOL, but (at least on countable
models, which seem to be sufficient for the kind of examples we consider) it is
Isop-invariant and definable in L∞,ω. Because the greater expressive power of
L∞,ω compared to FOL is indeed useful to formalize natural language arguments,
it seems to us that we should not be too quick in considering that any criterion
yielding a logic more expressive than FOL overgenerates. In this respect, at least
some of the extra expressive power provided by Isop invariant operators seems to
be a reason to accept the Isop thesis, rather than a reason to reject it.

As a consequence of the adoption of the Isop thesis, arithmetic turns out to be
a part of logic. In this sense, logicism might seem to be partly vindicated. But this
“logicisation” of arithmetic is not different from the “logicisation” of mathematics
that ensues from Tarski’s thesis. Arithmetical truths are logical truths, but this
does not come as the result of the kind of successful reduction of arithmetical
truths to a class of more elementary logical truths that Frege tried to accomplish.
What we have seen is rather that, according to a certain characterization of what
logic is, arithmetic de facto belongs to the realm of logic. Even if there is no
reduction here, the result is not totally deprived of interest. We have shown that
arithmetical notions have in common with the more elementary logical notions a
number of properties that grant them a special place in our conceptual scheme.
Not only are they devoid of non formal content, but they are devoid of problematic
set-theoretical content (they are absolute) and they belong to the smallest (closed
under definability) family of notions which are extremely general without being
trivial.

The interpretation of Theorem 4 seems particularly interesting to us. What the
theorem tells us is that, if we try to characterize logicality in terms of invariance
and if we accept the principle of closure under definability, we are “automatically”
going to embrace the arithmetical notions as soon as we embrace the most elemen-
tary logical notions. Negatively, this could raise suspicion: after all, why should
the logicality of the existential quantifier and the seemingly innocuous principle of
closure under definability have something to do with the logicality of arithmetical
notions? More precisely, the suspicion would be that similarity relations and clo-
sure principles do not interact well together, and that the strength of Theorem 4
mirrors the inadequacy of the framework of generalized invariance to capture log-
icality. Positively, if we think that characterizing logicality in termes of neutrality
with respect to certain types of differences between structures is a good idea, The-
orem 4 is a consequence that has to be accepted. In this case, the lesson would
be something like: as soon as the elementary logical are there, the arithmetical
notions are “potentially” there. This idea receives its precise mathematical formu-
lation from the principle of closure under definability.28

28Is this relationship relevant from a cognitive perspective? We shall not enter into this discussion
here, but the question is an important one. The program that consists in characterizing logicality in
terms of invariance would be even more legitimate and promising if it was backed up by empirical
evidence showing that there is a connection between logical and arithmetical abilities, and that in-
variance plays a role in this connection. This would constitute some kind of cognitive counterpart
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Do all Isop-invariant match our intuitions regarding which operations are log-
ical? The well-foundedness quantifier is a case in point. As we said, it is invariant
under potential isomorphism, but it does not seem to belong to the ‘natural logic’
underlying our semantic competence. The same thing goes with ‘ordinal quanti-
fiers’ such as ‘being isomorphic to α’, for a given ordinal α, which are invariant
under potential isomorphism as well (two well orderings are potentially isomor-
phic iff they are isomorphic). Again, this reflects the power of the principle of
closure under definability which gives us not only standard arithmetic but all of
ordinal arithmetic as well. We shall not try to argue that such notions are necessary
to formalize natural language arguments. Still, there might be a sense in which
ordinal arithmetic is a natural extension of arithmetic which is not plagued by the
uncertainties of cardinal arithmetic. In any case, the fact that ordinal arithmetic
comes in one piece with arithmetic and that arithmetic itself comes in one piece
with existential quantification on behalf our the principle of closure seems to us to
be an interesting consequence of the approach, even though one might object that
the ghost of overgeneration is still with us.

Conclusion

Tarski’s thesis for logical operators provides a necessary criterion of logicality.
However, because of the overgeneration problem, this criterion does not seem to
be sufficient. Our aim has been to find an alternative criterion, based on a strength-
ening of the requirement of invariance. At the conceptual level, the two arguments
in favor of Tarski’s thesis were shown to be flawed. We have suggested that the gen-
erality argument should be relocated within the setting of generalized invariance,
and supplemented with a constraint of closure under definability. The formality
argument would be fine as it stands, if ‘empirical’ (non formal) content was all
there is to content. Our proposal has been to turn the argument into a more general
“lack of content argument” in which absoluteness plays a crucial role. The revised
arguments support an alternative view on logicality, according to which logical
operations are invariant under potential isomorphism.

to the purely conceptual analysis of the most basic part of our conceptual scheme that we tried to
provide.
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