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Abstract

A proof-theoretical treatment of collectively accepted group beliefs is presented
through a multi-agent sequent system for an axiomatization of the logic of accep-
tance. The system is based on a labelled sequent calculus for propositional multi-
agent epistemic logic with labels that correspond to possible worlds and a notation
for internalized accessibility relations between worlds. The system is shown to be
contraction- and cut-free. Extensions of the basic system are also considered, in
particular with rules that allow the possibility of operative members or legislators.

1 Introduction

The study of collective attitudes has been in the focus of the philosophical literature
concerned with collective intentionality 9, 21, 25|. One outcome of this area of research
has been an understanding of the nature of collectively accepted group beliefs and their
importance in creating the social environment. Attempts have been made recently to for-
malize reasoning about such collective attitudes. One motivation comes from theoretical
social sciences, especially theories of social choice that study the aggregation of individual
attitudes, especially preferences and judgements into collective attitudes. Formal systems
of logic have been used to gain a more precise understanding of the properties of these ag-
gregation processes, see e.g. [20, 26]. Another motivation comes from areas of application
such as distributed artificial intelligence that aims at constructing multi-agent systems in
which the agents can reason about the attitudes of other agents [22]. Various multi-agent
logics have been presented to this task. Most of them are multi-modal logics that extend
traditional modal logics, in particular epistemic logic.

The focus has been until recently on individual attitudes and what are known as
summative collective attitudes, which can be defined in terms of individual attitudes, in
particular, shared beliefs, mutual beliefs, distributed knowledge, and common knowledge
[2]. In recent work, also non-summative collective attitudes, such as group beliefs, have
received attention |4, 3, 7, 5, 13]. Group beliefs are taken to be collectively intentional
attitudes that are based on what the group members accept as the group’s belief |8, 24]|.
Thus, group beliefs do not reduce to individual beliefs but are properly attributed only to
the collectivity. The fact that all of the group members believe that A is neither sufficient
nor necessary for a group belief that A. It is required for group belief that the group
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members take A to be true when they are acting in the group context, that is, that the
individuals accept A when they are acting as group members. The distinction between
belief and acceptance allows reasoning about individual and collective attitudes in their
proper context without attributing contradictory beliefs to the agents. The concept of
acceptance allows inferences about public commitments of agents, because from their
communication only their acceptances can be inferred, not necessarily their beliefs (see
e.g. |6] for discussion).

In this paper, we present a sequent calculus system that allows to make proofs about
collective attitudes. We take a formalization of this kind as crucial for the implementa-
tion of reasoning about collective attitudes. A closely related approach (that we found
after having developed our own) is presented in [1| in which a tableau system for the
logic is presented. We employ the general method for constructing modal sequent calculi
presented in [15| (an introduction to sequent calculus and more generally to structural
proof theory is found in [18]). The approach followed here is similar to the one in [11] in
which the modal operator [ is replaced by knowledge operators K, for individual agents
a € G and an operator for distributed knowledge among agents in a group. In this pa-
per, our focus is on group belief that we take to amount to a collective acceptance of a
proposition by the group members to represent a view of the group [8, 24, 10]. Of the
recent attempts to formalize such non-summative group beliefs (see [4, 3, 7, 5, 13|), we
have here selected [13], which is formally sophisticated and quite faithful to philosophical
accounts of group beliefs. The methods presented could be adapted for the other logics
with minor modifications.

2 Background on labelled sequent systems

To maintain the presentation self-contained, we briefly recall in this section the back-
ground of our method, presented in [17, 18, 14|, for the development of cut-free labelled
systems for multi-modal logics.

For extensions of classical predicate logic, the starting point is the contraction- and
cut-free sequent calculus G3c (cf. [18, 23| for the rules). We recall that all the rules of
G3c are invertible and all the structural rules are admissible. Weakening and contraction
are in addition height-preserving- (hp-) admissible, that is, whenever their premisses are
derivable, so also is their conclusion, with at most the same derivation height (the height
of a derivation is its height as a tree, that is, the length of its longest branch). Moreover,
the calculus enjoys hp-admissibility of substitution. Invertibility of the rules of G3c is
also height-preserving (hp-invertible). Detailed proofs can be found in chapters 3 and 4
of [18].

These remarkable structural properties of G3c are maintained in extensions of the
logical calculus with suitably formulated rules that represent axioms for specific theories.
Universal axioms are first transformed, through the rules of G3c, into a normal form that
consists of conjunctions of formulas of the form P& ... &P,, D Q1V ...V Q,, where all
P;, Q; are atomic; then implication reduces to the succedent if m = 0, and the latter is
1 if n = 0. The universal closure of any such formula is called a regular formula. We
abbreviate the multiset P, ..., P, as P. Each conjunct is then converted into a schematic
rule, called the reqular rule scheme, of the form

Q,P.,T=A ... Q,PT= AL
P I =A
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By this method, all universal theories can be formulated as contraction- and cut-free
systems of sequent calculi.

In [14], the method is extended to cover also geometric theories, that is, theories
axiomatized by geometric implications. We recall that a geometric formula is a formula
that does not contain D, —, or V, and a geometric implication is a sentence of the form
VZ(AD B) where A and B are geometric formulas. Geometric implications can be reduced
to a normal form that consists of conjunctions of formulas, called geometric axioms, of
the form

VZ(P& ... &P, D JT(M; V...V M,))

where each M, is a conjunction of atomic formulas, @);,,.. .,ijp. For simplicity, we
assume that the sequence T of bound variables has length 1. Without loss of generality,
no z; is free in any P;. Note that regular formulas are degenerate cases of geometric
implications, with neither conjunctions nor existential quantifications to the right of the
implication. The geometric rule scheme for geometric axioms takes the form

al(yl/xl),F,F = A ... @n(yn/xn),ﬁ,f‘ :>AGRS
PTI=A
where Qj and P indicate the multisets of atomic formulas Qi - - ijj and Py,..., P,
respectively, and the eigenvariables v, ..., y, of the premisses are not free in the conclu-

sion. We use the notation A(y/z) to indicate A after the substitution of the term y for
the variable z.

In order to maintain admissibility of contraction in the extensions with regular and
geometric rules, the formulas P, ..., P, in the antecedent of the conclusion of the scheme
have, as indicated, to be repeated in the antecedent of each of the premisses. In addition,
whenever an instantiation of free parameters in atoms produces a duplication (two iden-
tical atoms) in the conclusion of a rule instance, say Py,..., P, P,..., P,,I' = A, there
is of course a corresponding duplication in each premiss. The closure condition imposes
the requirement that the rule with the duplication P, P contracted into a single P, both
in the premisses and in the conclusion, be added to the system of rules. For each axiom
system, there is only a bounded number of possible cases of contracted rules to be added,
very often none at all, so the condition is unproblematic.

The main result for such extensions is the following (Theorems 4 and 5 from [14]):

Theorem 1. The structural rules of Weakening, Contraction and Cut are admissible in
all extensions of G3c with the geometric rule-scheme and satisfying the closure condition.
Weakening and Contraction are hp-admissible.

The method of extension of sequent calculi can be applied not only to the proof theory
of specific theories such as lattice theory, arithmetic, and geometry [19], but also to the
proof theory of non-classical logics. In [15], rules expressing properties of binary relations
are added to a basic labelled sequent calculus for the normal modal logic K in such a way
that complete systems for all the modal logics characterized by geometric frame conditions
are obtained. The basic labelled sequent calculus is obtained by prefixing with labels the
formulas in the rules of the sequent calculus for the propositional part of G3c. As initial
sequents we take any of the form z : P,I' = A, x : P for atomic P. In each rule, the active
and principal formulas are prefixed by the same label. This corresponds to the classical
explanation of truth in Kripke semantics, flat on all the propositional logical constants.



For instance, the rules for conjunction are

r:Ax: BT = A I'=sAz:A I'=sAx:B
7 ALB,T = A ¢ T = A,z: ALB

R&

and those for implication are

= Az A x:B,F:>AL x: A=A x:B
z:A>B,I = A . I'=Az:4A>58

RD

The rules for the modal operator [ are obtained similarly from its semantical explanation
in terms of possible worlds

x :UOA aff for all x, xRy implies y: A

that gives the rules

y:A,x:DA,ny,F#ALD zRy,I = Ajy: A
x:UOA xRy, I = A I'= A z:0A4

RO

with the “variable condition” in R[] that y is fresh, i.e. not free in the conclusion.

The resulting sequent calculus, called G3K, gives a complete system for the basic
normal modal logic K. This logic is characterized by arbitrary frames; correspondingly,
there are no rules for the accessibility relation. The sequent calculi for extensions of K
such as the modal logics T, K4, KB, S4, B, S5 are obtained by adding to G3K the
rules that express their frame conditions, i.e., the properties of the accessibility relation
that characterize their frames. For instance, a sequent calculus for the modal logic S4 is
obtained by adding the rules for reflexivity and transitivity of the accessibility relation

xRz, I = A rRz, xRy, yRz,I' = A

Re Trans

= A xRy, yRz, I’ = A

We recall from [15] the following properties of any extension G3K* of G3K with geo-
metric rules for the frame conditions:

Theorem 2. 1. All sequents of the form x : A,I' = A,z : A are derivable in G3K*.
2. All sequents of the form = x:0(ADB) D (HADUOB) are derivable in G3K*.

3. The substitution rule
I'= A

[(y/z) = A(y/x)

(y/x)

is hp-admissible in G3K*.
4. The rules of Weakening

= A = A = A
x:A,F:>ALW F=>A,a::ARW a:Ry,F=>ALWR

are hp-admissible in G3K*.

5. The Necessitation rule
= x: A Nee
= x:0A

is admissible in G3K*.

6. For each frame condition, the corresponding modal axiom is derivable in G3K*.
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7. All the primitive rules of G3K* are hp-invertible.
8. The rules of Contraction

r:Azr: AT = A xRy, xRy, I’ = A I'=> Ax:Azx: A

r: AT = A o xRy, I' = A bcirn '=Azx:A fecr

are hp-admissible in G3K*.

9. The Cut rule
= Az:A z: AT = A

OLr= A A

Cut

18 admissible in G3K*.

In multi-modal logics, there is not only one but many accessibility relations, each defining
a corresponding modal operator. In multi-agent epistemic logics, the accessibility rela-
tions are indexed over a set of agents, and the modality defined by each of these is an
individual’s knowledge operator. The intersection of the accessibility relations gives then
the accessibility relation for the modality of distributed knowledge. The results in [11]
exemplify the backbone of the method for multimodal logics: First we give the rules for
the accessibility relations, including the rules for obtaining other accessibility relations
from given ones, in the form of rules that follow the regular or the geometric rule scheme.
Then we obtain the rules for the corresponding modalities from their explanation in terms
of Kripke semantics. Once the structural properties are established, completeness with
respect to a Hilbert-style axiomatization follows from the derivability of the characteristic
axioms in the system.

3 The system G3KA

We shall follow the axiomatization for the logic of acceptance given in [13]| but use a
slightly different notation. We denote the collective acceptance of A by A,;A meaning
that the group g, in context i, believes that A. This is to be interpreted as the agents
in g having accepted that A is the view of their group in the context of an institution i.
A standard possible worlds semantics is considered, with W a non-empty set of possible
worlds and R,.; the accessibility relation that corresponds to the modality A,..

As our basic system we use the propositional part of the system G3c given in [18]
and extend it with the rules for modalities and acceptance relations as explained in the
previous section. In complete analogy to the rules for [1, we define the rules for the
acceptance modality starting from their explanation in terms of relational semantics:

The rules we obtain are the following:

zRyy,I' = Ajy: A A y: Ay AgiA xRy y, T = A L
' Az: AyA o z: AgiA 2Ryy, I = A .

Rule RA,; has the variable condition that y must not appear in the conclusion.
In [13|, the following semantic constraints are imposed on the frames, where Ry.;(z)
denotes the set {z € W | xRy, 2} :

S.1 If h Cgandy € Ry (x), then Ryi(y) C Ry.i(x)

5



S.2 If h C g and y € Ry.j(x), then Ry;(z) C
(

Rg:i(y)
S.3 If h C g and Ry;(x) # 0, then Ry (z) C Ry.i(x

()
S.4 If y € Ry.i(x), then y € Uy, Rri(y)
S.5 If h C g and Ry;(x) # 0, then Ry (z) # 0

Once the set-theoretic definitions have been unfolded, these constraints are converted into
syntactic rules after the pattern of the regular rule scheme or of the geometric rule scheme
recalled in the previous section:

-TRg:iZ> h g g, th:j?J? ng:iZa F = A
h C g,2Rp;y,yRyiz,I' = A

RS.1

yRyiz,h C g,2Rp;y, xRyi2, T = A
h g g, th:ijng:iZ? I'= A
-TRg:iZ> h g g, ng:iya th:iZa I'=> A

h g g, I'Rg:iya IRh:iza = A
{?/le% ng:i?J? r = A}keg
R,y I = A
th:iza h g g, ng:iya I'= A
h g gang:iyvr = A

RS.2

RS.8

RS.4

RS.5

Rule RS./ has a finite number of premisses, one for each element of the group ¢', and
RS.5 has the condition that z must not occur in the conclusion. We call the resulting
system G3KA.

Lorini et al. [13] present an axiomatization of the logic of acceptance. The inference
rules are the standard ones, modus ponens and necessitation, and the axioms, in addition
to the standard ones (propositional tautologies and the axiom of K) are as follows:

PAccess A, ;A D A jAgAifh Cg.
NAccess ~ Ay ;A D Ay ~ Ay Aifh Cg.
Inc (~ Ayl NAGA) D ApiAifh Cg.
Unanim Ag;i(/\keg ApiA D A)

Mon ~A,;1 D ~A,;LithCg.

The following lemma, used for proposition 4 below, proves in our system the empirical
social fact that disagreement persists in the enlargement of a group, unless additional
assumptions such as the presence of authoritative members are added:

Lemma 3. The sequent h C g,z : Ap.; L = x: Ay L is derivable in G3KA.

!By using the geometric rule scheme with an eigenvariable ranging over elements of g, the rule can be
generalized to the case in which the group is not given as a finite list.



Proof. We have the following derivation

xRp2,h C g,2Ryy, 2 Lx: Ay L =y L

LAy
RS.
h C gang:iywr : Ah:i 1L =yl RA g
hgg,a}:Ah:iJ_ :>x:Ag:iJ— g4
where the topsequent is an instance of L L. O

Observe that the sequent that expresses persistence of agreement, obtained by replacing
1 with an arbitrary formula A, is instead not derivable. This is seen by inspection of the
small set of possible applicable rules at each step of the root-first proof search.

Proposition 4. The axioms PAccess, NAccess, Inc, Unanim, and Mon are derivable in
G3KA.

Proof. Axiom PAccess can be derived in a root-first fashion, using the corresponding rule
RS. 1, as follows:

2: A xRz, h C g, 2Ryy, yRyiz, 0 AgiA= 2 A

tRy2,h C g, xRp.y, yRyiz, 0+ AgA = 21 A

h C g, 2Ry, yRyiz, vt AgyA=z: A "

h C g, 2Ry y,x: AgiA =y AgA it ‘g_,
hCg,x:ApA=x: Apj Ay A !

hCg=a:AAD A jALA

LAg:i

RS.1

RD

The uppermost sequent is clearly derivable because it contains the same formula on both
sides of the sequent arrow.

The derivation of axiom NAccess by rule RS.2 is similar.
Axiom Inc can be derived using the corresponding rule RS.3, as follows:

z: A=y Lz A A
TRyz, xRp.iz, xRyy, v Agi AL hCg=y: L,z A .
TRy.z, xRyy, 2 AgiALhCg=y: L, z: A o {25.3
2Ryy,x: AgiAh Cg=x: ApiAy L o h

r: A A hCg=a: ApAe s Ayl - x: L, .. = AyA
ri~Agl e Ay A h Cg= o Ay A
ri~vAgil & ALARC g= 2 ApgA .

hCg=ua:(~Apl &AA) D ApA

L1

LD

L&

D

Axiom Unanim is easily derivable by rule RS.4.
Finally, by propositional steps, the derivation of Mon reduces to that of the sequent
h<g,x:Api L = x: Ay L, so we conclude by Lemma 3. O

By an adaptation of the method illustrated in the previous section, we can prove that
the system G3KA has the same good structural properties as the basic propositional
calculus G3c it is built upon. In particular, we have:

Theorem 5. All the rules of G3KA are hp-invertible and the structural rules of weak-

ening, contraction, and cut admissible. Weakening and contraction are in addition hp-
admissible.



Proof. Routine. O
Proposition 6. The rules of modus ponens and necessitation are admissible in G3KA.

Proof. If the sequents = =z : A and = x : A D B are derivable in G3KA, then by
invertibility of the right rule for implication we derive x : A = x : B and by admissibility
of cut we derive = x: B.

If = w : A is derivable, then by substitution also = y : A is derivable for an
arbitrary label y, and by weakening also zR,;y = y : A is derivable. A step of RA,;
gives the conclusion = z : R, A. O

Corollary 7. The system G3KA s a complete sequent calculus for the logic of acceptance
in the aziomatization of [13].

4 Extensions with legislators

In this section we study extensions of the basic system. In particular, we consider rules
that allow the possibility of operative members or legislators who can accept views for the
group on behalf of other group members. The axiom for legislators considered in [13] is

.Ag;i( /\ .A]“ADA) Leg

ke Leg()

where Leg(7) is a finite non-empty set. We show that it corresponds to the frame property

Vay(xRg.iy D \/ yRy.y) Fleg
keLeg(7)

This property gives, for Leg(i) = {k1, ..., k,}, the n-premiss rule

yRklziy> ng:i?J; F = A cee yRknzy7 I'Rg:igb F = A
ngn-y, = A

RLeg

We have:
Proposition 8. The axiom for legislators is derivable in G3KA extended with rule RLeg.
Proof. Starting root-first from the sequent to be derived, we have

{ng:iy> yRkj:iy> y: AklsiA> eyl AknzA = y: A}j:l,...,n

RLe
I'Rg:iya Y- Ak1:iA7 s Y AknzA =y A L& !
ng:iy>y : /\kELeg(i) Asz = y: A R
>
rReiy =y /\keLeg(i) ApiADA v
:> xX . Ag:i(/\kELeg(i) .AkZADA) -
where the n premisses of rule for legislators are indexed over the set {ki,...,k,} of

members of Leg(i); one step of LAy,.; produces the derivable sequents

{2Rgy, y Ry, y - Ay s ApA, oy Ak A =y 0 Al



By the above, rule RLeg is sufficient to derive the legislator axiom Leg. This means,
indirectly, that the frame condition FLeg is sufficient to validate the legislator axiom. In
order to show that it is characteristic we prove the following:

Proposition 9. The frame condition Fleg holds in the canonical model for the logic of
acceptance extended with the legislator axiom Leg.

Proof. Recall that the canonical accessibility relation is defined by
xRy = forall A.x IF Ag.;A implies y I A
Suppose that the antecedent of FLeg, xRy, holds. By validity of Leg, we have that
y - /\keLeg(i) A AD A, that is,
ifyl- A ApiA then y I A
ke Leg()

By unfolding the forcing relation on the conjunction, the above can be rewritten as

if Ayl AwiA, then y I- A

ke Leg(i)

Observe that the antecedent of this implication is a conjunction, so by the classical tau-
tology A&BDC' if and only if (ADC) Vv (BDC(C), it can be rewritten as

V Ik AwA —ylk A)

keLeg(i)

Here the formula in parentheses is yRj.;y, by arbitrariness of A and by the definition of
the canonical accessibility relation, so we have proved that the frame condition

Vay(zRy.y O \/ yRe.v)

k€Leg(7)
holds in the canonical model. O

Corollary 10. The legislator axiom Leg is canonical with respect to the frame condition
Fleg.

Similarly, the requirement that legislators of an institution ¢ must function as members
of i, expressed in [13] by the principle

NALeg(i):i 1 Lego
corresponds to the geometric frame condition
Vady. xRiegyi).y FLeg,

which is turned into the rule

IRL@g(i):iiU? = A
'= A

RlLeg,

with the condition that y is not in the conclusion.
In fact, we have:



Proposition 11. The aziom Leg, is derivable in G3KA ezstended with rule RLeg,.
Proof. We have the following derivation, where the topsequent is an instance of L L:
) :J—a xRLeg(i):iya € ALeg(i):z‘ 1l = x:L

TR peq()ay, T - ALeg(i):i 1 =21

T ALeg(i):i 1l =z:L
= 3NALeg(i):i 1

Leg(i):1

RlLeg,

RD

Conversely we have:

Proposition 12. Any frame that validates aziom Leg, satisfies the frame condition
Fleg,.

Proof. Observe that Vo.x IF~ Ay L is classically equivalent to Va3y. 2 Rpeqi)y. O
Corollary 13. Aziom Leg, is canonical with respect to the frame condition FLeg,.

The majority axiom can be dealt with in a similar way to the legislator axiom and a
rule obtained by just replacing the set of legislators with the majority set in rule RLeg.
However, extension of the logic with a majority principle may lead to inconsistent group
views in situations exemplified by the discursive dilemma in which the views of the group
members are distributed so that there is a majority for both a conclusion and premisses
that entail the negation of the conclusion, see [12]. The discursive dilemma has been
formalized using the logic of acceptance, and it was shown that it leads to an inconsistent
view on the group level when a majority principle is used |1|. This can be shown using
the sequent calculus system as well, but for lack of space we will not do that here. In
addition to the majority rule leading to inconsistency at the group level, also legislator
rules that allow determining a group view on the basis of a proper subset of the group
members seem to face related problems: They may lead to an inconsistency at the level
of individuals. This can be seen by constructing a case in which the legislators accept a
proposition, say A, and some non-legislators accept its negation. By the legislator axiom,
the group accepts A, and by axiom Inc we can then derive that all group members, even
those who were against, accept the view A accepted by the legislators.

The problem does not appear with the Unanim rule that demands consensus among
all group members. Even so, these problems seem to show that Unanim is not acceptable
as an axiom, either. The purpose of axiom Unanim is to model the formation of a group
view on the basis of consensus. Similarly, axioms Leg and Maj attempt to model the
formation of a group view on the basis of majority voting or consensus among legislators,
respectively. So the idea is to model collective decision-making, and the intuitive semantics
of an acceptance operator A.;A would be something like “individual ¢ votes for A as the
group’s view in context 7.

However, the attempt to model formation of a group view clashes with the attempt
to model what follows from the adoption of a view by a group. It is a generally accepted
principle concerning group views that when a group accepts a view, then every group
member accepts that view when operating as a member of the group. This idea is encoded
in axiom Inc, but it does not fit with the intuitive semantics suggested above, because now
we are speaking of individual acceptance after the formation of the group view whereas
previously we were thinking about acceptance in the voting situation, that is, before
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the formation of the group view. These two senses of acceptance cannot be modelled
simultaneously without either using different modalities for pre- and post-voting views,
e.g., by using different context variables, or using some kind of a dynamic or temporal
logic that allows changes in views. The reason that Unanim does not lead to inconsistent
acceptances is that it requires that everyone agrees and thus nobody will have to change
one’s mind.

One will thus have to choose which aspect of collective acceptance one wants to model
with the logic of acceptance: Focus either on what follows from existing group views or
study the formation of group views. In the former case, one can have axioms PAccess,
NAccess, Inc, and Mon but not axioms that derive group views from individual accep-
tances. In the latter case, one can have any axiom that allows deriving group views from
individual, Unanim, Leg or Maj, but one should not then include axiom Inc that allows
deriving individual views from the collective view.

5 Conclusion and future work

We have here presented a sequent calculus system for the logic of acceptance and proved
the completeness of our system of sequent calculus with respect to an existing axioma-
tization of the logic. Because of the explicit use of labels, completeness with respect to
the characterizing class of frames can also be established in a direct way following [16]:
For every sentence of the logic we can either find a proof or a countermodel in the corre-
sponding frame class. We can also show how the search space can be limited by methods
of proof analysis in order to obtain decision procedures. Owing to the invertibility of the
rules, cut-freeness, and bounded search space, our calculus permits to make conclusions
not only about derivability but also about underivability of certain propositions and to
study the sources of inconsistencies, which is not possible in the axiomatic approach. The
methods presented can be adapted to the treatment of other non-summative collective
attitudes that are based on collective acceptance beside group beliefs, for instance, group
goals and collective preferences. This will be left for future work.
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