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Abstract

This paper studies expressivity and complexity of normal modal logics for reasoning about coali-
tional power in multi-agent systems with agents that have preferences. A class of local and global
notions relevant for reasoning about cooperation is identified. Many of these notions naturally cor-
respond to concepts from game theory or social choice theory. The expressive power required to
express the notions is determined via invariance results under various operations on different classes
of Kripke models and frames. Our results apply to three different classes of models, each of them
representing coalitional power from a slightly different perspective. One of these classes contains the
models of a normal simulation of Pauly’s Coalition Logic. A large class of known extended modal
languages is specified and we show how the chosen notions can be expressed in fragments of this class.
To determine how demanding reasoning about cooperation is in terms of computational complexity,
we use complexity results for extended modal logics and obtain for each local notion an upper bound
on the complexity of modal logics expressing it.

1 Introduction

Cooperation of agents is a major issue in fields such as computer science, economics and philosophy. The
conditions under which coalitions are formed occur in various situations involving multiple agents. A
single airline company e.g. cannot afford the cost of an airport runway whereas a group of companies can.
Generally, agents can form groups in order to share complementary resources or because as a group they
can achieve better results than individually. Various modal logic (ML) frameworks have been developed
for reasoning about cooperation and coalitional power. Coalition Logic (CL) [Pau02] uses modalities of
the form 〈[C〉] φ saying that “coalition C has a joint strategy to ensure that φ”. CL has neighborhood
semantics but can be simulated on Kripke models [BHT07]. Another class of cooperation logics explicitly
represents not only what results coalitions can achieve but also represents the strategies and actions by
which groups can achieve something [WvdHW07, Bor07, GS07].

Another crucial concept for reasoning about interactive situations is that of preferences. It also
received attention from modal logicians ([Gir08] surveys). Recent works (e.g. [ÅDvW07, ÅDvW09,
Kur09]) propose different mixtures of cooperation and preference logics for. In such logics, many concepts
from game theory (GT) and social choice theory (SCT) are commonly encountered. Depending on the
situations to be modelled, different bundles of notions are important. Ability to express these notions –
together with good computational behavior – make a logic appropriate for reasoning about cooperation.

1.1 Aim of our work

Rather than proposing a new logical framework, in the current work we analyze how demanding SCT
and GT notions are for MLs in terms of expressivity and complexity. First, we choose three classes of
models, each modelling cooperation an preferences in a different way. Then, we identify notions relevant
for describing interactive situations and for each of the classes of models/frames we give satisfiability
and validity invariance results as well as definability results for them, identifying the natural (extended)
modal languages needed depending on the class of frames actually considered and the particular bundle
of notions of interest. We draw some consequences about the complexity of reasoning about cooperation
using ML. This way, our work makes it easier to identify safe and dangerous decision in terms of expressive
power when designing MLs for cooperation and preferences. Our work allows us to compare classes of
existing ML frameworks with respect to how suitable they are for reasoning about cooperation.
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1.2 Methodology

We introduce three classes of ML models, each of which has been used to model cooperation. Then
we identify a list of notions inspired by GT and SCT concepts for reasoning about coalitional power
and preferences. Next, we look at how each notion can be interpreted in the models and determine the
required expressive power for expressing it in modal languages. This is done both by investigating under
which operations on models and frames the notions are invariant and by explicitly defining each notion in
some (extended) modal language. This way, we obtain upper bounds on the complexity for satisfiability
(SAT) and model checking (MC) problems of MLs able express the considered notions.

2 The Models: Three ways of modelling cooperation

This section gives an overview of the three different classes of models we consider in the present work.
They correspond to models discussed in the literature which are used for modelling cooperation, each
focusing on different aspects of coalitional power. We deliberately consider simplifying models or general-
izations in order to avoid additional complexity due to assumptions about the models. This allows us to
distinguish more clearly how the notions themselves are demanding and we can also evaluate from a high
level perspective wich models are most appropriate for reasoning about certain aspects of cooperation.

The first class of models [DK08] focuses on preferences and their interaction with cooperation; it
greatly simplifies the computation of coalitional powers because they are taken as primitives and are
directly represented in the accessibility relation. The second class, action-based coalitional models, gives
a natural account of coalitional power by representing it in terms of actions that agents can perform.
The third class [BHT07] we consider are power-based coalitional models. Its focus lies on reasoning about
and computing coalitional power itself, encoding the possible choices of a coalition as partitions of the
state space. In each of the classes, preferences are represented as total preorders (TPO) over the states.

All our models are based on a finite set of agents N. j usually ranges over N. We denote the set
of propositional letters by prop and refer to the set of nominals by nom; it is disjoint from prop. A
nominal is a propositional letter which is true in exactly one state. We usually let p ∈ prop and i ∈ nom.

2.1 Coalition-labelled transition systems

A straightforward way to use Kripke models for reasoning about coalitional power is to focus on sequential
systems, taking an accessibility relation for each coalition. The intuition is then that a group has the
power to make the system move into exactly the states accessible by the relation.

Definition 1 (℘(N)-LTS). A ℘(N)-LTS (Labeled Transition Systems indexed by a finite set of coalitions
℘(N)) is of the form 〈W, N, { C→ | C ⊆ N}, { ≤j | j ∈ N}, V 〉, where W 6= ∅, N = {1, . . . , n} for some

n ∈ IN, C→⊆W ×W for each C ⊆ N, ≤j⊆W ×W for each j ∈ N, and V : prop∪nom→ ℘W , |V (i)| = 1
for each i ∈ nom.

W is the set of states, N a set of agents and w
C→ v says that coalition C can change the state from

w into v. Other interpretations are also possible, e.g. w C→ v could be interpreted as group preferences.
w ≤j v means that j finds the v at least as good as w. w ∈ V (p) means that p is true at w. Preferences
are usually assumed to be total pre-orders (TPO). Let TPO−℘(N)− LTS denote the class of ℘(N)− LTS in
which for each j ∈ N, ≤j is a TPO. [DK08] has details.

2.2 Action-based coalitional models

In action-based coalitional models, coalitional power is represented in terms of actions. Agents can
perform certain actions which then has the effect of changing the current state. The general idea is
similar to that underlying some existing logics for cooperation, e.g. [Bor07, WvdHW07].

Definition 2 (N-ABC). A N, (Aj)j∈N-ABC (action-based coalitional model indexed by a finite set of agents

N and a collection of finite sets of actions (Aj)j∈N ) is of the form 〈W, N, { j,a−−→ |j ∈ N, a ∈ Aj}, {≤j | j ∈
N}, V 〉, where W 6= ∅, N = {1, . . . , n}, for some n ∈ IN; for each j ∈ N Aj is a finite set,

j,a−−→⊆ W ×W
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for each j ∈ N, a ∈ Aj, ≤j⊆ W ×W is a TPO for each j ∈ N, and V : prop ∪ nom → ℘(W ), |V (i)| = 1
for each i ∈ nom. Given a relation R ⊆W ×W , we write R[w] := {v ∈W | wRv}.

W is the set of states, N a set of agents and
j,a−−→ [w] ⊆ X means that at w agent j can guarantee by

doing a that the next state will be in X. Thus, at w j can guarantee that the next state will be in X

iff for some set Y ,X ⊇ Y ∈ { j,a−−→ [w] | a ∈ Aj}; (Y will then be said to be in the exact power of j at
w). Finally, we take powers to be additive, i.e. powers of coalitions to follow exactly from the powers of
individuals. Therefore, at w coalition C ⊆ N can guarantee that the next state will be in X iff for some

set Y we have X ⊇ Y ∈ {
⋂
j∈C

j,aj−−→ [w] | (a1, . . . , a|C|)} ∈ ×j∈CAj}; (Y is in the exact power of C at
w). We let ~C := ×j∈CAj . V and ≤j are as for TPO− ℘(N)− LTS.

2.3 Power-based coalitional models

The following class of models that we present is (an extension of) a generalization of the models for the
normal simulation of CL as presented in [BHT07] (with a preference ordering).

Definition 3 (PBC-Model). An ℘(N)-PBC-model (power based coalitional model indexed by a finite set of
coalitions ℘(N)) is a tuple 〈W, N, {∼C | C ⊆ N}, FX, {≤j | j ∈ N}, V 〉, where W 6= ∅, each ∼C⊆W ×W
is an equivalence relation, FX : W → W is a total function, ≤j⊆ W ×W is a TPO for each j ∈ N, and
V : prop ∪ nom→ ℘(W ), |V (i)| = 1 for each i ∈ nom.

W, N, ≤j and V are as in the previous model. FX determines the actual course of actions in the
system, i.e. if we are in w, then FX(w) is the next state. The equivalence relation ∼C describes the
power of coalition C. More precisely, w ∼C v, this means that it is not in the power of C, to decide
between w and v and thus neither whether we move to FX(w) or FX(v). Coalition C can on the other
hand choose an equivalence class [w]∼C

and thereby restrict the set of possible next states to FX[[w]∼C
].

The models of the normal simulation NCL of CL are a special kind of PBC models.

Definition 4 (NCL-Independence). For every C ⊆ N , R∅ ⊆ (RC ◦RC)

Definition 5 (NCL-Model). An NCL model is a N-PBC model satisfying the following conditions:
1. For all C,D ⊆ N, if D ⊆ C, then ∼C⊆∼D . 2. NCL-Independence. 3. ∼N= id.

3 Extended modal languages

For each type of models, we introduce a language from which we will actually consider different fragments.
3.1 Language interpreted on N− LTS.

α ::= ≤j | C | α ∩ α | α φ ::= p | i | x | ¬φ | φ ∧ φ | 〈α〉φ | @iφ | @xφ | ↓x.φ

where j ∈ N, C ∈ ℘(N)− {∅}, p ∈ prop, i ∈ nom,x ∈ svar. svar is a countable set of variables.

Semantics. A program α is interpreted as a relation as indicated on the left. Formulas are interpreted
together with an assignment g : svar→W as indicated (mostly) on the right. We skip booleans.

M, w, g 
 p iff w ∈ V (p) M, w, g 
 i iff w ∈ V (i)
R≤j

= ≤j M, w, g 
 x iff w = g(x)

RC =
C→ M, w, g 
 〈α〉φ iff ∃v : wRαv and M, v, g 
 φ

Rβ∩γ = Rβ ∩Rγ M, w, g,
 @iφ iff M, v, g 
 φ where V (i) = {v}
Rβ = (W ×W )−Rβ M, w, g,
 @xφ iff M, g(x), g 
 φ

M, w, g,
↓x.φ iff M, w, g[x := w] 
 φ

3.2 Language interpreted on ABC models.
The basic language for ABC is defined as follows (the extension with hybrid and boolean modal logic

formulas is as for N− LTS).

α ::= ≤j | aj | α−1 | α ∩ α | α

φ := p | i | x |¬φ | φ ∧ φ | 〈α〉φ | 〈α〉φ | @iφ | @xφ | ↓x.φ
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where j ∈ N, aj ∈ Aj (the set of actions available to j) and p ∈ prop.
Given a coalition C ⊆ N, we let ~C := ×j∈CAj . And given some profile of actions ~c ∈ ~C we often

write
⋂
~c to stand for (

⋂
aj∈|~c| aj).

Raj
=

j,a−−→
Rα−1 = {(v, w)|wRβv}

Since there are no new clauses, we only give a few to give the intuition.

M, w, g 
 〈aj〉φ iff there is v with w
j,a−−→v and M, v, g 
 φ

M, w, g 
 〈≤j〉φ iff there is v with w ≤j v and M, v, g 
 φ
M, w, g 
 〈α〉φ iff ∃v : wRαv and M, v, g 
 φ

3.3 Language interpreted on PBC/NCL models.

Here, the standard language LNCL for PBC and NCL is given as it is defined in [BHT07]. The
extension with hybrid and boolean modal logic formulas are as for N− LTS.

α ::= ≤j | α−1 | α ∩ α

φ := p | i | x |¬φ | φ ∧ φ | 〈C〉φ | Xφ | 〈α〉φ | @iφ | @xφ | ↓x.φ

where j ∈ N (the set of agents), C ∈ ℘(N) and p ∈ prop.

M, w, g 
 〈C〉φ iff there is v with w ∼C v and M, v, g 
 φ
M, w, g 
 Xφ iff M, FX(w), g 
 φ
M, w, g 
 〈≤j〉φ iff there is v with w ≤j v and M, v, g 
 φ
M, w, g 
 〈α〉φ iff ∃v : wRαv and M, v, g 
 φ

4 Thinking about coalitional power

In this section, we analyze the coalitional power as modelled in PBC,NCL and CL. We investigate the
relations between standard assumptions about coalitional power. Then we consider the translation from
CL to NCL [BHT07] and show how NCL models can be translated into corresponding CL models.

4.1 On the relation between PBC models and NCL models

Both PBC and NCL can be used for reasoning about coalitional power. We say that coalition C can
force a set X at state w iff at w it can guarantee that the next state is in X. Put it differently, C can
force X if some subset of X is in the exact power of C at w. In Section 5, we discuss global properties
that can be reasonable assumptions about the coalitional powers. One kind of assumptions reflecting
the independence of agents is generally assumed in the literature (cf. [Pau02, BHT07, BPX01]). To be
precise, we distinguish between two assumptions about powers and show how they relate. Let Pw(X)
denote the collection of exact powers of coalition C at w; informally it contains the possible sets of states
coalition C can choose from. Let C = N \ C and X = W \ X. Independence of coalitions says that
whatever choices two disjoint coalitions make, there will be a next state that resulting from these choices.

Definition 6 (Independence of coalitions (IC)). ∀w, if C ∩D = ∅ then ∀X ∈ PC(w) ∀Y ∈ PD(w) we
have X ∩ Y 6= ∅.

The next condition says that if C can ensure that the next state is in X, C cannot ensure that is not.

Definition 7 (Condition about complementary coalitions (CCC)). ∀w, ∀X, if ∃X ′ such that X ⊇ X ′ ∈
PC(w), then there is no Y such that X ⊇ Y ∈ PC(w).

Coalition monotonicity says that if a coalition can achieve something then so can all supersets of it.

Definition 8 (Coalition monotonicity (CM)). ∀w ∀X, if C ⊆ D and ∃Y such that X ⊇ Y ∈ PC(w) ,
then ∃Z such that X ⊇ Z ∈ PD(w).
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Fact 1. IC implies CCC.

Proof. Take some arbitrary w and write P (C) for PC(w). Assume that X ⊇ X ′ ∈ P (C) (a). Now assume
for contradiction that here is some Y such that X ⊇ Y ∈ P (C) (b). Since C ∩ C = ∅, by Independence
Y ∩X ′ 6= ∅ (c). Then by (c) and (b), X∩X ′ 6= ∅ (d). But (d) and (a) implies X∩X 6= ∅, a contradiction.
Thus by reductio from (b), there is no Y such that X ⊇ Y ∈ PC(w).

Fact 2. CCC + CM implies IC.

Proof. Assume that C ∩ D = ∅, i.e. D ⊆ C (e). Take X ∈ P (C) (f), Y ∈ P (D) (g). Assume for
contradiction that X ∩ Y = ∅ (h), i.e. Y ⊆ X (i). From (f) and CCC it follows that there is no Z such
that X ⊇ Y ∈ P (C) (j). But then by (j), (e) and CM there is no Z such that X ⊇ Y ∈ P (D) (k).
But (k) contradicts (g). Thus by reductio from (h), X ∩ Y 6= ∅ (m). Since X andY were arbitrary, by
generalization from (m) that if C ∩D∅ then ∀X ∈ PC(w) ∀Y ∈ PD(w) we have X ∩ Y 6= ∅.

Note that on PBC models, CC is actually the following:

∀w[∀X if ∃v(v ∈ R∅[w] ∧ RC [v] ⊆ X), then ¬∃t(t ∈ R∅[w] ∧ RC [t] ⊆ X)] (1)

For the specific case of PBC models which are NCL models, [BHT07] take the following condition.

Definition 9 (NCL-Independence). For every C ⊆ N, R∅ ⊆ (RC ◦RC)

This assumptions as a natural modal axiomatization and on power based models the following holds:

Fact 3. CCC is equivalent to NCL-Independence.

Proof. From right to left. Assume that (1) does not hold. Then we have some w, X and v such that
v ∈ R∅[w] (2) and RC [v] ⊆ X (3), and moreover we have some t such that t ∈ R∅[w] (4) and RC [v] ⊆ X
(5). But by (3) and (5), RC [v] ∩ RC [v] = ∅ (6). By (2), (4) we have v, t ∈ R∅[w] but since R∅ is an
equivalence relation, it follows that (v, t) ∈ R∅ (7). But (7) and (6) together implies the negation of
NCL-Independence.

From left to right. Assume that NCL-Independence does not hold. It follows that we have some w
and z such that z ∈ R∅[w] (8) and (w, z) 6∈ RC ◦RC (9). By (9) and the fact that for every C, RC is an
equivalence relation, RC [w]∩RC [z] = ∅ (10). Then RC [z] ⊆ (W \RC [w]) (11). Assume for contradiction
that (1) holds. Instantiating w by w and X by RC [w] in (1) we get: if ∃v(v ∈ R∅[w] ∧ RC [v] ⊆
RC [w]), then ¬∃t(t ∈ R∅[w] ∧ RC [t] ⊆ RC [v])] (12). By reflexivity of R∅, (w ∈ R∅[w] ∧ RC [w] ⊆ RC [w])
(13). By (12) and existential generalization of (13), ¬∃t(t ∈ R∅[w] ∧ RC [t] ⊆ RC [v])] (14). But from (8)
and (11), (z ∈ R∅[w] ∧ RC [z] ⊆ RC [v])] (15). But (15) contradicts (14), thus (1) does not hold.

4.2 The relation between NCL and CL

In this section, we take a closer look at the relation between CL and its normal simulation NCL. At this
point, we will only briefly recall the semantics of CL. For the details of, we refer the reader to [Pau02].

Definition 10 (CL-Model). A CL-model is a pair ((N,W,E), V ) where N is a set of agents, S 6= ∅ is a
set of states, E : W → (℘(N)→ ℘(℘(W ))) is called an effectivity structure. It satisfies the conditions of
playability:

• Liveness: ∀C ⊆ N : ∅ /∈ E(C),

• Termination: ∀C ⊆ N : W ∈ E(C),

• N-maximality. ∀X ⊆W : (W \X /∈ E(∅)⇒ X ∈ E(N))

• Outcome monotonicity. ∀X ⊆ X ′ ⊆W,C ⊆ N : (X ∈ E(C)⇒ X ′ ∈ E(C)),

• Superadditivity. ∀X1, X2 ⊆ W,C1, C2 ⊆ N : ((C1 ∩ C2 = ∅ & X1 ∈ E(C1) & X2 ∈ E(C2)) ⇒
X1 ∩X2 ∈ E(C1 ∪ C2)).

V : prop→ ℘(W ) is a propositional valuation function.
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The language LCL of CL is a standard modal language with a modality 〈[C〉] for each C ⊆ N. The
intended meaning of 〈[C〉] φ is “coalition C has the power of achieving that φ”. The semantics is as follows:

M,w � 〈[C〉] φ iff JφKM ∈ E(w)(C).

In what follows, we will write Ew(C) for E(w)(C).

Let us now give a brief overview of NCL, the normal simulation of CL. In [BHT07], a translation τ
from the language LCL of CL to that of NCL is given such that for all φ ∈ LCL it holds that φ is
satisfiable in a model for CL iff τ(φ) is satisfiable in a model of NCL. τ is defined as follows:

τ(p) = p, τ(〈[C〉] φ) = 〈∅〉[C]Xτ(φ)

The main result is then that φ is a theorem of CL iff τ(φ) is one of NCL. Via completeness of CL and
soundness of NCL, it follows then that whenever τ(φ) is satisfied in a model of NCL, then there is a
CL model that satisfies φ.

We want to make this result more explicit and show how we can translate each pointed model (M,w)
of NCL into a model f(M,w) of CL such that for all φ ∈ LCL, (M,w) 
 τ(φ) iff f(M,w) 
 φ.

Proposition 1. For all φ ∈ LCL, if τ(φ) is satisfiable in a pointed model M,w of NCL, then φ is
satisfiable in a model f(M,w) of CL.

Proof. We define f as follows. For M = 〈W, N, {∼C | C ⊆ N}, FX , {≤j | j ∈ N}, V 〉, f(M) :=
〈N, (W,E), V 〉, where

Ew(C) := {{Y |Y ⊇ FX [[w′]∼C
]}|w′ ∈ [w]∼∅}.

First, we show that f(M) is a CL model, by showing that E is playable. Liveness follows from the
totality of FX . Termination. Follows from the closure of Ew(C) under supersets. For N-maximality,
let X ⊆ W such that W \ X /∈ Ew(∅). Then there is some w′ ∈ [w]∼∅ such that FX(w′) ∈ X. Since
X ⊇ FX [{w′}] = {FX(w′)}, X ∈ Ew(N). Outcome-monotonicity follows from the closure of Ew(C)
under supersets. For superadditivity, let X1, X2 ⊆ W,C1, C2 ⊆ N, such that C1 ∩ C2 = ∅. Assume that
X1 ∈ Ew(C1) and that X2 ∈ Ew(C2). This implies that for each i ∈ {1, 2}, there is some wi ∈ [w]∼∅
such that Xi ⊇ FX [[wi]∼Ci

]. We have that Ew(C1 ∪ C2) = {{Y |Y ⊇ FX [[w′]∼C1∪C2
]}|w′ ∈ [w]∼∅}.

Thus, we have to show there is some w+ ∈ [w]∼∅ such that X1 ∩ X2 ⊇ FX [[w+]∼C1∪C2
]. We have

that w1 ∼∅ w2. Thus, w1 ∼C1 ◦ ∼C1
w2 and since C1 ∩ C2 = ∅ and thus C2 ⊆ C1, we have that

∼C1
⊆∼C2 , which then implies that w1 ∼C1 ◦ ∼C2 w2. Then there is some w+ such that w1 ∼C1 w

+ and
w+ ∼C2 w2. Thus, w+ ∈ [w1]∼C1

∩ [w2]∼C2
and therefore [w+]∼C1

= [w1]∼C1
and [w+]∼C2

= [w2]∼C2
.

Since ∼C1∪C2⊆ (∼C1 ∩ ∼C2), [w+]∼C1∪C2
⊆ [w+]∼C1

∩ [w+]∼C2
. Hence, FX [[w+]∼C1∪C2

] ⊆ X1∩X2, and
thus X1 ∩X2 ⊆ Ew(C1 ∪ C2).

This shows that f(M) is a CL model. Now, we show that for all φ ∈ LCL, for an NCL model
M , M,w 
 τ(φ) iff f(M,w) 
 φ. This is done by induction on φ. The only interesting case is that
where φ := 〈[C〉] ψ. Let M,w 
 〈∅〉[C]Xτ(ψ). Then there is some w′ ∈ [w]∼∅ such that for all w′′ ∈
[w′]∼C

, M,FX(w′′) 
 τ(ψ). By induction hypothesis, f(M,FX(w′′)) 
 ψ. Now, we want to show that
JψKf(M,w) ∈ Ew(C). This follows from the fact that for all w′′ ∈ [w′]∼C

, f(M,FX(w′′)) 
 ψ. For the
other direction, let f(M,w) 
 〈[C〉] ψ. Then, there is some X ∈ Ew(C) such that X ⊆ JψKf(M,w). By
definition of f(M,w), this means that there is some w′ ∈ [w]∼∅ such that X ⊇ FX [[w′]∼C

]. Since by
inductive hypothesis, Jτ(ψ)KM,w = JψKf(M,w), X ⊆ Jτ(ψ)KM,w. Hence, M,w 
 〈∅〉[C]Xτ(ψ).

5 GT and SCT notions: how demanding are they?

In this section, we briefly sketch the notions that we consider in our work. In the most basic case, reason-
ing about cooperative interaction considers what coalitions of agents can achieve and what individuals
prefer. Using these elements, more elaborated notions can be built. We consider natural counterparts
of SCT and GT notions and are interested in local notions i.e. properties of a particular state in a
particular system, i.e. properties of pointed models M, w. Moreover, we consider global notions, which
are properties of classes of systems: we are interested in the class of frames that a property characterizes.
With respect to content, apart from notions describing only coalitional powers or preferences, we consider
stability and effectivity concepts. We give a few representative notions. For more see [DK08].
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Local Notions

1. Coalition C can guarantee that at the next state p is true.

2. There is a state i finds at least as good where p holds.

3. C can guarantee that the next state is one j finds a.l.a.g. as the current one.

4. There is a state that all agents in C prefer but coalition C cannot achieve it.

5. The current state is (strongly) Nash stable, i.e. no agent has the power to guarantee that the
next state will be one that she strictly prefers (finds at least as good) to the current one.

6. Strong Local Dictator

7. The current state is weakly Pareto-efficient.

8. The current state is Pareto-efficient.

9. The current state is strongly Pareto-efficient.

Notions 1 and 2 describe basic concepts about cooperation and preferences, respectively. 4 is a property
about the limits of the power of the grand coalition. It says that even though there is a state that would
be better for everybody, even if all agents work together they cannot achieve that this will be the next
state. 5 is a stability notion saying that no agent has an incentive to change the current state by himself.

Global Notions

1. Only coalitions containing a majority of N have nontrivial power.

2. Coalition monotonicity: if D is a subset of C then for all X, if D can force X then so can C.

3. Conditions about consistency of complementary coalitations

4. One agent is a strong local dictator in every state (strong dictator). ∃j∀w(∀C∀X(X ∈
PC(w) → (X ⊆ (≤j [w]))))

5. Coalitions can achieve only what all its members prefer.

6. If j can guarantee that the next state is one j strictly prefers to the current one then for every
set X and for all coalition C, if C cannot force the next state to be in X but C ∪ {i} can,
then j finds all states in X at least as good as the current one.

2 is an important global property which says that if a group can achieve something, then so can
every superset of agents. This property is assumed in CL and NCL and holds in ABC models. 5 can
be a reasonable restriction on coalitions’ power. It says that only achieve results that can be achieved
without making a member worse off.

5.1 Representative Results

We give the strongest invariance results we found. We consider the operations (∩-)Bisimulation, disjoint
unions (DU), generated submodel (-frame)(GSM (GSF)) and bounded morphic images (BMI). We then
define the notions using extended modal languages (defined in the obvious way given the similarity type
considered) for which the model-theory is well-understood. (X scans FX .) Finally we draw conclusions
about complexity in terms of upper bounds (UB) on SAT and on the Combined Complexity of MC.

5.2 Operations on models and frames and Invariance

Expressivity of MLs is usually characterized by invariance results. Definitions of relevant relations and
operations between models follow. Let τ be a finite modal similarity type with only binary relations.
Let M = 〈W, (Rk)k∈τ , V 〉 and M′ = 〈W ′, (R′k)k∈τ , V ′〉 be models of similarity type τ .

Definition 11 (Bisimulations). A bisimulation between M and M′ is a non-empty binary relation
Z ⊆W ×W ′ fulfilling the following conditions:
AtomicHarmony For every p ∈ prop, wZw′ implies w ∈ V (p) iff w′ ∈ V ′(p).
Forth ∀k ∈ τ , if wZw′ & Rkwv then ∃v′ ∈W ′ s.t. R′kw

′v′ & vZv′.
Back ∀k ∈ τ , if wZw′ & R′kw

′v′ then ∃v ∈W s.t. Rkwv & vZv′.
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In a nutshell ∩-Bisimulations require that Back and Forth also hold for the intersection (resp. the
converse) of the relations. We now define bounded morphisms, generated subframes and disjoint unions.

Definition 12 (BM). f : W → W ′ is a bounded morphism from M to M′ iff:
AtomicHarmony For every p ∈ prop, w ∈ V (p) iff f(w) ∈ V ′(p).
R− homomorphism ∀k ∈ τ , if Rkwv then R′f(w)f(v).
Back ∀k ∈ τ , if R′kf(w)v′ then ∃v ∈W s.t. f(v) = v′ and Rkwv.

Definition 13 (Generated Submodel). We say that that M′ is a generated submodel (GSM) of M iff
W ′ ⊆ W , ∀k ∈ τ , R′k = Rk ∩ (W ′ ×W ′), ∀p ∈ prop , V ′(p) = V (p) ∩ (W ′ ×W ′) and if w ∈ W ′ and
Rwv then v ∈W ′.

Definition 14 (Disjoint Unions). Let (Mj)j∈J be a collection of models with disjoint domains. Define
their disjoint union

⊎
jMj = 〈W,R, V 〉 as the union of their domains and relations, and define for each

p ∈ prop, V (p) :=
⋃
j Vj(p).

Definition 15 (Invariance). A property of pointed models Φ(X, y) is invariant under λ-Bisimulations
iff whenever there exists a λ-bisimulation Z between M and M′ such that (w,w′) ∈ Z, then Φ(M, w′)
holds iff Φ(M′, w′) holds. Invariance for other operations is defined similarly.

We now consider closure conditions. First, we consider bounded morphic images (BMI) of frames. BM
on frames are obtained by dropping AtomicHarmony in Def. 12. A class of frames is closed under BMI
iff it is closed under surjective BM. Next, we consider closure under generated subframes (GSF) – the
frame-analogue to GSM (cf. Def. 13). We also check if properties reflect GSF. A property φ reflects GSF
if whenever for every frame F , it holds that every GSF of F has property φ, then so does F . We also
consider closure under taking disjoint unions (DU) of frames, which are defined in the obvious way.

5.2.1 Pointed Model Definability

Simple coalitional power (Notion 1).
℘(N)− LTS ABC PBC NCL

Strongest Invariance Bisimulation ∩-Bisimulation Bisimulation Bisimulation
Definability 〈C〉p

∨
~aj∈~C [

⋂
~aj ]p 〈∅〉[C]Xp 〈∅〉[C]Xp

UB on SAT PSPACE PSPACE PSPACE NEXPTIME [BGH+08]
UB on MC PTIME PTIME PTIME PTIME

Remark: PSPACE-membership on ABC models should be taken carefully when comparing it to other
logics. Indeed when e.g. set of actions of same size are given to every agents, the length of above formula
is exponential in the number of agents.
Simple preference (Notion 2).

℘(N)− LTS TPO− ℘(N)− LTS ABC PBC

Strongest Invariance Bisimulation Bisimulation Bisimulation Bisimulation
Definability 〈≤j〉p 〈≤j〉p 〈≤j〉p 〈≤j〉p
UB on SAT PSPACE PSPACE PSPACE PSPACE
UB on MC PTIME PTIME PTIME PTIME

Remark: NP-membership is out of reach even when assuming preferences to be TPOs since we consider
the complexity of the full logic of cooperation and preferences and not only of the preference part.
C can guarantee that the next state is one j finds a.l.a.g. as the current one. (Notion 3).

℘(N)LTS ABC PBC

Strongest Invariance ∩-Bisimulation GSM and DU GSM and DU
Definability 〈C∩ ≤j〉>

W
~aj∈~C

(↓x.[
T
~aj ](↓y.@x〈≤j〉y)) ↓x.〈∅〉[C]X ↓y.@x〈≤j〉y

UB on SAT PSPACE [DLNN91] Π0
1 Π0

1

UB on MC PTIME[Lan06] PSPACE PSPACE
Note that in ℘(N)−LTS, we only need the intersection, whereas for ABC and PBC, we have to express that
the states accessible by one relation are a subset of the states accessible by another relation.
There is a state that all members of coalition C prefer but C cannot achieve it (Notion 4).
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℘(N)− LTS ABC PBC

Strongest
Invariance

GSM and DU GSM and DU GSM and DU

Definability 〈(
T
j∈C ≤j) ∩ (

C→)〉> ↓x.〈
T
j∈C ≤j〉 ↓y.@x

V
~aj∈~C

〈
T
~aj〉¬x ↓x.〈

T
j∈C ≤j〉 ↓y.@x¬[C]Xy

UB on SAT EXPTIME Π0
1 Π0

1

UB on MC PTIME PSPACE PSPACE

Nash-stability (Notion 5).
℘(N)− LTS ABC PBC

Strongest Invariance GSM and DU GSM and DU GSM and DU
Definability

V
j∈N ↓x.[j∩ ≤j ]〈≤i〉x

V
j∈N

V
aj∈Aj

↓x.〈aj〉〈≤〉x
V
j∈N ↓x.[∅]〈{j}〉X〈≤〉x

UB on SAT Π0
1 EXPTIME EXPTIME

UB on MC PSPACE PSPACE PSPACE
Remarks: The notions of Nash-stability used in ℘(N) − LTS and ABC/PBC/NCL models are strongly
related but mathematically slightly different. Note also that our logical definition of Nash-stability with
respect to ABC models crucially draws on the fact that the preference relation is a total pre-order.
Strong Nash-stability (Notion 5, strong version).

℘(N)− LTS ABC PBC

Strongest Invariance ∩-Bisimulation GSM and DU GSM and DU
Definability

V
j∈N[i∩ ≤j ]⊥ ¬

W
j∈N

W
aj∈Aj

↓x.[aj ]〈≤−1〉x ¬
W
j∈N ↓x.〈∅〉[{i}]〈≤−1〉x

UB on SAT PSPACE Π0
1 Π0

1

UB on MC PTIME PSPACE PSPACE
Remark: Same remarks as for Nash-stability.

Existence of a strong local dictator (Notion 6).
℘(N)− LTS ABC PBC NCL

Strongest Invariance GSM and DU? GSM and DU GSM and DU –
Definability [C ∩ ≤j ]⊥ [a ∩ ≤j ]⊥ ↓x.[∅][C]X ↓y.@x〈≤j〉y >
UB on SAT EXPTIME EXPTIME Π0

1 NEXPTIME
UB on MC PTIME PTIME PTIME PTIME

weak Pareto-efficiency (Notion 7).
℘(N)− LTS TPO− ℘(N)− LTS ABC PBC

Strongest
Invariance

GSM and DU GSM and DU GSM and DU GSM and DU

Definability ↓x.[
T
j∈N ≤j ]

W
j∈N〈≤i〉x as ℘(N)− LTS as ℘(N)− LTS as ℘(N)− LTS

UB on SAT Π0
1 Π0

1 Π0
1 Π0

1

UB on MC PSPACE PSPACE PSPACE PSPACE

Pareto-efficient (Notion 8).
℘(N)− LTS TPO− ℘(N)− LTS ABC PBC

Strongest
Invariance

GSM and DU GSM and DU GSM and DU GSM and DU

Definability ¬ ↓x.〈
T
j∈N ≤j〉(

W
j∈N[≤j ]¬x) as ℘(N)− LTS as ℘(N)− LTS as ℘(N)− LTS

UB on SAT Π0
1 Π0

1 Π0
1 Π0

1

UB on MC PSPACE PSPACE PSPACE PSPACE

strong Pareto-efficiency (Notion 9).
℘(N)− LTS TPO− ℘(N)− LTS ABC PBC

Strongest Invariance ∩-Bisimulation ∩-Bisimulation ∩-Bisimulation ∩-Bisimulation
Definability [

⋂
j∈N ≤j ]⊥ [

⋂
j∈N ≤j ]⊥ [

⋂
j∈N ≤j ]⊥ [

⋂
j∈N ≤j ]⊥

UB on SAT PSPACE PSPACE PSPACE PSPACE
UB on MC PTIME PTIME PTIME PTIME
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The crucial difference between Notions 7 and 8 on the one hand and Notion 9 on the other hand is that
(weak) Pareto efficiency talks about strict preference whereas strong Pareto efficiency does not. This
results in a difference in required expressive power and in complexity.

5.2.2 Frame Definability

Majority (Notion 1).
℘(N)− LTS ABC PBC NCL

Strongest
closure

GSF, DU, BMI GSF (BMI?) GSF, DU, BMI GSF, DU, BMI

Definability V
C:|C|<|N|/2[C]⊥

V
C:|C|<|N|/2(Ep

V
C:|C|<|N|/2([C]p ↔ [∅]p)

V
C:|C|<|N|/2([C]p→ [∅]p)

→
V

~aj∈~C〈
T
~aj〉p)

UB on SAT PSPACE EXPTIME PSPACE PSPACE
UB on MC PTIME PTIME PTIME PTIME

Coalition monotonicity (Notion 2).
℘(N)− LTS ABC PBC NCL

Strongest closure GSF, DU, BMI – GSF, DU, BMI –
Definability 〈C〉p → 〈C ∪D〉p > [C]p → [C ∪D]p >
UB on SAT PSPACE PSPACE PSPACE NEXPTIME [BGH+08]
UB on MC PTIME PTIME PTIME PTIME

Consistency of complementary coalitions (Notion 3).
℘(N)− LTS ABC PBC NCL

Strongest
closure

GSF, DU, BMI GSF, DU, BMI GSF, DU, BMI –

Definability 〈C〉p → [N \ C]p (
W

~c∈~C(〈
T

ac∈|~c| ac〉> ∧ [
T
ac]p)) 〈∅〉[C]Xp → [∅]〈(N \ C)〉Xp >

→
V

~d∈ ~(N\C)〈
T

ad∈|~d|
ad〉p

UB on SAT PSPACE PSPACE PSPACE NEXPTIME
UB on MC PTIME PTIME PTIME PTIME

Existence of a strong global director (Notion 4).
℘(N)− LTS ABC PBC NCL

Strongest closure GSF, DU, BMI GSF, DU, BMI GSF, DU, BMI –
Definability W

j∈N(〈C〉p → 〈≤j〉p)
W

j∈N

V
k∈N

V
ak∈Ak

〈∅〉〈C〉Xp → 〈≤j〉p >
(〈ak〉p → 〈≤j〉p)

UB on SAT PSPACE PSPACE PSPACE NEXPTIME
UB on MC PTIME PTIME PTIME PTIME

Coalitions can achieve only what all its members prefer. (Notion 5).
℘(N)− LTS ABC PBC NCL

Strongest GSF, DU, BMI GSF, DU GSF, DU, BMI GSF, DU, BMI
Closure

Definability 〈C〉φ→
V
j∈N〈≤i〉φ

V
~aj∈~C

(〈
T
~aj〉φ → 〈

T
j∈C ≤j〉φ) 〈∅〉[C]Xφ → 〈≤j〉φ 〈∅〉[C]Xφ → 〈≤j〉φ

UB on SAT PSPACE[HM92] PSPACE PSPACE PSPACE
UB on MC PTIME[FL79] PTIME PTIME PTIME

Individual Rationality (Notion 6).
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℘(N)− LTS ABC PBC

Strongest GSF and DU GSF and DU GSF and DU
Closure

Definability [p ∧ 〈i〉q ∧ 〈≤j〉(q ∧ 〈≤i〉¬p)] → (i ∧
W

aj∈Aj
[aj ][≤j ]¬i∧ (i ∧ 〈∅〉[j]X[≤j ]¬i ∧ 〈∅〉[C ∪ j]Xp)V

j∈C⊆N[(〈C〉r ∧
V

D⊆C\i ¬〈D〉r) →
W

~d∈ ~(C∪{j})([
T ~d]p) → → (〈∅〉[C]Xp ∨

〈≤i〉(r ∧ ¬〈≤i〉p)] (
W

~c∈~C [
T
~c]p)∨ ∨ [∅][C ∪ j]X((p ∧ k) → @i〈≤j〉k))

[
T ~d]((p ∧ k) → @i〈≤j〉k)))

UB on SAT PSPACE PSPACE PSPACE
UB on MC PTIME PTIME PTIME

5.3 More general observations

For purely preference based notions such as efficiency notions, reasoning about strong efficiency concepts
(which contain the non-existence of a state which is at least as good) is computationally easier than
reasoning about weak versions of these concepts (containing the non-existence of a state which is strictly
better). The same holds for reasoning about stability notions in ℘(N)−LTS. For reasoning about stability-
like notions on ABC and PBC models the opposite is true. Concerning preferences, we observe that having
strict preferences as a primitive computationally simplifies reasoning about preferences. In the case of
℘(N)− LTS, all the notions for which we couldn’t find decidable logics, involve strict preferences.

6 Conclusion

Our work analyzes the complexity and expressive power needed for reasoning about cooperation using
(extended) modal logics. We considered three different classes of models representing different ways
how cooperation has been modelled in the literature. In ℘(N) − LTS, coalitional power is a primitive
and directly represented in the accessibility relations for coalitions. In the second class of models, ABC,
coalitional power of agents is represented in terms of the actions that agents can perform and whose
performance then leads to the system changing its current state. The power of a coalition is computed
from the powers of the individuals in it. In power-based coalitional models (PBC), every states belongs
to a partition indicating the choice currently be made by the coalition. We extended the models with a
representation of agents’ preferences as total preorders over the set of states.

Then we identified a wide range of notions relevant for reasoning about cooperation and preferences
of agents. The notions range from very simple expressions about the power to achieve some proposition
and expressions saying that an agent prefers a state where some proposition holds, to more complex
notions combining agents’ preferences and (coalitional) powers such as individual rationality and various
stability and efficiency notions. In general, we distinguis between local notions, describing properties of
a state of a system, and global notions describing properties of classes systems.

For each of the classes of models we defined a family of extended modal languages.
For each of the notions and class of models, we gave invariance/closure results. Moreover, we gave

explicit definability results, showing how each of the local notions can be defined for each of the classes
of models. For the global notions, we showed how these properties can be axiomatized.

Our main results concerning our aim of determining how demanding GT and SCT notions are, can
be summarized as follows:

• We can clearly see how the decision to take the preferences to be total preorders influences the
required expressive power to express some of the notions involving preferences. In ℘N − LTS not
having strict preferences as a primitive has the effect of making so called “strong” versions of
stability and efficiency notions easier to express than their “weak” notions. For ABC and PBC on
the other hand, we observed the opposite effect: “weak” notions are easier to express than their
“strong” versions. This is due to the fact that in these models, the strong versions require the
converse modality, whereas the weak ones do not.

• The complexity results have to be taken with some caution, since they crucially depend on the
parameters. In ABC e.g., many of the formulas defining the notions we considered are actually
exponential in the number of actions.
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• Comparing the results for the different classes models, we can see that local notions involving the
power of a coalition to make the system move to a state preferred by some agent such as Notion 3
and strond Nash-stability, we can see that for ℘(N) − LTS this can be done using logics with SAT
in PSPACE, whereas for ABC and PBC, we could only find logics with undecidable SAT.

Our results help to make design choices concerning the models and languages to be used when de-
veloping modal logics for reasoning about (preference-based) cooperation in multi-agent systems. Based
on the GT and SCT notions that one would like to express and the constraints on the computational
tractability, appropriate choices can then be made.
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