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1 Introduction

Four players are playing the french game ”la belote”. All the 32 cards are dealt,
each player starts the game with eight cards and she knows them, and all of
this is common knowledge. We can formalize this situation using epistemic
logic (see [8] for more details): the set of propositional atoms of our language
is {(VC);|V € {7,8,9,10,J,Q,K, A}, C € {%,9,0,M},i € {1,2,3,4}}. The
model of ”la belote” has four epistemic (equivalence) relations, a world corre-
sponds to a deal, and we say that M,s |= (10#)3 if player 3 has the ten of
spades in the deal s. Then we can express sentences like ”player 2 knows that
player 3 has the queen of hearts” (K2(QOV)s). What is happening when the
game starts? Player one playing the 7 of diamonds can be seen as the public
announcement that player one has the 7 of diamonds. But she may be able to
do such an announcement, because she actually has the 7 of diamonds, without
having the permission to do it, because the rules of the game may forbid it to
her. Which are the announcements that are permitted in this game, depending
on the actual situation? This paper will try to answer this question.

Our goal is to formalize the concept of "having the permission to say”. The
way we choose is to adapt the semantics considered in [11] in the particular case
where actions are replaced by public announcements. Thus, for « in van der
Meyden’s {(a, @) we take an announcement ! such that ¢(¢!, ) now means ‘it
is permitted to announce 1, after which ¢ is true’. The primitive of our language
is in fact somewhat different, as it also takes sequences of announcements into
account, but we will be able to define such (%!, @) as a special case (see section
4.1).

The logic of public announcements (PAL) proposed by Plaza in [9], which
is an extension of epistemic logic, permits to express the way agents update
their knowledge after public announcements of true propositions. We can for
example write in this language (1) which means that after the truthful public



announcement of ¥, ¢ becomes true . This logic has been largely studied (see
[7]) and extended (see for example [2] and [3]).

To speak about ”the permission to say”, we will extend PAL by introduc-
ing an operator P of permission, P(1,¢) expressing the fact that ”after the
announcement of v it is permitted to say ¢”. We will first present the syntax
and the semantics of our logic, and then we will prove some technical results,
in particular the completeness of the axiomatisation and the decidability of the
problem of satisfiability.

All the omitted proofs can be found in [4].

2 Logic of permission and public announcements

2.1 Syntax of L,y

The language L;,q, over a countable set of agents IV and a countable set of
propositional atoms © is defined as follows:

@ = Lpl=ely vV ol Kip|[¥]e| P(4, )

where i € N and p € O.

The intuitive reading of K;p is “agent i knows that ¢ is true” whereas [¢]p
is read as "after ¥ has been publicly announced, it is true that p”. We read
P(y, ) as ” after that ¢ has been publicly announced, it is permitted to say ¢”.
We make use of the classical abbreviations for the other Boolean operators.
Moreover, we have an operator (¢) defined by ()¢ = —[]—p.

We call £,; the fragment without announcement operator and L,; the frag-
ment restricted to the Boolean and epistemic operators.

2.2 Semantics

The models of our logic are structures of the form M = (S, {~;}ien, V, P) with
S being a non-empty set of states, ~; being a equivalence relation between states
of S, V mapping propositional atoms to subset of S and P C S x 2% x 25, If
the equivalence relation ~; holds between states s,t € S, this means that, as
far as agent ¢ is concerned, s and ¢ are indiscernible.

The membership of (s, S’,5”) in P can be interpreted as follows: in state s,
any announcement that restricts the set of all possible states to S’ will do so in
such a way that any further announcement that restricts the set of all possible
states to S” will become permitted.

We define the update of a model M after the public announcement of v as
the restriction M.:

Definition 1 (restricted model) For any model M and any ¢ € Lypar, we
define the restriction My, = (Sy, ~Y, Vi, Py) where:

o Sy =[Y]m ={s € SM,s =9}



o forallp € ©, Vy(p) =V(p) NSy

o for all i, ~¥ = ~; N (Sy x Sy)

o Py =A{(5,5,58")eP|seSy, 8T8y, S CSy}
We can now define the satisfiability relation |=.

Definition 2 (satisfiability relation) Let M be a model and s be a state of
S. The satisfiability relation M, s |= ¢ is defined inductively on the structure of

@:
M,s=piffseV(p)

M,s L

M, s == iff M,s = ¢

M, s = 1hr Vpa iff (M, s =1 or M, s |= 1)
M,s = Ko iff forallt ~; s, M,t =1
M, s =[x iff (MysEv = My,s = x)
M, s = P, x) if (s, [¥lm, [(W)x]m) € P

For all ¢ € Lppa we note M = iff for all s € S, M, s = . As usual, we
note = ¢ iff for all models M we have M = .

We can define a function deg from Ly,q; to N and a function ¢r from Ly to
Lper such that for all p € L, we have |= ¢ < tr(p) and deg(y) = deg(tr(p)).
This tools are very useful for many proofs that are omitted in this extended
abstract.

An interesting property of our semantics is that the following proposition is
true:

Proposition 3 For all models M and all formulas ,v’, ¢, ¢’ € Lypa we have
ifME (¥ <) A (@) < (@)¢') then M = P(,¢) < P, ¢")

It comes from the definition of the restriction Py and corresponds to the intu-
itions that

1. after two equivalent announcements the same formulas are permitted to
be said and

2. if two sentences are equivalent, they are permitted to be said in the same
way.



Table 1: The axiomatisation PPAL

Kip— truth

Ko — K;K;p positive introspection
-Kip — K;—=K;p negative introspection
[Y]p +— (¥ — p) atomic permanence
[¢]L +— ann. and false

[Y]—p +— (Y = —[Y]) ann. and negation
[¥](p1 V @2) < ([Y]e1 V [¥]e2) ann. and disjunction
[V Kip +— (v — K;[¥]p) ann. and knowledge
[t1][a]e <— [(¥)1%b2]p ann. composition
[W]P(Y', ) +— (¥ = P({)',»)) ann. and permission

2.3 Soundness and completeness

Let PPAL be the smallest normal logic in our language that contains the
schemata in table 1 and that is closed under the following inference rule:

e From (¢ < ¢') A ()¢ <> (")) infer P(¢, ) < P(¢', ¢')

Proposition 4 PPAL is sound in all the Kripke-models where ~; are equiva-
lence relations.

To prove the completeness result, let us define the canonical model for
PPAL:

Definition 5 (Canonical Model) The canonical model M = (8¢, ~¢, V¢ P°)
is defined as follows: S¢ is the set of all -ppar-mazimal consistent sets; for
any p € ©,Ve(p) ={z € S¢ | p € a}; v ~§y iff Kizx = Ky, where K;z =
{olKip € x} and P¢ = {(2,5",5") : 3P(,p) € x| &' ={y € S°: ¢ €y},
S"={yeS: ()peyl}

Then we have:

Proposition 6 (Truth Lemma for L,.) For all ¢ € L, we have:
II(p): forall z € S M, x Ev iff pea

Proposition 7 PPAL is sound and complete with respect to the class of models
where ~; are equivalence relations.

Proof The soundness has been shown in Proposition 4. By Proposition 6 we
can show the completeness with respect to the class of models where ~; are
equivalence relations. Indeed, for all ¢ € Ly E ¢ = E tr(p) = M. E
tr(p) = Frpar tr(9) = Frpas ¢ -



3 Case study

Let us take the example of the french game ”la belote”. After the deal, and after
the choice of a trump suit, the first player plays any card of her hand (its color
will be the dominant color), and then each player plays consecutively following
the clockwise order. The player who played the highest card of trump or the
highest at the same color of the first player’s card wins the round and starts
the following round, with any card of her hand. With the exception of the first
player of a round, each player has to follow the asked color or, if she cannot, to
play a trump. Moreover, when a trump is played, it is forbidden to play a lower
trump. The whole rule of this game is explained in [1].

As we said before, we can see the act of playing a card as the public announce-
ment that the corresponding card belongs to the corresponding player. In the
language that we construct, the set of propositional atoms © is {(VC);| V €
{77 8) 97 107 J) Q7 K7 A}’ Ce {&a @7 <>7 ‘}57’ € {1a 27 37 4}} Each atom (VC)Z has
a value V, a color C and belongs to a player i. Recall that M, s |= (VC); means
that that in the deal s, the player ¢ has the V of C. The trump suit has been
selected before the game starts, we will suppose here that it is clubs. The set of
atoms is partially ordered in the following way, which corresponds to the order
of the cards in the game, where ”*” can be replaced by any player name.

For non-trumps (i.e. for any C # &): 7C. < 8C, < 9C, < JC, < QC, <
KC, < 10C, < AC,. For trumps: 7d,. < 8&%, < Q. < K&, < 10&. <
Ad. < 9%, < .

The whole formalization of the game would be too long and useless for our
purpose, but let us formalize, as an example, some of the rules of the game that
are valid at the beginning of each round of the game. This condition implies
that the models M considered here are models in which the players have the
same number of cards in their hands.

1- One player at once:
For all ¢ € L,pa, all players ¢ # j, all p;,q; € ©, M = P(¢,p;) —

_‘P(Z[)’Qj)'

2- Each card is played only once: For all p € O, all ¥ € Lypu, M |=
~P(p A [p¢,p)

3- If you can play a card of the dominant color, it is forbidden not to
do so :

For all values Vq, Vo, V', all colors C # C’, all players ¢ # j,
ME NC); = ~P((V20)s, (V'CY);)

4- If you can play a trump, it is forbidden to play a card which is
neither a trump neither of the dominant color:

For all values V;,V, V', all colors C # C’ where C,C’" # &, all players
i # j, M= (Vid); = ~P((VC);, (V'C');)



5- Permission to say ”belote et rebelote”: (The only exception to the
next rule) For all player 4,

M= (Ed)i A (Qdbe)i AP, (Qdb)i) = P, (Qb)i A (K b))

6- Forbidden to speak about the game:
For all ¢, ¢ € Lypa, for all state s, M, s = P(¢, ) implies that ¢ € ©.

7- If you can play overtrump, it is forbidden to play a lower trump:

For all ¢ € Lypar, all players i, j, all values V, Vi, V5 such that (Viéd); <
(Vh); < (Vadh)j, M |= (Vadh)j = =P((¢)(V)i, (Vidh);)

Let us see the consequence of these conditional rules in the permission to speak
of the following state (deal) s, where each player has 2 cards

Bill(B)

@o[Fa)

Anne m Charles
(4) (©)

(88 4%)

Diane(D)

Anne has to start. According to the rule, our model validates the following
formulas:

M, s E P(8V)a AP(TO)A A—P((8V) 4 A (70)4): Anne has the permission to
play one of her cards, but not both (rule (6))

M, s = -P((80)4, (KM)p): If Anne plays the 80, Bill has not the permission
to play another color (rule (3))

M, s = P{(89)4)(QV) 5, (Qd)c A (K&)c): When he has to play, Charles has
the permission to announce that he has both cards of the "belote” (rule (5))
M, s E —P{(8ONQVE))(Qd)c, (8%)p) : After Charles played a trump,
Diane can play a higher trump, so she has not the permission to play a lower
one (rule (7)).

4 Comparison and further research

4.1 Comparison to the literature

Our logic to reason about permitted announcements can be seen as a continua-
tion of the efforts begun in van der Meyden’s [11] and Pucella and Weismann’s
[10]. Van der Meyden’s notion of permission is definable in terms of ours. He
assumes a set of action variables a in his logic. In our case, these actions are all
announcements !. Employing that terminology, the correspondence is:



Proposition 8 ((p!,0) is equivalent to P(T,p) A {p)0

Of course, van der Meyden’s O(¢!, §) having a linguistic version Perm(¢)8 in
[10], the relation between P(T, ) (ours) and Perm(p) (Pucella and Weismann)
is therefore even closer.

4.2 Dynamics of permission

Dynamics of permission have been studied by Pucella and Weismann in [10].
They propose to add new permissions by linking states which satisfy a propo-
sition p; to states which satisfy a proposition ps, employing an operator called
grant(p1, p2).

A natural adaptation of their proposal, in the context where the actions are
public announcements, is obtained by defining the modal operator grant(p1, p2)
in the following way: for all models M and all s € M we have: M,s |
grant(pi, p2)0 iff M9,s = 6 where MY is as M except for the permission
relation which is expanded in the following way: P9 = P U {(s',51,S2)|s" €
Sy € 81, Mys,, 8" = p1and Mg, ,s" |= p2}. The correspondent revoke operator
would be such that P becomes P\{(s', S1,52)|s" € So C S1, Mg,,s" |= p1 and
M|Sza s’ ): ,02}-

Such a definition is particularly interesting if we think that the permission
to say something depends on the consequences of our announcements.

But this natural variant is not appropriate in our case study. Indeed, we
would like to be able to add a new rule of the game (or delete one), in which the
permission to say something depends on the characteristic of the announcement
itself, and not on the characteristics of the states that are linked by such an
announcement.

To express this kind of permission granting, we define these other modal
operators GRANT and REVOKE.

For all x, ¢, € Lypal, let GRANT (x, P(v, ¢)) be such that for all models
M and all s € M we have: M,s = GRANT(x, P(y,9))0 iff M% s |= 6
where M is as M except for the permission relation which is expanded in the
following way: P¢ = P U {(s, [¢]am, [(¥)elam) | s € [x]m}. Intuitively, after
applying GRANT (x, P(¢,¢)) the following becomes law: ”if x is true, then
after announcing 1 it is permitted to announce ¢”

Proposition 9 Formula schema is valid: = GRANT (x, P(¢,¢))(x = P(¥,))
(after granting that ‘after announcing @, it is permitted to announce ¥’, if x is
true then it is true that after announcing @, it is permitted to announce ¢)

Proof This easy proof is left to the reader. O

We can introduce in a similar way the modal operator REVOKE(x, P(¢, ¢)):

by applying it, P becomes P =P\ {(s, [¥]ae, [(¥)lrd) | s € [xIm}-
With both definitions of ”grant” and ”revoke” modal operators, the axioma-
tisation issue and the decidability issue remain open.



Apart from announcements, we can expand the language to involve assign-
ments, or even more complex public informative events. A typical example is
where the Lord Mayor (or relevant official, dependent on where you are...) an-
nounces a couple husband and wife. By changing the world’, so to speak, they
are now entitled to all rights and favours resulting from marriage. A lot more is
permitted than before! This does not result from changing the law, but merely
from applying the law to a new instance, this particular couple, as a result of
changing the state of the world. Changes in the world can be obtained by public
assignments, and logics for public announcement and public assignment [6] (or
more, as already said) can thus in the obvious way be extended with permission
operators.

4.3 Quantifying over permission

Suppose I am playing at ”la belote”. I can ask myself, in a given situation,
if there is any card I can play such that I will win the current round. Such
quantification over permitted announcement could be expressed introducing the
following operator: ¢(t,!)8 which express that P (1), ©) A [¢]{¢)8 for some ¢. In
other words, after the announcement of ¥ there exists a permitted announce-
ment such that after announcing it § becomes true. It is possible to adapt easily
the works of [2] and [3] to define a sound and complete axiomatisation for this
new language, with respect to the same class of models. A different form of
quantification would be as in P(!,¢), which expresses that P(%,¢) for any .
In other words, no matter what the further informative developments are, ¢
will still be permitted. One could think of basic human rights as falling in this
category, as they cannot be outlawed by any foreseeable development. And into
the ‘forbidden no matter what’ category fall things like ‘thou shalt no kill’.

4.4 Obligation

To define the obligation to say something, we could add a new modal operator
O(v, ), read as ” after the announcement of 1, it is obligatory to say ¢” and
a semantics analog to the previous , i.e. a set O such that M,s E O(1, p)
iff (s, [¥]m, [(W)p]am) € O. Just as before, O(¢) would be an abbreviation of
O(T,¢).

Assume we have this definition, how to express the obligation for agent i to
play the king or the queen of clubs, which corresponds to a situation in which
it is obligatory to play trump? Note that O((Ké&); V (Qé&);) does not express
it, neither O(K&); V O(Qé);. It would be impossible to express the obligation
to say 1 or to say 2.

We tentatively suggest the following approach. Let us define the announce-
ment ¢! as an epistemic action, and so define the non-deterministic choice as
usual. The obligation to say ¢1 or to say ¢o would be expressed by O(T, ¢! U
@2!). The models of our logic would be tuples M = (S,V,~;, P,O) where
O C S x 25 x 22°. We could then define the satisfiability relation inductively
as before with for all M, for all s € S, for all ¥,p1,...¢0n € Lppa We have:



We did not consider such semantics in the definition of permission because we
implicitly assumed that we add free-choice semantics, but actually the question
of the alternative between free-choice or imposed-choice semantics remains open
(for more details about these notions see [5]).
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