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We present a brief, informal overview of a formal approach to grammatical variation
developed in K&S (Keenan & Stabler, 2003), to which we refer the reader for proofs
and other formal statements.  Our purpose here is to show how we can formulate
structural universals of grammar given grammars that are structurally distinct in
relevant respects.

1. The One and the Many
A central quest in syntactic theory is to reconcile the audible diversity of natural

languages (NLs) with the claim that they have a common, biologically determined, form.

1.1 The one Mainstream syntactic theory (MST) from Chomsky 1957 to BoÑkoviƒ and
Lasnik 2007 attempts this reconciliation by building it into the form of individual
expressions which must satisfy general constraints on rules/derivations and
representations.  For a core expression X of L, MST asks “What is the structure of X?”. 
The initial response, now, is often a binary right branching tree in Spec-[Head-
Complement] order, using language independent category symbols and structure building
functions (Merge, Move).  Regarding variation, some, perhaps much, is relegated to the
periphery beyond narrow syntax and ignored; some is acknowledged in parameters with
small ranges (e.g. question words remain in situ or front); and some lies in feature
variation forcing slightly different patterns of movement/copying.  Overt morphology is
language specific, not determined by UG and not structurally autonomous (Bobjalik
2002) but a “reflection” of hierarchical constituent structure1.  So MST focuses on the
unity pole of the unity-diversity continuum, treating different languages as syntactically
and semantically similar. 

1.2 The many K&S in contrast, proposes a reconciliation that focuses on diversity.  It
provides a conceptual notion of structural invariant that can be satisfied by non-
isomorphic structures.  It formalizes the early Chomkyan desideratum that linguistic
operations are structure dependent (Chomsky 1965:55-56; 1975:30 – 35; Radford
1997:11 – 15).  Often invariants are not present in the grammar as conditions on rules or
representations, and are not instantiated by single expressions.  Given an expression X,
we ask “What expressions have the same structure as X?” (not “What is the structure of
X?”).  Perhaps some feeling for our relational approach to linguistic invariants can be
given with the following, very imperfect, anthropometric analogy: The absolute height of
humans is certainly not invariant: it varies from about 2 to 8 feet.  But the ratio of arm
span to height is much closer to being invariant (the same).  Also, in presenting our
perspective we alert the reader to one difference in character between it and MST. 

MST focuses on the form of syntactic theory.  Minimalist principles such as
inclusiveness and economy are notation based – they constrain how we derive
expressions, not directly what can be derived.  Kayne 1994 opens with the central role of
notation (emphasis ours):  “It is difficult to attain a restrictive theory of syntax.  One



way... is to restrict the space of available syntactic representations, for example, by
imposing a binary branching requirement,...  The present monograph proposes further
severe limitations on the range of syntactic representations ...”.  But restricting notation
can be detrimental.  Different notations may suggest different questions and generalize
differently to new phenomena.  For example, in the early 1960’s context free grammars
and categorial grammars were shown to define the same class of languages (Bar-Hillel,
Gaifman and Shamir 1960).  But it was categorial grammar that generalized to function-
argument structure (Lewis 1970, Montague 1973), effectively creating the field of formal
semantics as we know it today.  The significant properties of objects are invariant under
changes of descriptively comparable notation, notational artifacts aren’t.  The truth of x is
hotter than y does not vary according as we measure temperature in Fahrenheit or
Celsius.  x is twice as hot as y does.  So let us focus on regularities of linguistic nature,
not their notational expression, adopting the slogan

If you can’t say something two ways you can’t say it.

1.3 Back to the many  Here first is a semantic generalization in propositional logic
based on notationally distinct objects.  (1a) uses standard infix notation for conjunction
and disjunction, (1b) uses prefix (Polish) notation.  Ö is “entails”.

(1) a.  ((P w Q) v 5P) Ö Q b. vwPQ5P Ö Q

The notational variation is non-trivial: prefix notation uses no parentheses and has no
structural ambiguities.  Eliminating all parentheses from infix notation yields structural
and semantic ambiguity: ((P v Q) w R) † (P v (Q w R)). On the other side, students of
logic tend to find infix notation easier to understand, especially in long formulas.  But the
entailment fact in (1a,b) is the same: a disjunction of formulas conjoined with the
negation of one entails the other.  The entailments expressible in the two notations are the
same.  The synonymy of (P v Q) and vPQ is determined by independent compositional
interpretation.  We have no need to derive them from a common “deep structure” or map
them to a common “LF”.

2. On Structure

We treat a language as a compositionally interpreted set of expressions defined by a
grammar G = (LexG, RuleG), where LexG, the lexicon of G, is a finite set of expressions
called lexical items and RuleG is a set of structure building functions called rules, which
iteratively map tuples of expressions to expressions2.  The language LG generated by G is
the set of expressions derived from LexG by finite iteration of the rules.  So LG is the
closure of LexG under RuleG.  A descriptively adequate G for a NL L is sound
(everything it generates is judged by competent speakers to be in L) and complete
(everything speakers accept is generated).

A grammar G is isomorphic to a grammar GN, G • GN, iff there is a bijection 
h:LG 6 LGN matching the functions F in RuleG with the FN in RuleGN so that when F derives
an expression z from some expressions x1, ..., xn  then FN derives h(z) from h(x1),...,h(xn),



and conversely.  An isomorphism h from a G to itself is called an automorphism (or
symmetry) of G.  They are the ways of substituting one expression for another within a
language which do not change how expressions are built.  So they preserves structure:  F
builds z from (x1,...,xn) iff F builds h(z) from (h(x1),...,h(xn), all automorphisms h.  The
set AutG of automorphisms of G, represents the “structure” of G.  It contains the identity
map, is closed under function composition and inverses and so is a group, the
automorphism (or symmetry) group of G, noted AutG (or SymG).3 

2.1 Complexity  In cases of interest (natural languages) LG is infinite.  Since
automorphisms map an infinite set to itself one might think that there are massively many
of them, and thus hard to study and characterize in any given language.  But in fact in
cases of interest the number of automorphisms of G is finite.  The reason is that the value
an automorphism h assigns to a derived expression F(x1, ..., xn) is uniquely determined by
the values it assigns to the expressions it is built from, namely x1, ..., xn.  So once we have
given the values of an automorphism on the lexical items – finite in number in cases of
interest – we have determined its values at all expressions:  h(F(x1, ..., xn)) = F(h(x1), ...,
h(xn)).  (AutG is forced to be finite if LexG is finite and none of its elements is also a
derived expression).  

2.2  Invariants  An expression s has the same structure as an expression t iff h(s) = t for
some  automorphism h.  We do not mention here “the structure” of an expression – an
epistemological plus, as different syntactic theories agree more readily that John sang
and Bill danced have the same structure, than they do about what the structure of John
sang is.  We define:

Def 1 A relation R on LG is invariant iff h(R) = R, all automorphisms h.  That is,
replacing all tuples (s1,...,sn) 0 R by (h(s1),..., h(sn)) leaves R unchanged.  
Whence w 0 LG is invariant iff h(w) = w, all automorphisms h.

Thesis w 0 LG is a grammatical formative (“function word”) iff w 0 LexG and w is
invariant

So function words are items that are isomorphic only to themselves.  Replacing them
with something else changes structure (usually destroying it yielding ungrammaticality). 
In the models of grammars in K&S, reflexive pronouns, case, voice, and agreement
markers are provably invariant.  We expect that lexical invariants correspond to heads of
functional projections in more usual terminology.  What is new here is a characterization
of what counts as functional – namely, being a linguistic object (including bound
morphemes) which can only be mapped to itself by the automorphisms, the structure
preserving functions, of the grammar).  

As an item that a function f maps to itself is called a fixed point of f, we characterize
the functional expressions in a grammar as the fixed points of the syntactic
automorphisms.  We turn now to some generalizations built on this notion of invariant.  

2.3 Degrees of Invariance & Language Change Invariance generalizes to a scalar by:



Def 2 a. Inv(x), the degree of invariance of a linguistic object (expression, property,
relation) x is the proportion of automorphisms that fix x, that is, that map x it itself.  So
if x is invariant per Def 1, then Inv(x) = 1, as all automorphisms map x it itself.

b.x is more invariant than xN iff Inv(x) > Inv(xN)

These definitions provide a rigorous way to say that conjunctions and prepositions are
more grammaticized than intransitive verbs.  And we can use this notion to represent the
grammaticization (Hopper and Traugott 1993) of an expression w by saying that Inv(w)
increases over time.  If Inv(x) reaches 1 then x is fully grammaticized. 

2.4 Relation invariants K&S prove that for all G (not just G for NLs), is a constituent of
and c-commands are invariant relations.  These notions require a more general than usual
definition since we have not limited ourselves to rules whose action is modeled by
standard labeled trees.  Such functions basically just derive expressions by concatenation,
not, for example, substitution (widely used to derive consequences from premisses in
logical deductive systems for example).  Here are some sample definitions:

Def 3 u is an immediate constituent of v iff v is the value of a rule F at a tuple (s1,...,sn)
and u is one of the si.  u is a constituent of v iff u is v or u is an immediate constituent
of a constituent of v.  s is a sister of t in v iff s … t and for some constituent u of v, s
and t are immediate constituents of u.  s c-commands t in u iff s is a constituent of a
sister of t in u.   All these relations are provably invariant in all G.

In contrast, the property of being an anaphor and the relation x is a possible
antecedent of an anaphor y in z are not invariant in all G, but they are for all G we have
constructed to model NLs.  This illustrates invariants among non-isomorphic structures. 
K&S’s grammar for minimal clause structure in Korean generates (2b) where anaphors
like self-acc asymmetrically c-command their antecedents.  To see that self-acc is an
anaphor one must check its semantic interpretation in K&S (see below): it maps a binary
relation R to the property {a|aRa}).
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  John  -i   caki casin-ul piphanhayssta caki casin -ul John   -i piphanhayssta
  John  -nom self    -acc   criticized   self   -acc John -nom criticized

John criticized himself John criticized himself



Each of these Ss is interpreted compositionally, and they receive the same interpretation:
True iff (j,j) 0 CRITICIZE, j the denotation of John.   This fact is not different in kind
from the fact that (P v Q) is logically equivalent to the structurally distinct 5(5P w 5Q) in
propositional logic.

Lovers of trees Beware!  (2a,b) are isomorphic qua ordered labeled trees (same
branching structure, each has distinct labels just where the other does).  But the
expressions are not isomorphic in our grammar: if an automorphism h mapped john to
self and -nom to -acc it could map John -nom laughed to self -acc laughed, which is not
in our model language, contradicting that h is an automorphism.  See K&S p.50.

(3) is from Toba Batak (W. Austronesian; N. Sumatra (Schachter 1984, Cole &
Hermon 2008.  The distribution of anaphors in Toba, as in other W. Austronesian
languages (Tagalog, Malagasy, Balinese) is conditioned by verb voice, the reflexive often
occurring as what we thought was a “subject”. And as in the Korean case, lexical items
occurring in both Ss have identical interpretations.  So again anaphors may
asymmetrically c-command their antecedents.

(3) a.   P0 b.  P0
' ( ' (
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' (  NP ' (  NPrefl

P2a NPrefl   * P2n   NP *
' ( *   * ' ( |   *
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mang  ida dirina si John  di ida si John dirina  
mang- see   self  John  di- see  John self
John sees himself  John sees himself

Theorem 1 The case markers -nom and -acc and voice markers mang- and di- are
invariant in their grammars in K&S (p. 49 and 70 respectively).

Thus is morphology “structural” in the same sense as constituent structure: both are
preserved  by all the automorphisms.

Theorem 2 a. The property of being an anaphor is invariant in K&S’s model grammars
for English, Korean and Toba Batak (pp. 36, 50 and 70 respectively)

b.The Anaphor-Antecedent relation is invariant in K&S’s models (p.53 and
p.71 respectively), as it is in their model of English, not illustrated, in
which the usual c-command conditions hold.

Theorem 2 builds on two properties which distinguish our approach to anaphora from
more standard ones: 

[1] anaphor is semantically defined, so we are not free to stipulate that himself in
English, caki casin in Korean, and dirina in Toba Batak are anaphors.  Rather, the



anaphoric expressions in a language are those whose semantic interpretation
satisfies our definition (the same for all languages).  Often the anaphors in a
language cannot be listed as there are infinitely many (all but finitely many being
syntactically complex)..

[2] The structural means used to identify anaphors and their antecedents are not
structurally the same across languages.  Nonetheless the anaphor-antecedent
relation is, we claim, invariant in each NL grammar (and so universally invariant). 
We illustrate:

Referentially Autonomous Expressions (RAEs) such as Zelda, most men who
Zelda dates, etc. combine with n+1-ary predicates (Pn+1s), to form n-ary ones (Pns).  For
simplicity we limit ourselves here to Pns, 0 # n # 2.  Semantically Pns denote n-ary
relations over whatever domain E is under consideration4.  RAEs denote Type-1 functions
– they map n+1-ary relations to n-ary ones, thus reducing arity by 1.  But not just any
Type-1 function is a possible RAE denotation.  The value such a function assigns to a
binary (n+1-ary) relation is determined by the values it assigns to the unary relations
(subsets of E).  Thus Dana praised every student is true iff Dana is in the denotation of
praised every student, the set of objects that praised every student, that is, the set of
objects b such that (EVERY STUDENT) holds of the set of things that b praised.  For R a
binary relation write bR for {d|(b,d) 0 R}.  So bR is the set of objects d that b stands in
the relation R to.  Then the possible RAE denotations F are those Type-1 functions
satisfying (4):

(4) For R a binary relation, F(R) = {b|F(bR) = 1}5. 

Theorem 3 The Type-1 F satisfying (4) are just those which satisfy the AEC (Keenan
1988):

Accusative Extensions Condition (AEC)

For all x,y 0 E, all binary relations R,S,  if xR = yS then x 0 F(R) iff y 0 F(S)

So most men who Zelda dates satisfies the AEC since, for example, whenever Sue
distrusts just the people that Ann likes then Sue distrusts most men Zelda dates and Ann
likes most men Zelda dates must have the same truth value (both true, or both false).

Now observe that expressions like himself, herself, etc. as they occur in No model
hates herself fail the AEC.  If Sue distrusts just Jean, Robyn, Amy, Ann, Mary, and Pat
and those are exactly the people that Ann likes then Sue distrusts herself is false and Ann
likes herself is true.  Such expressions do however satisfy a weaker invariance condition
(Keenan 1988):

Accusative Anaphor Condition (AAC)

For all x 0 E, all binary relations R,S  if xR = xS then x 0 F(R) iff x 0 F(S)



So if x bears R to the same things that x bears S to then x bears R to himself/herself iff x
bears S to himself/herself.  And we may, on first pass, define anaphoric expression by:  

Def 4 An expression " in LG is an anaphor iff the interpretation of " satisfies the AAC in
all models and fails the AEC in some6.  

One checks by example that the underlined complex expressions in (5) are anaphors:

(5) a. John criticized every student but himself / no student but himself
b. John criticized only himself and the teacher / neither himself nor the teacher
c. John knows many people smarter than himself / no one as talkative as himself 
d. He nominated someone other than himself 
e. A prime number has no divisors except itself and 1.

4.  Structural Universals We consider some candidates U1 – U5 as structural universals
of human language.  Our purpose is to illustrate how such claims can be formulated in
our framework.  We think they are plausible, but much empirical investigation is needed.

U1 The property of being an anaphor is a structural invariant of human language

U1 says that anaphors are always mapped to anaphors by the syntactic automorphisms. 
Note that even if each lexical anaphor is mapped to itself, each complex anaphor
typically will not be.  An automorphism of English might map himself to himself but map
no doctor but himself to no lawyer but himself.  Nonetheless, U1 says that in each LG
anaphors have some syntactically distinctive properties, ones which may fail to be
comparable across languages.  In nuclear clauses in Batak for example they concern
distributional constraints with respect to mang- vs di- prefixed verbal roots.  In Korean
they concern case marking, and in English it is Principle A that distinguishes the
distribution of anaphors: John laughed is fine, Himself laughed is not.  These same
observations support:

U2 The relation x is a possible antecedent of an anaphor y in z is a linguistic invariant.

4.1  Theory Design Merely representing a NL as a pair (LexG, RuleG) is not a theory – at
best it is a common denominator of theories such as Minimalism, HPSG, LFG, RG, ... 
But two features of our approach do have a liberating effect on theory design: (1) the
requirement of a compositional semantics, and (2) the theorem that morphology may be
structural.  From (2), in designing a grammar we are free to condition the distribution of
anaphors (semantically defined) directly in terms of case or voice, it is not necessary to
derive them from, or reconstruct them to, forms c-commanded by their antecedents.  

From (1), semantic representations – on our view compositionally interpreted
audible structures – differ from language to language, whereas in MST (Higginbotham
1985; Chomsky 1986:156; Hornstein 1995:Ch 1) LFs for different languages are
assumed or argued to be roughly the same.  They claim that primary semantic data do not
suffice for the child to infer the structure of LF parameters (in distinction to primary



phonetic data which do permit the inference of diverse phonologies).  Since we do learn
to use language meaningfully the semantic module must be innate, hence essentially the
same across speakers of different languages.

The argument does not convince.  

No characterization of primary semantic data is given, nor are reasons why they are
insufficient to set “LF parameters”.  In fact children learn to use language meaningfully
as they learn to pronounce it.  Simple situations in which they follow commands, make
requests, answer questions, disagree, … are easily seen to contribute to learning the
meaning of expressions – reference (count and mass), basic argument structure and theta
roles, modification (Hand me the red crayon.  – No, no, not the BLUE one, the RED
one!), etc.  And of course learners of different languages are interpreting different
expressions, an unproblematic fact as our example with ((PwQ)v5P) and vwPQ5P
shows.  (6) and (7) below exhibit pairs of logically equivalent sentences with different
internal structures – showing that different structures may determine the same (logical)
meaning. 

(6) a. Between a third and two-thirds of Americans brush their teeth regularly
b. Between a third and two-thirds of Americans don’t brush their teeth regularly

(7) a. All but two students read at least as many poems as plays
b. Exactly two students read more plays than poems

(6) is surprising as they differ just in that the predicate in (6b) negates that in (6a). The
pattern is general as long as the fractions sum to 1.  Keenan (2004).

We should note that LF is not designed to represent meaning in general.  It doesn’t
even support a definition of entailment (Chomsky 1986:67, fn11) and several of the
semantic notions it does represent are esoteric and likely learned later than the notions we
mentioned above.  For example, relative scope of quantifiers only arises with two
quantified arguments of a given predicate.  Languages provide many means for
distinguishing the arguments of transitive verbs (word order, agreement, case marking,
chain of being orders) but do not systematically disambiguate scope (Keenan 1988).  T.
Lee 1986 supports experimentally that both English and Chinese children understand
some basic quantifiers in intransitive Ss by age 4, but even by age 8 do not have adult
competence on their relative scope judgments in transitive Ss.  Even in formal logic it
was only with Henkin 1961 that we learned to construct formulas with universal and
existential quantifiers lacking scope dependencies.  

4.2  Property invariants  Is the property of being a lexical item invariant in all G for
NL?  That is, do automorphisms always map lexical items to lexical items?  This is a
possible empirical truth (not a theorem) even though the lexicons of different NLs differ. 
Similarly, is the property of having a given grammatical category invariant?  That is, do
all automorphisms map each phrase of category C to a phrase of category C?  Taking this
as axiomatic would provide a universal structural role for categories.  But K&S show this



fails, only supporting the weaker U3.  Still U3 does provide a universal structural role for
categories which allows grammars of different languages to have different categories. 
Embarrassingly the field has no purely syntactic definition of category that allows us to
infer that category C in language L and category CN in language LN are the same.  See
Baker 2003 for some discussion. 

U3 For all stable automorphisms h, all expressions x, if x has category C so does h(x).

An automorphism of a grammar G is stable iffdef it extends to an automorphism of each
lexical extension of G.  Gn is a lexical extension of G iff there is a sequence (G1,…,Gn) of
grammars such that each Gi+1 differs from Gi just by the addition of a single lexical item
isomorphic to one in LexGi

.  (The set of stable automorphisms in AutG is always a
subgroup of AutG).  K&S’s model of Spanish for example has two gender classes of
nouns, Nm and Nf, and overt agreement of adjectives and dets with Nouns.  There are
automorphisms h which interchange the lexical Nms and Nfs, provided these two sets
have the same number of members.  If we add one new member to just one of the classes
we can no longer interchange them by an automorphism, so such h are unstable:  their
status as automorphisms is not preserved under trivial additions to the lexicon. A fourth
candidate for a structural universal is:

U4 Theta role assignment is invariant

So if x bears theta role J to y in z then h(x) bears J to h(y) in h(z), h any automorphism. 
That is, theta role assignment 1 is a function of structure.  If Ed has different theta roles
in Ed ran and Ed arrived then these Ss must be non-isomorphic (per current theories). 
But Ed may occur in structurally distinct environments and still be assigned the same
theta role.  U4 is strictly weaker than UTAH, which requires that 1 be (structurally) one
to one: so same theta role Y isomorphic sources.  But functions may take the same values
at different arguments: (2+3) = (1+4).  So active subjects and their corresponding passive
agent phrases may originate in non-isomorphic configurations.  We close with a much
more contentious candidate universal, U5 below.   

4.3 Greenberg Duality.  Two languages are word order duals if the expressions of one
are the mirror images of those of the other.  Lexical items are self dual.  A rigid SXOV L,
like Turkish,  is (isomorphic to) the dual of a rigid VOXS language, like Malagasy. 
Formally, the dual vd of a sequence v = <v1,v2,...,vn> of lexical items is just its mirror
image, <vn, ..., v2, v1>.  The dual Kd of a set K of expressions is the set of wd for w 0 K. 
If F is in RuleG then its dual Fd is that function with domain Dom(F)d, that maps
<w1

d,...,wn
d>  to the dual of F(<w1,...,wn>).  We define Gd to be that grammar with the

same lexical items as G and whose rule set is the set of duals of rules of G.  We have:

Theorem 4.1 (LG)d = LGd

4.2 G • Gd, the map sending each w 0 L(G) to wd is an isomorphism.

Theorem 4.1 just says that the dual of the language is the language generated by the dual
grammar, so we defined Gd right.  Theorem 4.2 says that G and Gd are isomorphic.



U5 The set PHG of possible human grammars is closed under isomorphism

U5 just says that if G 0 PHG and G • GN then GN 0 PHG.  Our justification for U5 is that
UG only selects for structure not content and thus cannot distinguish between isomorphic
variants (though other constraints, say ones on possible phonological systems, might rule
out some isomorphic images as being non-natural on other grounds)..  

Corollary (Duality): PHG is closed under duals  (From U5 and Theorem 4.2)

The Duality Corollary makes us hesitant to accept Kayne’s Antisymmetry axiom, which
forces right branching structures.  If only such grammars were acceptable then PHG
would not be closed under duals.  But since there are left branching Ls (Toba Batak,
Malagasy) the effect of the Antisymmetry axiom must be weakened.  

But U5 is also problematic.  The Duality Corollary suggests an equal distribution of
word order types and their duals, which is not the case.  Right branching (SXOV) Ls are
the most common across areal and genetic groupings whereas VOXS Ls are a clear
minority (but include Malagasy (Keenan 1976) and several other Austronesian
languages, and Tzotzil (Aissen 1976) and several other Mayan languages).  Worse, the
OVS duals of SVO languages have (to our knowledge) just Hixkaryana (Carib; Brazil;
Derbyshire 1977) as a well attested exemplar, while the OSV duals of VSO Ls are just
barely attested: Ethnologue (Gordon 2005) cites Jamamadi, an Arawakan language in
Brazil. 

But immediate rejection of U5 would be short sighted.  Much work in the physical
sciences, esthetics, mathematics, and the philosophy of science supports both the
fundamental role of symmetry and also the presence of asymmetries and symmetry
breaking in the phenomena those fields study.  Acknowledging and studying these
asymmetries and symmetry failures has been a significant stimulus to deeper
understanding.  “The study of anomalies now plays an important role in our search for
the symmetries of nature”. (Zee 1986:300).

We can not summarize here the basic, provocative, at times dazzling, work in this
area.  We just note a few highlights that have influenced our thinking and point the reader
to several accessible and enlightening introductions to symmetry and symmetry breaking. 
Weyl (1952) is a classic and still one of the best.  It discusses symmetries and
asymmetries in physics, biology, and art.  Bunch (1989) and Gardner (1990) are more
recent and very informative.  Darvas (2007) focuses more on symmetry in art, and Zee
(1986) on symmetry in physics.  Mathematically we recommend Stewart and Golubitsky
(1999), Ash and Gross (2006), and a basic textbook on group theory, the language of
symmetry and invariance, for example Rotman (1999:Chs 1 – 3).  On the more
philosophical and epistemological side we have found van Fraassen (1990) and Wigner
(1979) enlightening.  

Concerning the conceptually fundamental nature of symmetry and invariants (what
remains unchanged under the action of the symmetries) the first author must



acknowledge his awe at Felix Klein’s Erlangen dissertation (Klein, 1872) in which Klein
stood Euclidean geometry on its head.  The objects of study shift from points, lines and
triangles to whatever was invariant under the action of the operations –  translations,
rotations, and reflections.  Other geometries are invariants of other transformations. 
Later, topology, which grew out of geometry, became the study of continuous
transformations and topological invariants – those objects, properties, ... which remain
invariant under these transformations.  In 1918 Emmy Noether (Bunch 1989:95, Brewer
and Smith: 1981; Cole 1997:183), at Erlangen, proves that symmetry principles in
physics (including relativity theory) imply conservation laws.  Indeed Hermann Weyl
(cited in Bunch 1989:144) claims “The entire theory of relativity...is but another aspect
of symmetry”.  Gardner (1989:337) quotes Einstein to the effect that invariant theory
would have been a better name for his achievement than relativity.  More recently
symmetries have been used to predict new elementary particles (Sternberg 1995).  And
symmetry breaking is the exclusive subject of a recent monograph (Strocchi 2005).  Still,
“Why”, asked the great physicist Richard Feynman (1918 – 1988), “is nature so nearly
symmetrical?” (Bunch p.189).

Cotton (1990), a standard textbook, exemplifies the utility of symmetry in chemistry
by using group theory to structurally classify molecules.  “...the number and kinds of
energy levels that an atom or molecule may have are rigorously and precisely determined
by the symmetry of the molecule or of the environment of that atom.” (Cotton: p.3).  In
mathematical domains group theory, as noted, the mathematics of symmetry and
invariants, has become a major subfield in mathematics beginning with Galois (1811 –
1832) who initiated the study of symmetries among solutions to polynomial equations. 
In logic, Tarski (1966, only edited and published posthumously, by J. Corcoran 1986),
presents informally the idea that “logical operations” are simply the most general ones, in
distinction to translations, continuous maps, etc. which must obey constraints in addition
to being bijective.  See Keenan (2001).  And of linguistic interest Roman Jakobson
(1963) pushed the notion of linguistic invariant in the famous 1963 Universals
conference: “Naive attempts to deal with variations without attacking the problem of
invariants are condemned to failure” (Jakobson 1963:272).

Let us return now to the unequal distribution of word order duals – which, being
isomorphic but distinct, we might have expected to be equally distributed (perhaps
assuming a Leibnizian “Sufficient Reason” basis in Nature).  But they are not.  Nor are
right and left spiraling DNA.  As far as we know, all animals are built from right
spiraling DNA, though some left spiraling DNA has been found in nature, and it can be
synthesized, so it is not incompatible with nature in principle.  What accounts for the
statistical disparity?  Why do righthanders outnumber lefthanders?  Why can humans
distinguish caraway seeds and spearmint by taste, though the molecules (d-carvone and l-
carvone respectively) which underlie them are “duals” (mirror images, enantiomers).  In
some cases at least we feel the choice among symmetric options was arbitrary and
“random”, but once established it self-perpetuated.  Driving on the left or the right is an
arbitrary convention, entailing the construction of symmetric cars (steering wheel on the
left or the right).  But as one came to dominate in continental Europe Sweden was pushed
to “walk in step”, that is, drive on the right.  Britain is still holding out.  (Japan, Australia,



and New Zealand continue to drive on the left).

Now, how good is the comparison between linguistic symmetries and invariants and
those in physical or mathematical fields?  Answer:  “Excellent”.  In both cases we study
structure preserving functions and what they preserve.  So we are not making an analogy,
we are using linguistic science as another field where symmetries and their invariants can
be studied.  Will this approach lead to enlightening results, as it has in the fields
discussed above?  We won’t know until we pursue it detail to see where it leads.  But we
do have a positive prognosis.

First, already a strong reason to pursue our approach, we have a methodology that
permits the description of structural regularities across structurally non-isomorphic
languages.  And second, we can draw on the massive amount of work already done on
the study of symmetries and the mathematics (group theory) needed to describe them. 
Can we classify human languages by their automorphism groups (recall Cotton’s work
above)?  Are there characteristic properties that distinguish the automorphism groups for
natural languages from other structured systems?  A very simple example here are the
automorphism groups of regular n-gons (n sided polygons).  They are just the dihedral
groups – 2n automorphisms: n rotations and n reflections.  To pursue answers to such a
big question we first need to know much more about the group structure of well studied
grammars.  And this builds on precisely the sort of formal analysis of languages that
linguists have been engaged in for the past half century.

For example, merely modeling the simplest type of agreement us taught us that some
automorphisms are unstable – not preserved under linguistically trivial additions to the
lexicon. The negative connotation of unstable is unfortunate and unintended.  To the
extent that agreement is characteristic of natural language we expect “unstable”
automorphisms in their automorphism groups.  How much other linguistic structure is
coded in the automorphisms?  Can we reconstruct grammatical category distinctions
among lexical items from them?  Perhaps lexical items of the same category as a lexical
item d are just those in Orbitstable(d), the set of expressions that stable automorphisms can
map d to.

Do any of the following structural notions from grammar force some distinctive
property on the automorphisms of G:  paradigm, clitic, inflectional morphology,
allomorph, subcategory, extraction and copy rules (Kandybowicz 2008; Kobele 2006),
deletion rules, category changing operations, case and voice marking?  Are locality
constraints or cyclic domains (or phases) characterizable in terms of automorphisms? 
We don’t know.  And more fundamental perhaps,  does the requirement of expressing
predicate+argument structures impose any lower bound on the complexity of
automorphisms?  What about the existence of Modifier systems (adjectives, PPs,
adverbs, even adjective modifiers like a very tall student, a light-green car)?

Lastly, in the other direction, are there concepts from invariance theory which apply
to yield novel observations about human language?  Here is one candidate.  We agree
that NLs have infinitely many expressions and that a learner projects a grammar on the



basis of finite exposure.  
Query  What must a finite sample of LG be like to express all its structure types?

Certainly iterated application of the F in RuleG will lead to new expressions at each
“level”of application.  But how can we tell whether we have enough to represent the
language as a whole, beyond which further application of rules just “iterates” patterns
already present?  Consider iterative children’s texts such as:

(8) a.  This is the house that Jack built
b.  This is the malt that lay in the house that Jack built
c.  This is the rat that ate the malt that lay in the house that Jack built
d.  This is the cat that killed the rat that ate the malt that lay in the house that Jack

  built .
.

By (8c) we see the pattern.  We confirm it in (8d) and giggle as we start adding in our
own clauses, repeating the core operations with new lexical items.  

Here is a way of characterizing a structurally representative finite sample of an LG. 
We first define the natural complexity hierarchy on LG, for G = (LexG, RuleG) as above. 
We write, standardly, K* for the set of finite sequences of elements of K and we assume
for simplicity that no lexical item is also a derived expression.

Def 5 For G a grammar, the Complexity Hierarchy on LG is Lex0, Lex1, ...where: Lex0
=def LexG and for all n, Lexn+1 =def Lexn c {F(d)|F 0 RuleG, d 0 Lexn* 1 Dom(F)}

Theorem 2 For each n, Lexn is a finite subset of LG and LG = the union of the Lexn

Recall that LexG = Lex0 is finite by the definition of G.  So each Lexn+1 is finite as it is
just a finite addition to the finite set Lexn (recall: RuleG is finite and each F 0 RuleG has
bounded arity).  Obviously each Lexn is a subset of Lexn+1, in fact a proper subset as long
as LG is infinite: if Lexn = Lexn+1 for some n then Lexn = LG since applying any rule F to
any tuple of elements in Lexn just yields an element of Lexn, so Lexn = LG, contradicting
that LG is infinite.

Now we say what properties a Lexk must have to contain all the “structure types”in
LG.  Let us think of each Lexn as a (finite) language. Its structure is given by its
automorphisms:  bijections from Lexn to Lexn which commute with the F in RuleG in so
far as they apply to tuples from Lexn (which includes Lexn-1) to yield values in Lexn. 
Write Autn for the set of such “local” automorphisms from Lexn to Lexn.  Note that Aut0
is the entire set of bijections from Lex0 to Lex0 since any rule F that applies to tuples
from Lex0 yields elements only of Lex1 as values, so automorphisms of Lex0 are not
constrained to commute with anything.  But suppose that RuleG has a CaseMark rule
combining lexical NPs with case markers, say -nom and -acc, to form KPs (Kase
Phrases).  Now all automorphisms g of Lex1 must commute with CaseMark and must
(provably) fix Dom(CaseMark), thus requiring in effect that NPs get mapped to NPs and
case markers to case markers. But Aut1 still has much “junk” in it, as a bijection of Lex1



that behaved nicely on NPs and case markers might still interchanges lexical intransitive
verbs and lexical transitive ones.  Reasoning in this way we can see that it is only
automorphisms on Lex3 that are forced to fix transitive and intransitive verbs.  And we
see that as we move up the complexity hierarchy at some n the automorphisms of Lexn
will be just the automorphisms of G restricted to Lexn.  (For h 0 AutG, h restricted to
Lexn, noted h½Lexn, is h 1 Lexn×Lexn).  And this yields, from K&S (p.168 – 170):

Theorem 3 (Bounded Structure) For G = (LexG, RuleG) as above, there is an n such that
the Autn is exactly the set of automorphisms of G restricted to Lexn

Given Bounded Structure, the structure index k(G) of a grammar G isdef the least n such
that Autn = {h½Lexn|h 0 AutG}.  Then the structure maps on LG are represented by those
on the finite subset Lexk(G).  So the structure of G is determined by the structure of a
finite subset of LG.

Footnotes

† This paper is a modestly augmented version of an LSA plenary session presentation by
E.L. Keenan January 5, 2007  
1  Borer 2005 is something of an exception to this claim.  And in general imputation of
properties to MST are not intended to hold exceptionlessly for those who contribute to
that tradition.  Note too that features called morphological can be checked without
requiring morphology to be overt.
2 As is usual, each F in RuleG has bounded arity.  That is, for some natural number k,
every tuple in Dom(F) is of length # k.  
3 Rules are partial functions, so we define gBf as that map with domain {a0Domf|f(a) 0
Domg} given by: (gBf)(a) = g(f(a)).   
4 Note that P0s denote subsets of E0 = {i}, so a P0 denotes an element of {i,{i}} =
{0,1}, our usual representation of the set of two truth values.
5 Interpreting b as an n-tuple and bR as {d|(b,d) 0 R} the equation in (4) is the general
condition for F a map from Pn+1s to Pns.
6 This definition must be generalized to account for anaphors in a wider range of
contexts: Mary protected John from himself, Multiply 12 by itself, every worker’s
criticism of himself, etc.
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**
The Duality Corollary invites a deeper, less speculative comparison with MST: 

eliminating redundancy can be overridden.  Among the virtues of axiom systems
mathematicians include independence (non-redundancy) – no axiom should  follow from
the others.  But 

Symmetry trumps redundancy.  

For example, common axiomatizations for Boolean algebra contain the two distributivity
laws: 

(8) a. (x v (y w z)) = (x v y) w (x v z) b. (x w (y v z)) = (x w y) v (x w
z).    

In (8a) meet v distributes over join w and in (8b) join distributes over meet.  If (8a,b) are
both removed then neither is entailed by the remaining axioms.  But either one is
eliminable and provable from the remaining ones, so including both is redundant.  The
reason for the redundant inclusion is symmetry:  There is no basis for choosing among
(8a) and (8b) – each is derivable from the other by duality.  Choosing just one as an
axiom would imply that it was basic and the other “derived”, creating an asymmetry
where there is none.  So here symmetry conflicts with redundancy and symmetry wins.

 Lest the reader think Boolean algebra is atypical, here is a more fundamental
example.  A group is set G with an associative binary relation C satisfying two additional
axioms:

(9) a. Identities There is an e 0 G such that for all x 0 G, eCx = x and xCe = x
b. Inverses For all x 0 G there is a y 0 G such that yCx = e and xCy = e

Now the second conjuncts of (9a) and (9b) can be simultaneously eliminated and proven
from the remaining axioms.  But doing that implicates that having a left identity element
and a left inverse is more basic than having a right identity and a right inverse – their
existence being a “mere” theorem, not axiomatic.  Again these implicatures introduce an
unwarranted asymmetry.  We can in fact keep both right hand conjuncts in (9a,b) and
eliminate the two left hand ones, deriving them as theorems.  Again symmetry trumps
redundancy.    


