Systematic judgment aggregators: An algebraic
connection between social and logical structure

Daniel Eckert
Frederik Herzberg

Version 5: 28 April 2009

Abstract

We show that systematic (complete) judgment aggregators can be viewed
as both 2-valued) Boolean homomorphisms and as syntatic versions of
reduced (ultra)products. Thereby, Arrovian judgment aggregators link the
Boolean algebraic structures of (i) the set of coalitions (ii) the agenda, and
(iii) the set of truth values of collective judgments. Since filters arise naturally
in the context of Boolean algebras, our findings provide an explanation for
the extraordinary effectiveness of the filter method in abstract aggregation
theory.
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1 Introduction

The relation between rationality and power is one of the oldest puzzles in
philosophy. According to Habermas, power neutrality is even a precondition
of collective rationality ([7]). Recent extensions of the social choice literature
from the aggregation of preferences to judgement aggregation however suggest
that rationality even in the weakest possible sense of logical consistency bears a
close relation to power: In fact, the recent literature on judgment aggregation (for
a survey see [12]) shows that the logical structure of the agenda of a collective
decision process (given by the logical interconnections between the propositions)
shapes the social structure (given by a distribution of decision power) and that this
power structure can be as asymmetric as a dictatorship.
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According to the social choice literature, the social structure is modelled by a
partition of the power set of individuals in decisive and non-decisive coalitions.

For the analysis of the relation between the logical and the social structure
of an aggregation problem, filters and ultrafilters have been proven particularly
useful (see e.qg. [4], [2], [6], [8]). As these concepts arise first and foremost in the
context of Boolean algebras, it is natural to expect that the understanding of the
relation between the logical and the social structure of an aggregation problem can
be deepened through concepts from Boolean algebra ([9]).

Indeed, we prove that non-trivial systematic universal judgment aggregators
are in canonical one-to-one correspondences with (a) Boolean algebra
homomorphisms (see Theorem 8) and (b) propositional reduced products (see
Theorem 10). Complete non-trivial universal systematic judgment aggregators
are even in canonical one-to-one correspondences with (a) 2-valued Boolean
algebra homomorphisms (see Theorem 5) and (b) propositional ultraproducts (see
Theorem 11).

Thus, systematic judgment aggregators connect the Boolean algebra structures
on (i) the set of coalitions, (ii) the agenda, and (iii) the set of truth values of
individual and collective judgments. This analysis supports the intuition that the
social structure of the population is shaped by its relation to the syntactic structure
of the agenda and the semantic structure of the collective judgments.

For technical and expository reasons, we shall assume the strong independence
condition of systematicity together with a (mild) agenda richness condition
inspired by Lauwers and Van Liedekerke ([11]).

2 Framework

Judgment sets Consider a monotonic logiE, containing the connectivesand
A. Lett be a provability relation for.

Let X be a set of sentences in the lodic X is called theagenda We assume
that X is the union of proposition-negation pairs (i.e. there exists a non-empty set
X'’ of sentences such that = Upex/ {p, —p}). For everyp € X we denote by
~p an element of X such that eitheg = —-p orp = —gq.

Subsets ofX will be calledjudgment setand we denote the power-set &f
by P(X).

For every judgment sét, we define the followingY is consistentf and only
if Y I/ (p A —p) for any sentence. (In particular for everyp € X, we assume
{p} to be consistent.Y” is deductively closed (iX) if and only if for all p € X,
if Y F p,thenp € Y. Y iscomplete (inX) ifand only ifforallp € X,p € Y
implies~p € Y. Y isalgebraically consisterifand only ifforallp € X, ~p € Y
impliesp €Y.

1as a referee rightly noted, this coarse distinction is by no ways the only reasonable approach
to the modelling of social structure, and future work will have to address more complex social
(inter)dependencies, for instance networks.



We denote byD the set of all consistent and complete subsetX pby D*
the set of all consistent and deductively closed subsef$,dfy D’ the set of all
deductively closed subsets &f, by D the set of all consistent subsets ¥f by
D¢ the set of all algebraically consistent and complete subseks @ind by D*
the set of all algebraically consistent subsetXof

ClearlyD C D* C D’,andD C D% C D%,

Asubsety’ C XisinD%*ifandonlyifp €Y < ~pe Y forallp € X.

Judgment aggregators Let N be a non-empty set dhdividuals called the
populationset. We call subsets @¥ coalitions The power-set oiV is denoted by
P(N).

A judgment aggregatois a mappingf : ©; — P(X) with @ # D, C
P(X)N. Elements ofD;, usually denotedd = (4;),.,, are calledprofiles
componentsA; of profiles are calledndividual judgment setselements of the
range off will be calledcollective judgment sets

We say thatf is completgor consistentor deductively closear algebraically
consistentrespectively) if its range only consists of complete (or consistent, or
deductively closed, or algebraically consistent, respectively) judgment sets.

[ is calleddictatorial if and only if there exists somg € N such thatf(A) =
A, forall A € Dy. f is calledoligarchic if and only if there exists some non-
empty My C N such thatf(A4) = (¢, Aiforall A € Dy.

Coalitions Forallp € X andA € D, thecoalition supporting givenA is
Alp) ={i e N : pc Ai}.

We say thatA(p) is winning forp given A under f if and only if p € f(A).
We collect allwinning coalitionsin the set

5r={Alp) : A€ Dy, pe f(A)}.

Given anyC,C" C N, we shall writeC' ~; C’ (in words: C andC’ share
the same part of a winning coalitipif and only if there exists somé& < F; such
thatC NU = C’ N U. Note that the set of winning coalitions fpris the same for
each profile if and only iff is independenin the sense that for evepye X and
A A €Dy,

Ap)=A(p) = (e f(A) spe f(A)).

As a notational device, we regafdA), for all A € D, as a functionf(A) :
X — {0,1}, defined through

F(A)p) = { i



3 Axioms

In the spirit of Arrovian social choice theory, we introduce the following set of
aggregator axioms. A judgment aggregator which satisfies the agenda richness and
rationality axioms (A2-A5) will also be calledrrovian for the purposes of this
paper.

Al. Finite population. N is finite.

A2. Agenda richness.There are propositions, ¢ € X such that each of the
propositiong A ¢, p A =g, —p A q is consistent and X.

A3. Universality. © > DV.

A4. Non-triviality. f is neither constantly @ nor constantly= X.

A5. Systematicity. For allp,q € X andA, A’ € D;: If A(p) = A'(q), then
p€ f(A) & qe f(A).

The axiom of non-triviality, which to the knowledge of the authors is new in
the judgment-aggregation literature, is satisfied in two important special cases:

Remark 1 f satisfies (A4) wheneveft satisfies (A3) as well astrict unanimity
preservatior(that is, for allp € X and A € Dy, if A(p) = N thenp € f(4),
and if A(p) = @ thenp & f(A)). f also satisfies (A4) if is both complete and
consistent.

Proof. Since X is comprised of proposition-negation pairs, it contains some
consistent propositiop and some proposition which is not universally valid.
Hence there must be somé ¢ DV with A(p) = N and somed’ € DV
with A’'(q) = @. If f satisfies both (A3) and strict unanimity preservation, then
p € f(A) andq & f(4").

If fis both complete and consistent, th&) # @ (as@ is incomplete) and
f(A) # X (asX is inconsistent, being comprised of proposition-negation pairs)
forallAc ;. m

We end this section with a brief discussion of the apparently very strong axiom
of systematicity; herein, we follow the presentation in Eckert and Klamler ([6])
where more details, including proofs and further references, can be found.

Clearly, if f is systematic, then also independent. The converse is true if the
agenda satisfies an additional condition knownaodsl blockednesésee e.g. [3])
which asserts that any proposition in the agenda is related to any other proposition
by a sequence of conditional entailments.

Given any distinctp, g € X, we say thap entails ¢ conditionally (denoted
p F* q) if there exists a minimally inconsistent superSeatf {p, ~¢}. X is called
totally blockedif the transitive closure of the conditional entailment relation is all
of X x X.

Finally, we say thatf is weakly unanimity-preserving and only if for all
pe XandA € Dy, if A(p) = N thenp € f(A).



Lemma 2 Let X be totally blocked and consider a unanimity-preserving judgment
aggregatorf. If f satisfies (A3) and is both independent and unanimity-preserving,
thenf also satisfies (A5).

For systematicf, the setJ; of winning coalitions allows for a natural
characterization (see e.g. Eckert and Herzberg [5]):

Lemma 3 Supposef satisfies (A5). Then for all € Dy andp € X, one has
A(p) € Fyifand only ifp € f(A).

Proof. Let A € ®; andp € X. By definition, ifp € f(A), thenA(p) € F;.
Conversely, ifA(p) € Fy, then there must be somec X andA’ € © such
that A(p) = A’'(¢) andq € f(A’). By (A5), this readily yieldp € f(A). =

4 Results

4.1 Aggregators as homomorphisms: Translating coalitions into truth
values

Both the set of coalition$’(N) and the set of truth value® := {0,1} are
canonically endowed with a Boolean algebraic structure: Both the power set
algebra(?(N),n,U,C, @, N) (whereinCB := N \ B for all B C N) and the
algebra2 of truth values({0,1}, A,Vv,*,0,1) (wherein0* = 1, 1* = 0) are
Boolean algebras. For the following, we adopt standard terminology of Boolean
algebra (cf. e.g. Bell and Slomson [1]). In particular(Boolean algebra)
homomorphisnis a map¢ : By — Bs between two Boolean algebrds , B

which preserves the algebraic operations; ghell of such a homomorphism is

¢~ {1p,}, the pre-image of thé-element of the domain algebra. We will first
show that non-trivial universal systematic (complete) judgment aggregators are
derived from g-valued) Boolean algebra homomorphisms with don3ify) and

vice versa. The shell of these homomorphisms will be nothing else than the set
of winning coalitions. En passantwe obtain very general impossibility results.
The proofs of the main results have been deferred to the appendix. A detailed
exposition of the proofs for Theorems 5 and 8 can also be found in Herzberg ([9]).

Lemma 4 If f satisfies (A2), (A3) and (A5), then there is a well-defined map
m:P(N) =2, Alp)— f(A) D)

If £ is also deductively closed, ther!{1} equalsJ, and is both closed under
supersets and closed under intersections.

Note that genericallyy does not have to be a lattice homomorphism, let alone
a Boolean algebra homomorphism.



Theorem 5 If f satisfies (A2), (A3) and (A5) and is both consistent and complete,
then f also satisfies (A4) and is a homomorphism with shefly.

Conversely, assuming (A2),4f: P(N) — 2 is a homomorphism, then the
judgment aggregator

f:DY = P(X), A—{peX : p(Alp) =1}
satisfies (A2-A5) and is both algebraically consistent and complete.

Corollary 6 If f satisfies (A2), (A3) and (A5) and is both consistent and complete,
thenJ is an ultrafilter. If, in addition, (A1) holds, thefiis dictatorial.

Proof of Corollary 6. Theorem 5 ensures thatis a2-valued homomorphism.
However, every shell of &-valued homomorphism is an ultrafilter. Therefore,
F; = #—'{1} is an ultrafilter onV. Now, every ultrafilterF on a finite setV is
principal. Hence, if (A1) is satisfied in addition, then there must be sgnee N
such thatr—*{1} = Fy = {C C N : iy € C}, hence

peflA) e m(Alp) =1 Alp) €Ty eirc Alp) & pc A

forallAc®;andpec X. m

A congruence relatiofis an equivalence relation on a Boolean algebra which
respects the Boolean operations. Recall that two coalitigri®’ stand in relation
~ s to each other if and only if they share the same part of some winning coalition.

Lemma 7 If f satisfies axioms (A2-AS5) and is deductively closed, thens a
congruence relation on the Boolean algelt&V) and the Boolean operations on
P(N) induce a Boolean algebra structure 64.N)/ ~ .

Theorem 5 can be generalized as follows:
Theorem 8 If f satisfies (A2-A5) and is deductively closed, then the canonical
surjectiono : P(N) — P(IN)/ ~ is a homomorphism with shéll;.
Conversely, assuming (A2),4f: P(N) — B is a homomorphism for some
Boolean algebra3, then the judgment aggregator
f:DN = P(X), Am{peX :7(Ap) =1p}

satisfies (A2-A5) and is algebraically consistent.

Corollary 9 If f satisfies axioms (A2-A5) and is deductively closed, theis a
filter. If, in addition, (A1) holds, therf is oligarchic.

Proof of Corollary 9. As the shell of a homomorphisifiy is a filter.

For every filterF on a finite setV, there exists som@/ C N such that
F = {CC N : MCC}. Hence, if (A1-A5) are satisfied, then there must
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be someM; C N such thatr='{1} = F; = {CCN : M;yCC} =
Mienr, {C EN : i€ C},s0

peflA) &n(Alp) =1 Alp) eFye |Vie My 1€ Alp) |,

SpeA;

hencep € f(A4) < p € ey, Aiforall A € DNandpe X. m

4.2 Aggregators as reduced products: Translating profiles into
proposition sets

If G is an ultrafilter onV, we define thépropositional) ultraproducof A € DV
by
[[4/5={peX :{ieN:pecA}es}, (1)

in other words,
pe][A/S< Awp) € § @)

for everyp € X.

One can show thdt] A/G € D, so[[ A/G is a maximally consistent subset
of X, whence the propositional ultraproduct may be viewed as an interpretation
of the propositional variables occurring in the propositions frdm Also, the
definition of the propositional ultraproduct exhibits an obvious formal analogy to
the definition of an ultraproduct in classical model theory. This is sufficient to
justify the term “propositional ultraproduct”.

In Equation (1).,G could be an arbitrary filter rather than an ultrafilter, and the
set[[ A/S will still be well-defined, even for arbitraryt € P(X)V. It will be
called, in analogy to the terminology of classical model themgiuced product
(However, generically, reduced products are not maximally consistent set.)

Propositional reduced products are deductively closed Arrovian judgment
aggregators:

Theorem 10 If f satisfies axioms (A2-A5) and is deductively closed, theis a
filter and f(A) = [[ A/F forall A € DV.
Conversely, assuming (A2)dfis a filter onV, then the judgment aggregator

FrPx)Y - (X), A []A/9

satisfies axioms (A2-A5). Furthermorg,] (D')V is deductively closed anfl |
DV is consistent, whencg | (D*)" is both consistent and deductively closed.

Propositional ultraproducts are consistent complete Arrovian judgment
aggregators:



Theorem 11 If f satisfies (A2), (A3) and (A5) and is both consistent and complete,
thend is an ultrafilter andf(A) = [[ A/ forall A € DV,
Conversely, assuming (A2), # is an ultrafilter on NV, then the judgment
aggregator
f:DYN = P(X), AHHA/g

satisfies axioms (A2-A5) and is both consistent and complete.

Theorems 11 and 10 are partially contained in Dietrich and Mongin ([4]);
more general versions of these theorems, with a somewhat different notation, can
be found in papers by Herzberg ([8] and [10]) which were inspired by the work
of Lauwers and Van Liedekerke ([11]) on the relationship between preference
aggregation and first-order model theory.

5 Conclusion

This paper contains two results which provide a formal justification of the
perception of aggregation as a link between social and logical structure.

Firstly, Boolean algebra provides a framework to interpret universal systematic
judgment aggregators as homomorphisms which relate the coalition structure, viz.
the power-set algebra of the population set, with the formal semantic structure of
possible collective outcomes, viz. the truth-value algebra.

Secondly, universal (complete) systematic judgment aggregators can be viewed
as the natural extension of reduced product (ultraproduct) constructions in the
setting of propositional logic (or more general monotonic logics). Thereby,
judgment aggregators relate the structure of the set of coalitions with the syntactic
structure of the agenda.

A Proofs

Remark 12 Let « be finite or infinite. LetN = |J;.,C; be a disjoint
decomposition ofV and Iet<Yj>jE,i be a family of consistent subsetsXf Each

Y; can be extended to a maximally consistent, thus consistent and complete subset
Z; of X. Hence, there exists some profdec D such thatd; = Z; D Y; for

everyi € Cj andj € k.

Remark 13 If (A2) is satisfied, the§ A(p) : A€ DV, pe X} =DP(N).

Proof of Remark 13. (A2) implies thatX contains acontingentsentence (i.e.
both {p} and{—p} are consistent). Lef” C N. By Remark 12, there exists a
profile A € DY such that for ali € N, if i € C thenp € A; andifi € N\ C
then—p € A;, hencep ¢ A; wheneveri ¢ N \ C since4; is consistent. Thus,
pe A, < iecCforalli € N,soA(p) = C. Therefore, every coalitioty' is of
the form A(p) for somed € DY andp € X. m
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Proof of Lemma 4. Supposef satisfies (A2), (A3) and (A5), and let ¢ denote
the two sentences whose existence is postulated in (A2). We verify:

7 is well-defined orP(N). The mapr : A(p) — f(A)(p) is well-defined
on®, = {A(p) : A€ Ds, pe X} because of (A5). AlsoD; O DV by
(A3). Therefored, O {A(p) : Ae DV, pe X}, henceD, = P(N) by
Remark 13.

7m—!1{1} equalsF;. Forallp € X andA € D, one hasf(A)(p) =1 < p €
f(A) by convention, therefore ™' {1} = 5.

71{1} is D-closed.Let ¢’ € 7~1{1} andC D (. By (A2) and Remark 12
there exists a profilel € D" such that

Vie C\C' pA-qeA;, VYie N\C -pAqeA;, VieC phqgeA;.

ThenA(p A q) = C' € = {1}, whencep A q € f(A) becauser is well-
defined. However,f(A) is deductively closed, therefore € f(A), hence
w1} 3 A(p) = (C\ ) uC' = C.

7~1{1} is N-closed. Let C’,C" € n~'{1}. By (A2) and Remark 12 there
exists a profiled’ € DV such that

Vie C"\C" pnA-q e AL, Vie N\C" -prqe AL, VieC'NC" pnge Al

Thend'(p) = (C'NC")U(C"\C") = C" € n~ {1}, sop € f(4’) sincer is well-
defined. On the other hand;(q) = (C'NC")U(N\C") 2 (C'NC")U(C'\C") =
C' € n~1{1}. Hence 4A'(q) € 7~ 1{1} because we have already seen tat{1}
is D-closed. Again, since is well-defined,A’(¢) € =~1{1} impliesq € f(A').
So,p,q € f(4'), whencep A q € f(A") becausef(A’) is deductively closed and
pAge X. ltfollowsthatr— {1} 3 A'(pAqg)=C"NC". m
Proof of Theorem 5. For the first part of the Theorem, suppgésatisfies (A2),
(A3) and (A5) and is consistent and complete. Remark 1 then teacheg that
satisfies (A4). From Lemma 4, we already knew'{1} = F;. It remains to
verify thatr preserves algebraic operations.

7 preserves meetd.et C,C’ C N. By Lemma 4,7~ {1} is bothD>-closed
andn-closed, so

cnCern 1} e (Cen Y1}, C'ern'{1}).
As 7 is {0, 1}-valued, this means
T(CNC') =1« (a(C)=1, «(C")=1)<x(C)Ar(C")=1.
Thust (CNC") ==(C) A(C").
7 preserves complementset A € DY andp € X. For everyi € N, the set

A; is consistent and complete, hence

pEA & ~pg A



Therefored(p) = N \ A(~p) = CA(~p) or equivalently

CA(p) = A(~p). (3)

But f(A) is also assumed to be consistent and complete, whepce f(A) if
and only ifp ¢ f(A). Combining this:

7 (CA(p) =1 m(A(~p)=1e ~pe f(A) ©p ¢ f(A) & m(Alp) =0,
7 (CA(p)) =0« 7 (CA(p)) #1 & m(A(p)) # 0 < 7 (A(p)) = 1.

7 preserves joinsLet C,C" C N. First, supposer(C) vV w(C’) = 1. Then
either7(C) = 1 or 7(C’) = 1, hence eitheC' € 7—'{1} or ¢’ € =~ '{1}.
This means that’ U C’ will be the superset of an elementof {1}, hence by
D-closedness of ~1{1}, we deduce” U ¢’ € 7~ 1{1}, sor (CUC’) = 1.

Now supposer(C) V «(C’') = 0, hencer(C) = =(C') = 0. We have
already verified thatr preserves complements, hence we deducerttffC) =
7 (CC") = 1. Since we have also already seen thatreserves meets, we obtain
7 (CCNCC") = 1A1 = 1. By de Morgan’s lawr (C(C' U C”)) = 1, hence, again
exploiting thatr preserves complements, we arriverdC U C’) = 0.

Thus,n is a homomorphism and the first part of the Theorem established.

For the converse part of the Theorem, supppse P(N) — 2 is a
homomorphism. We verify:

Axiom (A2).(A2) is satisfied by assumption.

Axiom (A3).(A3) holds by definition off.

Axiom (A5).(A5) also holds by definition of -

Axiom (A4). Sincep is a homomorphismp(2) = 0 andp(N) = 1. By
Remark 13, we can findl, A’ € DV andp,q € X such thatd(p) = @ and
A’(q) = N. Then, by construction of, bothq € f(A') andp ¢ f(A), so
(&) # @ andf (A) # X.

Finally, for everyA € DY andp € X, one hasA(~p) = CA(p) by
Equation (3). Hence, using thais a homomorphism,

pe flA) e p(Ap) =14 p(CAp) =0< p(A(~p) =0
& p(A(~p) #1 & ~p & f(A).

So, f(A) is complete and algebraically consistent for evarg DV. m

Proof of Lemma 7. Supposef satisfies (A2-A5). The¥; = =~ !{1} is non-
empty by (A4) and)-closed by Lemma 4. Therefore,; must be a congruence
relation (cf. e.g. Bell and Slomson [1, Chapter 1, proof of Lemma 4.3, proof of
Lemma 4.4]). For allC C N, denote by|C| the equivalence class @f with
respectto-;. Since~ is a congruence relation, the operations/,*, introduced
representative-wise via

ICIA|C = |CNnC’

el =cuc], o) =]CC]
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forall C,C" C N, are well-defined. If we define, in addition,
0, =12, 1, = |N|

then through straightforward calculations one can check that
(P(N)/ ~f, A,V 0, 1., ) is indeed a Boolean algebra.
Proof of Theorem 8. Using the same notation as in the proof of Lemma 7, the
mapo : C' — |C] trivially preserves the Boolean operations.

For everyC C N, one has

C~yNedUedy (CNU=NNU)eIWeF; (CNU=U)
U edFy UCC,

hence, by the>-closedness df,
|C’=|N|<=>CNfN<=>C€9‘~f.

Therefores =1 {1 ¢} = o7 {|N|} = F.

Let us move to the converse part of the Theorem. As in the proof of Theorem 5,
one can verify thaf satisfies axioms (A2-A5).

It remains to show thaf is algebraically consistent. Assume otherwise. Then
there ared € D™V andp € X such that bothvp € f(A) andp € f(A). Therefore
7(A(p)) = f(A)(p) = 1 as well ast (A(~p)) = g(A)(~p) = 1. However
A(~p) = CA(p) by Equation (3), so (CA(p)) = 1. On the other hand, sinceis
a homomorphism and (A(p)) = 1, one has (CA(p)) = 0, a contradiction.m
Proof of Theorem 10. By Corollary 9,73 is a filter. Combining Lemma 3 and
Equation (2), one gets

pe f(A) & Alp) €5, & pe [[A/F

forall A € DV andp € X.

For the converse part, we verify the properties stipulated in the Theorem:

Axiom (A2).By assumption.

Axiom (A3).By definition of the reduced product.

Axiom (A4). SinceN € Gbuta ¢ G, we havep € [[A/G = f(A) if
A(p) = N butp & [TA/S = f(A) if A(p) = (forall p € X andA € P(X)").
Therefore, f satisfies strict unanimity preservation. Sintalso satisfies (A3),
Remark 1 yields thaf satisfies (A4).

Axiom (A5).Evident from Equation (2).

Deductive closedness (iK) of f [ (D")VN. Let A € (D)"Y andq € X with
f(A) + ¢. Since proofs have finite length, there exists a finiteYseC f(A)
with Y  ¢. By definition of f as a reduced producti(p) € G forallp € Y.
Since filters are closed under finite intersectiqiig.,- A(p) € S. Note that for
alli € (,cy A(p), one has” C A; and therefore4; i g, which readily means
q € A; (since A; is deductively closed, ad € (D')V, andq € X). Hence
A(q) 2 Nyey Alp) € G,50A(q) € Gand thus; € [JA/S = f(A).
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Consistency of | DV. Let A € D" and supposg[ A/G were inconsistent.
Then, since proofs have finite length, there must be some inconsistent finite subset
Y CJ[A/S. ThenA(p) € Gforallp e Y, hencqqpey A(p) € Gsincefilters are
closed under finite intersections. But this mefil)s,- A(p) # @ since filters do
not containg, so there is somee N suchthap € A; forallp € Y, thusY C A;.

Y being inconsistent4; is inconsistent, too, whencé; ¢ D, a contradiction.m

Proof of Theorem 11. By Corollary 6,3 is an ultrafilter, and by Theorem 3,

also satisfies (A4). Thus, the first half of Theorem 10 may be applied and yields
f(A)=[1A/F;forall Ae DV,

To prove converse part, note that the second half of Theorem 10 already ensures
that f satisfies (A2-A5) and that is consistent.

What remains to be shown is the completenessX(nof f. Letp € X.

The maximality of the ultrafilter ensures that eitfgre N : p€ A4;} € G or
{ie N : pg A;} € G. Inthe former case, alreaglye [] A/G. In the latter case,
note that for every € N, one hap ¢ A; ifand only if ~ p € A; (sinceA; € D),
whence{i € N : ~p e A;} € Gand therefore-p € [[A/G. m
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