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Introduction

Among the well-established variety of formal
grammar types providing a mildly context-sensitive
grammar (MCSG) formalism in the sense of Joshi
(1985), Stabler’s minimalist grammars (MGs)
(Stabler 1997, 1999) come closest to modeling the
tools used in the Chomskyan branch of generative
syntax known as “minimalism” (Chomsky 1995,
2000, 2001). Interestingly, without there being a
rise in (at least weak) generative power, (exten-
sions and variants of) MGs accommodate a wide
variety of (arguably) “odd” items from the syntac-
tician’s toolbox, such as head movement (Stabler
1997, 2001), affix hopping (Stabler 2001), (strict)
remnant movement (Stabler 1997, 1999), and (to
some extent) adjunction and scrambling (Frey and
Girtner 2002; Girtner and Michaelis 2003). As
a descendant of transformational grammar (TG),
minimalism carries over the division of labor be-
tween a phrase-structural and a transformational
component. These find their way into MGs as
operations merge and move, respectively. As is
well-known, the Aspects-vintage of TG (Chomsky
1965) was shown to be Turing equivalent by Pe-
ters and Ritchie 1973. This led to intensive in-
vestigation into locality conditions (LCs) (Chom-
sky 1973, 1977, 1986; Rizzi 1990; Cinque 1990;
Manzini 1992; among others) in an attempt to re-
strict the power of transformations. However, com-
plexity results for these grammars with LC-add-
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ons are largely absent.! This picture has changed
with MGs, as a formalized version of minimalism,
which were shown to belong among the MCSG-
formalisms in Michaelis 2001a. On the basis of
this result it was possible to begin an investigation
into how the complexity of MGs is affected by the
presence or absence of various LCs. Here we are
going to review this work and explore some direc-
tions for further research.

In particular we are going to look at the behav-
ior and interaction of the shortest move condition
(SMC), the specifier island condition (SPIC) and
the adjunct island condition (AIC). It will turn out
that different LCs have different effects on com-
plexity. The original complexity result has been
shown to hold for standard MGs incorporating
the SMC. Adding the SPIC to standard MGs has
non-monotonic consequences: whether complex-
ity goes up or down depends on the absence or co-
presence of the SMC, respectively (Section 2.1).

10ne notable exception is the work of Rogers (1998),
who proves the (strong) context-freeness of a restricted gov-
ernment and binding (GB) formalism, which he develops in
terms of a (monadic second order) logical approach. In the
connection of a logical formalization of GB(-like) structures
also Kracht 1995b and 1995a (as well as Kracht’s follow-up
work) deserve attention. Some further relevant discussion can
be found in the literature on constraint- or principle-based
parsing such as, e.g., Cornell 1992, Stabler 1992, or Berwick
1991.

2 A more general picture of the MCSG landscape is given
in Figure 11 within the Appendix, where, in particular, we
have the following abbreviations: TAG = tree adjoining gram-



For the AIC, the picture is more complicated.
First of all, the AIC only makes sense if base-
adjunction and adjunction by scrambling/extra-
position is added to MGs (as suggested in Frey and
Girtner 2002; Girtner and Michaelis 2003). Even
more specifically, the AIC seems to make a differ-
ence if adjunction is allowed to occur countercycli-
cally or late, i.e. if it is allowed to target a non-
root constituent. Under these conditions, adding
the AIC together with the SMC guarantees that the
resulting grammars stay within the class of MC-
SGs. Without the AIC there are configurations that
appear to go beyond. In MGs without the SMC,
on the other hand, it is plausible to assume that the
AIC does not change complexity at all, i.e. it is
void (Section 2.2).

Before we go into these particulars about LCs,
we will provide a formal introduction to (the rel-
evant variants of) MGs in Section 1. In a further
outlook (Section 3), we sketch an MG-analysis of
multiple wh-constructions and conclude with some
general remarks about future research.

1 Minimalist Grammars

Throughout we let =Syn and Syn be a finite set of
non-syntactic features and a finite set of syntac-
tic features, respectively, in accordance with (F1)—
(F3) below. We take Feat to be the set ~Syn U Syn.

(F1) —Syn is disjoint from Syn and partitioned into
the sets Phon and Sem, a set of phonetic fea-

tures and a set semantic features, respectively.

(F2) Syn is partitioned into six sets:>

mars, LIG = linear indexed grammars, CCG = combinatory
categorial grammars, HG = head grammars, LCFRS = linear
context-free rewriting systems, MCTAG = (set local) multi-
component tree adjoining grammars, IG = indexed grammars
(cf. Joshi et al. 1991). An arrow always points to a class which
is less powerful in generative capacity. If there is a double-
arrow between two classes their generative capacity is equal.

3Elements from Syn will usually be typeset in typewriter
font.

Base,

M-Select = {=x|x € Base},
A-Select ={~x|x € Base},
M-Licensors ={ +x | x € Base } ,
M-Licensees = { -x | x € Base }, and
S-Licensees = {~x|x € Base},

the sets of (basic) categories, m(erge)-selectors,
a(djoin)-selectors, m(ove)-licensors, m(ove)-licen-
sees, and s(cramble)-licensees, respectively.

(F3) Base includes at least the category c.

We use Licensees as a shorthand denoting the set
M-Licensees\U S-Licensees.

Definition 1.1 An expression (over Feat), also re-
ferred to as a minimalist tree (over Feat), is a five-
tuple (Ny,<t , <r,<r,label;) obeying (E1)—(E3).

(E1) (Ng,<7,=q) is a finite, binary (ordered) tree
defined in the usual sense: N; is the finite,
non-empty set of nodes, and <; and <. are
the respective binary relations of dominance
and precedence on N;.*

(E2) <:C N; X Ny is the asymmetric relation of
(immediate) projection that holds for any two
siblings, i.e., for each x € N; different from
the root of (Ny, <, <) either x <; sibling: (x)

or siblingr (x) <. x holds.>

(E3) label, is the leaf-labeling function from
the set of leaves of (N, <r,=<¢) into

Syn*{#}Syn* Phon* Sem* .°

We take Exp(Feat) to denote the class of all ex-
pressions over Feat.

4Thus, <& denotes the reflexive-transitive closure of <, the
binary relation of immediate dominance on Ny.

SFor each x € N; different from the root of (N, <y, <),
sibling:(x) denotes the (unique) sibling. If x <; y for some
X,y € N then x is said to (immediately) project over y.

5For each set M. , M* is the Kleene closure of M, including
€, the empty string. For any two sets of strings, M and N, MN
is the product of M and N w.r.t. string concatenation. Further,
# denotes a new symbol not appearing in Feat.



Let T = (Ng, <z, <, <r,label;) € Exp(Feat).

For each x € N, the head of x (in ©), denoted
by head:(x), is the (unique) leaf of T with x <
head:(x) such that each y € N; on the path from
x to head:(x) with y # x projects over its sibling,
i.e. y <q sibling:(y). The head of  is the head of
T’s root. T is said to be a head (or simple) if Ny
consists of exactly one node, otherwise 7 is said to
be a non-head (or complex).

A given expression ¢ = <N¢,<1$ =0 <¢,label¢)
belonging to Exp(Feat) is a subexpression of T
in case <N¢,<1$,-<¢> is a subtree of (Ng, <, <),
<= <z qu:XNm’ and labelq) = label; qu,- Such a
subexpression ¢ is a maximal projection (in <) if
its root is a node x € N; such that x is the root of T,
or such that siblingz(x) <; x. MaxProj(7) is the set
of maximal projections in 7.

comp C MaxProj(t) x MaxProj(t) is the binary
relation defined such that for all ¢, € MaxProj(7)
it holds that ¢ comp. ) iff head (ry) <. ry, where
re and ry are the roots of ¢ and Y, respectively. If
¢ compy y, holds for some ¢,% € MaxProj(t) then
X is a complement of ¢ (in T). comp; is the
transitive closure of comp;. Comp*(t) is the set
{0]tcomps ¢}.

specy C MaxProj(t) x MaxProj(7) is the binary
relation defined such that for all ¢, € MaxProj(7)
it holds that ¢ spec. x iff both r, = sibling:(x) and
x <q ry for some x € Ny with ry < x<¢ heady(ry),
where ry and ry are the roots of ¢ and ), respec-
tively. If ¢specyy for some ¢,y € MaxProj(t)
then 7 is a specifier of ¢ (in T). Spec(t) is the
set {0 |Tspec¢}. Note that, if Spec(t) # 0 then
Spec(7) is not necessarily a singleton set, but there
is a unique specifier v of T, which we will refer to
as the highest specifier of T, such that the root of v
is immediately dominated by the root of t.”

"Note that the leaf-labeling function label; can easily
be extended to a total labeling function ¢; from N into
Feat™{#}Feat* U {<,>}, where < and > are two new distinct
symbols: to each non-leaf x € N; we can assign a label from
{<,>} by £ such that £ (x) = < iff y < z for y,z € Ny with
X< %2, and y < z. In this sense a concrete T € Exp(Feat) is
depictable in the way indicated in Figure 1.

> < ‘“left daughter projects”

specifieA >

specifier, >

> “right daughter project:

specifier, <

héad
complement

Figure 1: A typical minimalist tree.

A ¢ € MaxProj(t) is said to have, or display,
(open) feature f if the label assigned to ¢’s head
by label; is of the form B#ff for some f € Feat
and some B,p’ € Feat*

>

/\
d.#.she <

PN

=v.=d.#.i <

=d.vi#like <

PN
=n.d.#.- wh.which n.#.book

Figure 2: Example of a minimalist tree.

T is complete if its head-label is in
Syn*{#}{c}Phon*Sem*, and each of its other
leaf-labels is in Syn*{#}Phon*Sem*. Hence, a
complete expression over Feat is an expression
that has category c, and this instance of c is
the only instance of a syntactic feature which
is preceded by an instance of # within its local
leaf-label, i.e. the leaf-label it appears in.

The phonetic yield of T, denoted by Yp, . (),
is the string which results from concatenating
in “left-to-right-manner” the labels assigned via
label; to the leaves of <NT,<1$,<T>, and replac-
ing all instances of non-phonetic features with the
empty string, afterwards.’

8Thus, e.g., the expression depicted in Figure 2 has feature
i, while there is a maximal projection which has feature -wh.
For the sake of simplicity, we assume she, like, which, and
book to be strings of phonetic features.

9Tree in Figure 2 has phonetic yield she like which book.



For two expressions 0,% € Exp(Feat), [<0,%]
(respectively, [~ ¢,y ]) denotes the complex expres-
sion Y = (Ny, Uy, <y, <y, labely) € Exp(Feat) for
which ¢ and Y are those two subexpressions such
that ry <y ry, ry <y ry and ry <y ry, and such that
ro <y ry (respectively ry <y ry), where ry, ry and
ry are the roots of ¢, x and y, respectively.

For any ¢,%,y € Exp(Feat) such that ¥ is a
subexpression of ¢, 0{x/y} is the expression
which results from substituting y for x in ¢.

As before we use MG as a shorthand for minimalist
grammar.

Definition 1.2 An MG without both SMC and
SPIC (MG/~7/) is a 5-tuple of the form
(—=Syn,Syn,Lex,Q,c) where Q is the operator
set consisting of the structure building functions
merge!~/ and move/~~/ defined as in (me SFIC) and
(mo~SME-SPIC) pelow, respectively, and where Lex
is a lexicon (over Feat), a finite set of simple ex-
pressions over Feat, with each lexical item T € Lex
being of the form ({r;},<r, <1, <¢,label;) such
that label;(r;) is an element in {#}(M-Select U
M-Licensors)*Base M-Licensees* Phon™*Sem™.

The operators from Q build larger structure from
given expressions by successively checking “from
left to right” the instances of syntactic features ap-
pearing within the leaf-labels of the expressions in-
volved. The symbol # serves to mark which feature
instances have already been checked by the appli-
cation of some structure building operation.

(me™SPIC) merge/~/ is a partial mapping from
Exp(Feat) x Exp(Feat) into Exp(Feat).
For any ¢,x € Exp(Feat), (0,x) is in
Dom(merge’~") if for some category x € Base
and a, o, B, B’ € Fear*, conditions (me.i) and
(me.ii) are fulfilled:'®

(me.i) the head-label of ¢ is o#t=xa (i.e. ¢
displays m-selector =x),

10For a partial function f from a class A into a class B,
Dom(f) is the domain of f, i.e., the class of all x € A for
which f(x) is defined.

(me.ii) the head-label of y is P#xp’ (i.e. x dis-
plays category x).

Then,
(me.1) merge!~/(0,%) = [0',7'] if ¢ is simple,
(me.2) merge!~'(¢,%) = [sx,9'] if ¢ is complex,

where ¢ and ' result from ¢ and Y, respec-
tively, just by interchanging the instance of
# and the instance of the feature directly fol-
lowing the instance of # within the respective
head-label (cf. Figure 3).

merge : Exp(Feat) x Exp(Feat) — Exp(Feat)

¢ X

AN

B#X B’

a#=xa’
A

< >
a=x#a’ Z%I Xi, S quf
Bx#p' BX#B' a=x#a'
@simple @ complex

Figure 3: The merge-operator.

(mo SMCSPICY y5ve/=~/ is a partial mapping
from Exp(Feat) to Prp(Exp(Feat)).'! An ex-
pression ¢ € Exp(Feat) is in Dom(move/~~/)
if -x € M-Licensees and o,/ € Fear* exist
such that (mo.i) and (mo.ii) are true:

(mo.i) the head-label of ¢ is o#+xa’ (i.e. O
displays licensor +x),

(mo.ii) there is a )}, € MaxProj(¢) with head-
label B#-xp’ for some B, € Fear* (i.e.
X € MaxProj(¢) exists displaying fea-
ture -x).

Then,

e (Exp(Feat)) is the class of all finite subsets of
Exp(Feat).



move! =~/ (9)
X € MaxProj(¢) with
=< [s%/,0']| head-label P#-xf’ for ;,
some B, B’ € Feat*

where ¢’ results from ¢ by interchanging the
instance of # and the instance of +x directly
following it within the head-label of ¢, while
the subtree ¥ is replaced by a single node la-
beled €. / arises from by interchanging the
instance of # and the instance of —-x immedi-
ately to its right within the head-label of  (cf.
Figure 4).

move : Exp(Feat) — 2EXP(Feat)

a+x#a’

Figure 4: The move-operator.

Definition 1.3 An MG without SMC, but with
SPIC (MG/~*/) is a five-tuple of the form
(—=Syn,Syn,Lex,Q,c) where Q is the operator
set consisting of the structure building functions
merge/*/ and move/~*/ defined as in (me*SFIC) and
(mo~SMCASPIC) below, respectively, and where Lex
is a lexicon over Feat defined as in Definition 1.2.

(me*SPIC) merge/*/ is a partial mapping from
Exp(Feat) x Exp(Feat) into Exp(Feat).
For any ¢,x € Exp(Feat), (0,x) is in
Dom(merge/*!) if for some category x € Base
and a, o, B, B’ € Feat*, conditions (me.i) and
(me.ii) above and (me.spic) are fulfilled:

(me.spic) if ¢ is complex then there is no
Y € MaxProj(y) with head-label y#yy

for some y € Licensees and v,y € Feat*
(i.e. the selected specifier does not prop-
erly contain a maximal projection with
an unchecked licensee feature instance).

Then, merge/*/ (0,y) = merge’~/ (d,%).

(mo~SMCASPICY The operator move/~*/ is a partial
mapping from Exp(Feat) to Py, (Exp(Feat)).
A ¢ € Exp(Feat) is in Dom(move/=*/) if for
some -x € M-Licensees and o,0o € Feat®,
(mo.i) and (mo.ii) given above and (mo.spic)
are true:

(mo.spic) there is no y € MaxProj(y,) differ-
ent from Y, and with head-label y#yY for
some y € Licensees and v,y € Feat* (i.e.
the maximal projection moved to the
specifier does not itself properly con-
tain itself a maximal projection display-
ing an unchecked syntactic feature in-
stance).

Then, move/=*/(¢) = move/~~/ ().

The formulation of the SPIC as presented here,
could be seen as an “active” variant, preventing
the creation of expressions which include speci-
fiers from which proper extraction could poten-
tially take place. The MG-version presented in Sta-
bler 1999 allows derivation of such expressions,
but prevents these expressions to enter a conver-
gent derivation by explicitly stating a “passive”
formulation of the SPIC, demanding that the max-
imal projection ¥, € MaxProj(¢) which has feature
-x can only move in order to check the licensee,
if there exists a y € Comp*(¢) with ¥ = y or

X € Spec(V).

Definition 1.4 An MG with SMC, but without
SPIC (MG'*7/) is a five-tuple of the form
(—=Syn,Syn,Lex,Q,c) where Q is the operator
set consisting of the structure building functions
merge’~ and move/*~/ defined as in (me SFIC)
above and (mo*SMCSPIC) helow, respectively, and



where Lex is a lexicon over Feat defined as in Def-
inition 1.2.

(mo*SMC-SPICy The operator move/*/ is a partial
mapping from Exp(Feat) to Ppn(Exp(Feat)).
A ¢ € Exp(Feat) is in Dom(move/*~/) if for
some -x € M-Licensees and o,o € Feat*,
(mo.i) and (mo.ii) above and (mo.smc) are
true:

(mo.smc) exactly one y € MaxProj(0) exists
with head-label y#-xY for some v,y €
Feat” (i.e. exactly one ¥, € MaxProj(0)
displays -x).!2

Then, move/*~/(¢) = move/~~/ ().

Definition 1.5 An MG with both SMC and
SPIC (MG'**/) is a five-tuple of the form
(—Syn,Syn,Lex,Q,c) where Q is the operator
set consisting of the structure building functions
merge/*’ and move’**" defined as in (me*SFIC)
above and (mo*SMCASPIC) below, respectively, and
where Lex is a lexicon over Feat defined as in Def-
inition 1.2.

(mo*SMCASPICY The operator move** is a partial
mapping from Exp(Feat) to P, (Exp(Feat)).
A ¢ € Exp(Feat) is in Dom(move**') if for
some -x € M-Licensees and o,0o € Feat®,
(mo.i), (mo.ii), (mo.spic) and (mo.smc) above
are true.

Then, move** (¢) = move’~~/(0).13

Let G = (—=Syn,Syn,Lex,Q,c) be an MG/~/,
MG/~*/, MG/*~/, respectively MG’**/. For the
sake of convenience, we refer to the correspond-
ing merge- and move-operator in Q by merge and
move, respectively. Then the closure of G, CL(G),

IZNote that condition (mo.smc) implies (mo.ii).

3Note that the sets move/*~/(¢) and move/**(¢) in
(mo*SMESPICY and (mo*SMEASPICY | respectively, both are sin-
gleton sets because of (mo.smc). Thus, the corresponding
functions can easily be identified with one from Exp(Feat)
to Exp(Feat).

is the set Uy CL¥(G), where CL(G) = Lex, and
for k € IN,'* CL¥*!(G) C Exp(Feat) is recursively
defined as the set

CL¥(G)
U {merge(,x) |
(0,%) € Dom(merge) N CLF(G) x CLF(G)}

Y U¢ eDom(move) NCL*(G) move(q)) ’

The set {t|t € CL(G) and T complete }, denoted
T(G), is the minimalist tree language derivable by
G. The set {Yp,,,. ()|t € T(G)}, denoted L(G), is
the minimalist (string) language derivable by G.

In the following we will use the notation MG ; .,
as a shorthand for minimalist grammar with gener-
alized adjunction and extraposition.

Definition 1.6 An MG, ,,,  without  both
SMC and AIC (MG;)) is a 5-tuple

G = (—Syn,Syn,Lex,Q,c) where Q is the op-
erator set consisting of the functions merge/~/,
move!~~/, adjoin’~' and scramble/=~! defined
as in (meSPIC) and (moSMG-SPIC)  apove,
and (ad™€) and (sc™SMC-AIC) pelow, respec-
tively, and where Lex is a lexicon (over Feat),
a finite set of simple expressions over Feat,
and each lexical item T € Lex is of the form
({re}, <1, =1, <q,label;) such that label;(rs)
belongs to {#}(M-Select UM-Licensors)*(Base U
A-Select)Licensees* Phon* Sem”™.

(ad™) adjoin’~ is a partial mapping from
Exp(Feat) x Exp(Feat) into the class
Pin(Exp(Feat)). A pair (¢,x) with
0,% € Exp(Feat) belongs to Dom(adjoin’~")
if for some category x € Base and
o, o € Feat*, conditions (ad.i) and (ad.ii) are
fulfilled:

(ad.i) the head-label of ¢ is o#~xa (i.e. 0
displays a-selector ~x), and

141N is the set of all non-negative integers.



(ad.ii) there exists some Yy € MaxProj(y)
with head-label of the form B#xf’ or
Bxp'#p" for some B,p',p" € Fear*

adjoin : Exp(Feat) x Exp(Feat) — 22XP(Feat)

#xp'
B#XB BAxE
cyclic adjunction (Frey and Gartner 2002)
N X
a#=xa’

AN X

¢

7 a~X#a’

BX BI# BII
BXP#B

acyclic/late adjunction (Gartner and Michaelis 200
Figure 5: The adjoin-operator.
Then,

adjoin’~' (¢, %)
Y € MaxProj(y)
with head-label
= x{w/[<w,¢']}| P#x=p’ or BxP'#B" 5,

for some
B,B',B" € Fear*

where ¢’ results from ¢ by interchanging the
instances of # and ~x, the latter directly fol-
lowing the former in the head-label of ¢ (cf.
Figure 5).

(sc™SMC-AICY The function scramble’~/ maps
partially from Exp(Feat) into the class
Piin(Exp(Feat)). A ¢ € Exp(Feat) is in
Dom(scramble/ =) if for some x € Base and
o, o € Feat®, (sc.i) and (sc.ii) are true:

(sc.i) the head-label of ¢ is a#xa (i.e. ¢ dis-
plays category x), and

(sc.ii) there is a y, € MaxProj(¢) with head-
label B#~xp’ for some B, B’ € Feat* (i.e.
there is some y € MaxProj($) display-
ing ~x).

Then,

scramble’ =~/ ()
X € MaxProj(¢) with
= < [<9¢',%']| head-label B#~xp’ for ; ,
some B, B’ € Feat*

where ¢ € Exp(Feat) is identical to ¢ except
for the fact that the subtree ) is replaced by a
single node labeled €. ' € Exp(Feat) arises
from 7 by interchanging the instance of # and
the instance of ~x immediately to its right
within the head-label of 7 (cf. Figure 6).

scramble : Exp(Feat) — 22XP(Feat)

Figure 6: The scramble-operator.

Definition 1.7 An MG, without SMC, but
with AIC (MG'7* ) is a five-tuple of the form

adj,ext
(—Syn,Syn,Lex,Q,c) where Q is the operator
set consisting of the structure building functions
merge!~!, move/~~!, adjoin’*’ and scramble/=*/
defined as in (me SFIC) and (mo SME-SPIC) apove,
and (ad*A1C) and (sc™SMEHAIC) below, respectively,
and where Lex is a lexicon over Feat defined as in

Definition 1.6.

(ad*AC) adjoin/*’ is a partial mapping from
Exp(Feat) x Exp(Feat) into the class
Psin(Exp(Feat)). A pair (¢,x) with



0,% € Exp(Feat) belongs to Dom(adjoin’™")
if for some category x € Base and
o,of € Fear*, conditions (ad.i) and (ad.ii)
above and (ad.aic) are fulfilled:

(ad.aic) there is no y € MaxProj(¢) with
head-label y#yY for some y € Licensees
and v,Y € Feat* (i.e. the adjunct does
not properly contain a maximal projec-
tion with an unchecked syntactic feature
instance).

Then, adjoin’* (¢,x) = adjoin’~ (¢, ).

(sc™SMCHAICY The function scramble/~*/ maps
partially from Exp(Feat) into the class
Prin(Exp(Feat)). A ¢ € Exp(Feat) is in
Dom(scramble/=*') if for some x € Base and
o,of € Feat*, (sci) and (sc.ii) above and
(sc.aic) are true:

(sc.aic) there is no y € MaxProj(y) differ-
ent from %, and with head-label Y#yy
for some y € Licensees and v,y € Feat*
(i.e. the maximal projection scram-
bled/extraposed to an adjunct position
does not itself properly contain a maxi-
mal projection displaying an unchecked
syntactic feature instance).

Then, scramble’ =/ (0) = scramble/ =~/ (¢).

Definition 1.8 An MGadj, ext With SMC, but with-
out AIC (MG’ ) is a five-tuple of the form

adj,ext
(—Syn,Syn,Lex,Q,c) where Q is the operator
set consisting of the structure building functions
merge!~!, move/*~/, adjoin’~' and scramble/*~/
defined as in (meSFIC), (mo*SMC-SPIC) and
(ad™€) above and (sc*SME-AIC) pelow, respec-
tively, and where Lex is a lexicon over Feat defined

as in Definition 1.6.

(sc™SMC-AICY seramble/*~/ is a partial mapping
from Exp(Feat) to Py, (Exp(Feat)). A tree
O € Exp(Feat) is in Dom(scramble’*~") if for
some x € Base and o, o € Feat*, (sc.i) and
(sc.ii) above and (sc.smc) are true:

(sc.smc) exactly one x € MaxProj(§) exists
with head-label y#~xY for some v,y €
Feat” (i.e. exactly one ¥, € MaxProj(0)
displays ~x)."

Then, scramble’*~/ (0) = scramble/ =~/ (¢).

Definition 1.9 An MGadj’ ot With both SMC and

AIC (MGQ;};QI) is a five-tuple of the form
(—Syn,Syn,Lex,Q,c) where Q is the operator
set consisting of the structure building functions
merge!~!, move/*~/, adjoin’*' and scramble/*
defined as in (meSFIC), (mo+SMC-SPIC) apd
(ad*AI€) above and (sc*SMGHAIC) below, respec-
tively, and where Lex is a lexicon over Feat defined

as in Definition 1.6.

(sctSMCHAICY geramble’* is a partial mapping
from Exp(Feat) to Pyn(Exp(Feat)). A tree
O € Exp(Feat) is in Dom(scramble'**') if for
some x € Base and o, o € Feat*, (sc.i), (sc.ii),
(sc.aic) and (sc.smc) above are true.

Then, scramble’** (¢) = scramble/~~/ (¢).'

Let G = (—Syn,Syn,Lex,Q,c) be an MGz/l;j’;f“,
[=+/ [+,=/ . [+,+/
MGadj’ext, MGadj’ext, respectively MGadj’ext. For the

sake of convenience, we refer to the correspond-
ing merge-, move-, adjoin- and scramble-operator
in Q by merge, move, adjoin and scramble, respec-
tively. Let CL°(G) = Lex, and for each k € IN, let
CL**'(G) C Exp(Feat) be recursively defined as

CL¥(G)

U {merge(9,%)|
(0,%) € Dom(merge) N CLF(G) x CLF(G)}

~ Uq) eDom(moveyncr(c) M0Ve(®)

Y U<¢,x>eDom(adjoin)ﬂCL"(G) < CIG) 4dioin (%)

U U¢ eDom(scramble) ﬂCLk(G) Scmmble(q))

I5Note that condition (sc.smc) implies (sc.ii).

6scramble/*~/(¢) and scramble’** () in (sc™SMC-AIC)
and (sctSMCH+AIC) regpectively, both are singleton sets because
of (sc.smc). Thus, the corresponding functions can easily be
identified with one from Exp(Feat) to Exp(Feat).



Then, Uy CLX(G) is the closure of G, denoted
CL(G). The set {t|t € CL(G) and T complete},
denoted T(G), is the minimalist tree language
derivable by G. The set {Yp,,,(T)|T € T(G)},
denoted L(G), is the minimalist (string) language
derivable by G.

2 Locality Conditions
and Complexity Results

2.1 The Specifier Island Condition

Figure 7 presents an example of a non-mildly
context-sensitive MG not fulfilling the SMC but
the SPIC, and deriving a language without con-
stant growth property, namely, {a* |n > 0}. The
central column shows the lexical items as they
are drawn from the lexicon, i.e., with all features
unchecked. Arrows show the possible orders of
interaction among lexical items and resulting con-
stituents in terms of merge. Intermediate steps of
move are left implicit.

As shown by Kobele and Michaelis (2005), not
only this language, but in fact every language of
type O can be derived by some MG not fulfilling
the SMC but the SPIC for essentially two reasons:
a) because of the SPIC, movement of a constituent

< <
compI ement line

o into a specifier position freezes every proper sub-
constituent B within o, and b) without the SMC,
therefore, the complement line of a tree (in terms
of the successively embedded complements) can
technically be employed as a queue. As is well-
known, systems able to simulate queues are able to
generate arbitrary type O-languages.

Starting the “outer” cycle of our example in Fig-
ure 7, the currently derived tree shows 2"+1 suc-

cessively embedded complements on the comple-
ment line, all with an unchecked instance of -1,
except for the lowest one, which displays -m. (n
equals the number of cycles already completed.)
The initializing selecting head #.=v.z.-1 intro-
duces an additional licensee -1 to create string a
on a cycleless derivation. Going through the cycle
provides a successive bottom-to-top “roll-up” of
those complements in order to check the displayed
features. Thereby, 2""!+1 successively embedded
complements on the complement line are created,
again all displaying feature -1 except for the low-
est, which displays feature -m. Leaving the cycle
procedure after a cycle has been completed leads to
a final checking of the displayed licensees, where
for each checked -1 an a is introduced in the struc-
ture. This is the only way to create a convergent
derivation.!’

licensee m“marks”

end/start of “outer” cycle g #.V.-m “initialize”
< #.=v.z.-|
end “outer” cycle “appropri- —
ately check31|censggmp #.=z.+mu
start new “outer” cycle: # =u.+ .x.-
mtroduce new licenseem =X.y .- | ‘outer” cycle
trod doubl -
t %Tursot c%cgck%@qlce%%eg g #.2y.7. |
‘inner” cycle
H.=z.4 x2

leave final cxcle ‘appropri-
ately:” check licenseem

check successively licensee
-1, each time introducing aa

N, o me

g# —c 4 c. a@ “finalize”

Figure 7: MG-example.

Figure 12 of the Appendix summarizes what we
know about the interaction of SMC and SPIC,!8
where £ "\, Lp, respectively £,  £;, means “lan-
guage class £, is lower in generative capacity than
language class £;” while £, " L;, respectively
L, N\ L, means “language class £, is higher in
generative capacity than language class £;.” Cru-
cially, adding the SPIC can either properly reduce
complexity (lower left side) or properly increase

17For further details see Gértner and Michaelis 2005.

18The MIX language is the language of all finite strings
consisting of an equal number of @’s, b’s, and ¢’s appearing in
arbitrary order.



complexity (upper right side). What the SPIC does
depends on the presence or absence of SMC. Its
behavior is thus non-monotonic.

The SPIC, in fact, strictly reduces the genera-
tive capacity, when the SMC is present. Michaelis
2005 presents a string language which is derivable
by an MGs obeying the SMC, but falls outside the
class of string languages derivable by MGs obey-
ing both the SMC and SPIC."?

2.2 The Adjunct Island Condition

In this section we look at MGs with (late) adjunc-
tion and scrambling/extraposition and the effects
of imposing the AIC in a situation where the SMC
alone appears to be too weak to guarantee mild
context-sensitivity. Figure 8 gives a schematic il-
lustration of countercyclic or late adjunction, i.e.
adjunction to a non-root position.

A@w@

Figure 8: Countercyclic/late adjunction.

For the complexity issue we are interested in
here it is important to note that late adjunction is
capable of circumventing the SMC (cf. Gértner and
Michaelis 2003). (1) presents a case where this is
actually welcome.

(1) [[[[Only those papers #; ] did
[ everyone t; | read 7 |
[ who was on the committee | |
[ that deal with adjunction |; ]

We assume for simplicity that both of the rela-
tive clauses in (1) are extraposed by an application
of rightward scrambling and are adjoined to CP.
This is very roughly sketched in (2).

9More concretely, Michaelis 2005 proves the latter class to
be (strictly) subsumed by the class of indexed languages (ILs)
in the sense of Aho 1968, and the corresponding language pre-
sented as a case in point does, as shown in Staudacher 1993,
not even belong to the class of ILs.

2) *[ecpcP, CP
(2 " lcp CP, 1] aTu

For standard bottom-up derivations, (2) violates
the SMC, given the simultaneous presence of al-
pha (i.e. ~c) on both CPs. However, as sketched
in (3), a derivational sequence of (first) extrapo-
sition, late adjunction and (second) extraposition
voids this problem.

®3) [cp CP{ | start here
lcp -] cpf‘ move CPy, check a
[CPY — ] cpft |ate adjoin CP;
[ep— - 1] cpf‘ cpf‘ move CP,, check a

The proof that MGs without late adjunction, but
obeying the SMC are mildly context-sensitive rests
on the technical possibility of removing checked
features from the structures. Formally, late adjunc-
tion creates a situation where in order to locate the
individual adjunction sites, an a priori not bounded
amount of (categorial) information has to be stored
during a derivation, i.e., adjunction sites have to be
kept accessible. Therefore it is unclear whether,
in general, MGs allowing late adjunction still be-
long to the same complexity class. If, however, the
AIC is imposed, we can apply a specific reduction
method in proving that for the resulting MGs the
old complexity result holds. Under this reduction,
however, late adjunction can only be simulated if
the adjunct does not properly contain constituents
bearing unchecked licensees. But, this is exactly
the situation where the AIC comes in. From a lin-
guistic point of view it is rather natural to exclude
extraction from adjuncts as Huang (1982) argued.
This means that the weak generative capacity of
MGs with late adjunction and extraposition can be
kept within the bounds of standard MGs, i.e. mild
context-sensitivity, if the AIC is imposed in addi-
tion to the SMC. Figure 13 of the Appendix sum-
marizes our results for SMC/AIC-interaction.



3 Further Outlook

3.1 Multiple
Wh-Constructions and the SMC

One phenomenon appearing to challenge the SMC
adopted here is multiple wh-fronting in Slavic lan-
guages. Take, e.g., (4) from Bulgarian (Richards
2001, p. 249).

(4) Koj; kogo; kakvoytie  pital t; t
Who whom what AUX ask
‘Who asked whom what?’

On standard assumptions, (4) requires three li-
censee instances of type —wh, which are succes-
sively checked in the C-domain. The required pre-
movement representation, (5), is ruled out by (the
strictest version of) the SMC.

(5) [ —wh.koj e [vp pital ~wh.kogo -wh.kakvo ]]

A corresponding SMC-violation can be circum-
vented, however, if we adopt the wh-cluster hy-
pothesis as argued for by Sabel (1998; 2001) and
Grewendorf (2001) going back to Rudin (1988).
Under this perspective, wh-expressions undergo
successive cluster-formation before the resulting
cluster takes a single wh-movement step, in com-
pliance with the SMC. For this we have to add the

feature type of c(luster)-licensees and -licensors to
MGs.

A

c(luster)-licensees: “x,%y,%z, ...

c(luster)-licensors: Vx,Vy,Vz,...

In Figure 9 we show a derivation with two
wh-phrases. For cases with three or more such
phrases the intermediate ones have to be of type
d.Vwh.%wh.

Note that additional word order variation can
be found in Bulgarian, as shown in (6) (Richards
2001, p. 249).

(6) Koj kakvo kogo e pital

d.#.Vwh.- wh

d.#.2wh
>

D
<

d.Vwh.#.-wh  d.2wh.#

Wh-clustering, n = 2, crucial step 1

>
<
d.7wh-vh#  dEuh# /<
+uh.#.C \‘\>
/< A e
#.+wh.c \‘\>
<
d.Vwh.#.-wh  d.%wh.#

Wh-clustering, n = 2, crucial step 2

Figure 9: Wh-clustering involving c-licensors and
c-licensees.

This can be derived if cluster-formation is pre-
ceded by a scrambling-step of kakvo across kogo to
VP, which requires it to be of type d.~v."wh. See
Sabel (1998) for more discussion of wh- and focus-
driven movements in multiple wh-configurations.
A formal definition of the cluster-operator is given
now.20

20Gjven the “specifier condition” (cl.i), it is clear that—in
order to potentially end up with a convergent derivation—
within a lexical item an instance of a c-licensor must be imme-
diately preceded by an instance of a basic category, a-selector,



(cI*SMC) The operator cluster is a partial mapping
from Exp(Feat) to Exp(Feat). An expression
¢ € Exp(Feat) is in Dom(cluster) if there are
a c-licensee “x and o, € Feat* such that
(clLi), (clLii) and (cl.smc) are true:

(cl.i) thereisay € MaxProj(0) such that y is
the highest specifier of ¢, and the head-
label of y is o#Vxa (i.e. ¢ displays the
corresponding c-licensor Vx),

(clii) there is a y € MaxProj(¢) with head-
label B#2xB’ for some B, B’ € Fear™ (i.e.
Y € MaxProj(9) exists displaying #x).

(cl.smc) the existing ¢ € MaxProj(¢) from
(cl.ii) is unique (i.e. there is exactly one
Y € MaxProj(¢) displaying %x).

Then, cluster(d) = ¢'{x/[<x’,V']},

where ¢’ results from ¢ by replacing the sub-
tree ¥ by a single node labeled €. 7’ results
from by interchanging the instances of # and
Vx, the latter directly following the former in
the head-label of ¥, while W' results from
by interchanging the instances of # and “x,
the latter directly following the former in the
head-label of y (cf. Figure 10).2!

Semantically, wh-cluster-formation can be inter-
preted as quantifier composition, a.k.a. “absorp-
tion” (Higginbotham and May 1981).

3.2 Future Research

There are two directions for future research that we
consider of immediate relevance. First, it is neces-
sary to develop a more systematic and complete
combinatorics of LCs within and their complexity
impact on MGs. Second, it is important to analyze

m-licensee, or s-licensee, i.e., in particular an instance of a c-
licensor cannot be preceded by an instance of a c-licensee.

21 A5 Tong as the SMC is obeyed, a proof showing that at
least the weak generative capacity is unaffected seems to be
straightforward by employing the “usual” reduction methods
(cf. Michaelis 2001a).

cluster : Exp(Feat) — Exp(Feat)

X ()

aVx#a' BOX#PB

Figure 10: The cluster-operator.

the exact role LCs are playing in the other MCSG-
frameworks (for TAGs see especially Frank 2002,
for CCGs see Steedman 1996, for LIG-extensions
see Wartena 1999), and try to establish the LCs’
impact on complexity there. From the study of LCs
within GB we already know that boundedness of
chain overlap is crucial for L% ,-definability of lo-
cality (Rogers 1998, p. 182, cf. the result on Scan-
dinavian extraction in Miller 1991). This comes
very close to the essence of what the SMC does
within MGs. We also strongly suspect that it is the
addition of remnant movement (RM) that puts MGs
beyond context-freeness. A proof of the non—L%(’ I
definability of recursively applicable RM would
thus be a particularly interesting way of confirm-
ing this.
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