
Syntax and Semantics in Minimalist
Grammars

Gregory M. Kobele

ESSLLI ’09

This chapter presents a grammar for a fragment of English A-movement.1

The constructions accounted for include raising, passivization, and control.
Section 1 motivates our basic syntactic theory, culminating in an account of
raising and passivization, along with a novel account of expletive it, which
immediately explains the ban on superraising in terms of independently mo-
tivated notions of intervention and case assignment. Section 2 presents a
directly compositional semantics for our syntactic theory, one which maps
derivations incrementally to model-theoretic objects, making no reference to
syntactic trees. We extend our fragment with quantifiers, and show how we
can derive quantifier scope ambiguities without a seperate operation of quan-
tifier raising (QR). The tense clause boundedness of QR is easily shown to be
simply and directly replicable in our system in terms of independently mo-
tivated assumptions about feature checking. We extend our fragment once
more to account for control, which, given our semantic operations, is natu-
rally implemented in terms of movement to theta positions. This treatment
of control in our system derives semantically the impossibility of scope re-
construction into a control complement, and syntactically something like the
minimal distance principle (MDP), both of which purely on the basis of our
independently motivated treatment of quantifiers and scope taking on the
one hand and locality conditions on movement on the other. While other
movement approaches to control have been claimed both to make erroneous
predictions about the interaction of control predicates with passivization, as
well as to be unable to account for the grammatical (although apparently
typologically marked) status of MDP-violating promise-type control verbs,
we show that our system handles both in a natural and simple way. Although
we are able to account for the existence and behaviour of promise-type con-

1The present document is (a very slightly revised version of) chapter two of Kobele
[48].

1



trol verbs without any additional stipulations (in fact, given the grammatical
decisions which came before, there are no other analytical options), they are
clearly and well-definedly more complex than persuade-type verbs, a fact on
which it seems possible to begin to build an explanation of the acquisitional
and typological markedness of the former with respect to the latter.

1 Introducing Minimalism

In this section we detail the particular version of minimalism that we will
adopt in this dissertation. This is done in a quasi-socratic fashion, with a
minimal theory being developed around basic argument structural facts, and
then gradually revised and extended to deal with more, and diverse, data.
Where applicable, we mention alternative possible extensions (such as feature
percolation (as in HPSG) in lieu of movement), and motivate our theoretical
decisions.

Our goal as linguists is to explain all aspects of natural language: its use,
function, evolution, and acquisition. Instead of tackling all these difficult
questions at once, linguists have attempted to break them down into more
or less coherent subproblems, with the hope of eventually reconnecting the
separated threads of investigation. Here, our goal is to explain all aspects of
the syntax and semantics of English. As above, so below; we divide English
into simplified fragments, and attempt to construct precise and complete ac-
counts of these fragments, with the hope that a thorough understanding of
these simplified fragments of English will suggest new ways to understand
other aspects of other constructions. The fragments identified here abstract
away from various complexities unearthed over fifty years of investigation
into English and other languages. As such, there remain a great number of
questions about how these myriad complexities should be treated, which will
not be answered here. In particular, we abstract away from the particulars
of case assignment, agreement and the like, treating feature checking as an
unanalyzed operation. In other words, while we assume for simplicity that
features are checked in a particular, lexically determined order, we make no
assumptions about what feature checking consists in (whether unification,
matching, etc). The treatment of raising and passivization presented herein
bears obvious similarities to previous accounts. This is no surprise, as the
novelty of this account lies not in the basic ideas about the nature of pas-
sivization or raising, but instead in their unification into a single simple yet
complete account.

2



1.1 Syntactic Structures

We start with the intuitive picture that words (or something like them) are
the building blocks of sentences. Linguistic expressions (non-atomic ones, at
least) can be broken up into subexpressions, which can then be recombined
to form other expressions. We take as a basic syntactic operation one that
combines two expressions into a third. We will call this operation merge.

In the resultant expression, (some of) the properties of one of the argu-
ments are inherited, to the exclusion of those of the other. This argument is
said to be the head of the resultant expression. As an example, consider the
expressions [V eat ] and [N sausage ] (where the subscripts on the brackets
indicate the syntactic category of the expression), which merge to form the
expression [V eat sausage ], which inherits the category of [V eat ], and not
of [N sausage ]. In this example, [V eat ] is the head of [V eat sausage ].
Generative linguists standardly represent this information in terms of tree
structure; the expression [V eat sausage ] is represented as the tree

<

[V eat ] [N sausage ]

1

where atomic expressions (words with their syntactic properties or features)
are at the leaves, and the internal nodes are ‘labels’, indicating the head of
the complex expression (here, labels are either < or >, and indicate the head
by ‘pointing’ toward it). Note that anything will do as a label, as long as
it unambiguously indicates the head of the complex expression. Labels are
sometimes taken to themselves be expressions [17], in which case the above
tree would appear as

[V eat ]

[V eat ] [N sausage ]

1

This move makes possible a ‘set-theoretic’ representation of the struc-
ture of linguistic expressions, where the above tree is replaced with the set
theoretic object

{{[V eat ]}, {[V eat ], [N sausage ]}}

Assuming that taking labels to be expressions allows one to unambiguously
determine which of the two daughter expressions serve as the head of the com-
plex one, it is easy to see that this set-theoretic representation is equivalent
to a tree representation, albeit one which doesn’t encode the relation of linear
precedence between the daughters, at least not straightforwardly. However,

3



many influential proposals take there to be a functional relationship between
hierarchical structure and linear order [45], and with this assumption these
three representations are easily seen to be merely notational variants of each
other (and thus it would be as strange to argue that one of them is privileged
in some sense with respect to mental representation as it would be to argue
that, in the context of the set theoretic notation, the set brackets are men-
tally represented as being curly (‘{’ or ‘}’), and not round (‘(’ or ‘)’)).2 We
will adopt the first notation (with ‘arrows’ at internal nodes) in this section,
as it is easier on the eye.

1.2 Features

Consider the following sentences.

(1) *John will devour.

(2) John will devour the ointment.

Something is amiss with sentence 1. Somehow, speakers of English know
that when the verb devour occurs in a sentence, its semantic object (the
thing devoured) needs to be expressed. This is in contrast to the nearly
synonymous verb eat, whose semantic object needn’t be overt in the sentences
in which it appears.

2To show the equivalence of these notations we proceed as follows. Given a tree with
labels pointing at the heads (without loss of generality we take the labels to be drawn
from the set {<, >}), we first define a homomorphism f over trees, which simply ‘forgets’
the linear ordering of the terminals. Note that the resulting trees are still ordered, but
by the ‘inherits the properties of’ (or the ‘projects over’) relation, not the standard linear
precedence relation. If we take hierarchical structure to encode linear order as in [45], then
f−1 is defined (and is a top-down delabeling, if we just want to ensure spec-head-comp
order). In the following, ‘`’ is a variable over leaves:

f([<x y]) = [f(x) f(y)]
f([>x y]) = [f(y) f(x)]

f(`) = `

We then define a bijection ·′ between set-theoretic representations and the ‘unordered’
trees above in the following manner:

{{x}, {x, y}}′ = [x′ y′]
{{x}}′ = [x′ x′]

`′ = `

4



(3) John will eat.

(4) John will eat the ointment.

The fact that devour (but not eat) requires an overt argument is a brute
one—it does not seem to be derivable from anything else. The obvious con-
tender, that this fact can be derived from the semantic information associated
with these words, is made less appealing by the lack of any obvious gener-
alization about which of the semantic properties of words are predictive of
the optionality of semantic arguments (consume, which is a near synonym
of eat, behaves like devour in this respect), as well as by the fact that in
other languages, synonyms of eat may behave like the English devour in that
they require their semantic argument to be expressed overtly. Asante Twi
(Kwa:Niger-Congo) is one such:3

(5) *Kwasi
Kwasi

bedi.
fut.eat

“Kwasi will eat.”

(6) Kwasi
Kwasi

bedi
fut.eat

fufu.
fufu.

“Kwasi will eat fufu.”

Consequently, any complete description of our linguistic competence will
have to record that devour requires a syntactic object. Furthermore, devour
only requires one object. In other words, once devour obtains a syntactic
object, its requirement is fulfilled. In our present system we represent these
facts by simply recording, for each word, which properties and requirements
it has. This recording is done in terms of features, which come in two polar-
ities: a categorial feature, say f, indicates that the lexical item has property
F, and a selection feature, =f, indicates that the lexical item requires another
with property F. Two features ‘match’ just in case one is f and the other =f,
for some F. Merge then combines expressions with matching features, and
then checks, or deletes, those features from the resulting expression. In the
resulting expression, that argument projects that had the =f feature. The
intuition is that the expression with the =f feature is acting as a functor,
and the expression with the f feature as its argument. In more traditional

3Asante Twi has a seperate lexeme, didi, for the intransitive usage of eat. Despite the
similarity in form between di and didi, this is the only transitive-intransitive pair in the
language which can reasonably be analyzed as deriving from a single lexical item via an
operation of reduplication (which is otherwise abundantly attested in the language). Thus,
their superficial similarity notwithstanding, they are not plausibly related in a synchronic
grammar of Twi.

5



terms, the expression with the =f feature is the head, and the one with
the f its dependent.4 There are non-trivial correlations between the order
of heads and dependents of various categories within a language [32]. For
example, languages in which objects precede their verbs (dependent–head
order) also tend to have nouns precede adpositions (postpositions), and sen-
tences precede complementizers. Similarly, languages in which objects follow
their verbs (head–dependent order) tend to have nouns following adposi-
tions (prepositions) and sentences following complementizers. English has
head–dependent order (verbs precede objects, adpositions their nouns, etc),
and so we attempt to give this a principled explanation by stipulating that
merge combines lexical heads and dependents in that order. Thus, given
lexical items the::=n d and ointment::n, merge builds the following complex
expression

<

the:d ointment:

1

In English, if there are two dependents, the dependents flank the head.
One example is the subject-verb-object word order of English, assuming that
both subject and object are dependents of the verb. Another example is
given by the Saxon genitive construction (7), assuming that the marker ’s is
the head of the construction, a two-argument version of the.

(7) John’s ointment

Accordingly, we stipulate that merge combines non-lexical heads and depen-
dents with the dependent preceding the non-lexical head. Adding lexical
items ’s::=n =d d and John::d we can derive (7) in two steps. First, we merge
’s and ointment to get

<

’s:=d d ointment:

1

and then we merge the above expression with John to get

4In the idiom of the day we are assuming that all syntactic features are ‘uninterpretable’
in the sense that the only formal feature which is allowed to be present in a complete
sentence is the categorial feature of the head of that sentence. The conception of grammar
that naturally follows from this is of a resource-sensitive system [31, 73], which perspective
is present also in the categorial type-logic community [68, 74].

6



>

John: <

’s:d ointment:

1

Note that it is crucial here that the syntactic features of an expression are
checked in a paricular order—otherwise we couldn’t distinguish syntactically
between ointment’s John and the above. We call the expression first merged
with a lexical item its complement, and later merged expressions are speci-
fiers.

To derive a simple transitive sentence like (8),

(8) John devoured the ointment

we add the lexical item devoured::=d =d t to our lexicon. We merge devoured
with the complex expression the ointment that we derived above to get

<

devoured:=d t <

the: ointment:

1

and then we merge the above expression with John to get

>

John: <

devoured:t <

the: ointment:

1

Now consider the following sentences

(9) John will devour the ointment

(10) John is devouring the ointment

To generate the first of these (9) we need to add to our lexicon the expressions
will::=v =d t and devour::=d v. Then we can merge devour with the ointment

<

devour:v <

the: ointment:

1

7



and then will with devour the ointment

<

will:=d t <

devour: <

the: ointment:

1

and finally will devour the ointment with John to get

>

John: <

will:t <

devour: <

the: ointment:

1

To generate sentence 10, we need to extend our lexicon again with the
expressions is::=prog =d t and devouring::=d prog. Now we simply merge
devouring with the ointment

<

devouring:prog <

the: ointment:

1

and is with devouring the ointment

<

is:=d t <

devouring: <

the: ointment:

1

and finally is devouring the ointment with John to get

8



>

John: <

is:t <

devouring: <

the: ointment:

1

1.3 Head Movement

So far so good, but now consider the following paradigm of sentences

(11) John devours the ointment

(12) John devoured the ointment

(13) John will devour the ointment

(14) John has devoured the ointment

(15) John had devoured the ointment

(16) John will have devoured the ointment

(17) John is devouring the ointment

(18) John was devouring the ointment

(19) John will be devouring the ointment

(20) John has been devouring the ointment

(21) John had been devouring the ointment

(22) John will have been devouring the ointment

To describe these twelve sentences, we might postulate the existence of the
lexical items in figure 1. However, there seem to be regularities in the English
auxiliary system that are not captured by this straightforward analysis. For
example, all expressions with an t feature have an additional =d feature,
in comparison with their counterparts without the t feature. Furthermore,
every one of the devour lexical items has at least one =d feature (those
that have more just have one more, which is predictable given the comment

9



will::=v =d t has::=perf =d t is::=prog =d t devours::=d =d t

had::=perf =d t was::=prog =d t devoured::=d =d t

have::=perf v be::=prog v devour::=d v

been::=prog perf devoured::=d perf

devouring::=d prog

Figure 1: The English auxiliary system (I)

above). An elegant description of the English auxiliary system, going back
to [14], has it that the ‘underlying’ structure of the system is invariant, with
-en and -ing ‘starting out’ adjacent to have and be, respectively:

(will, -s, -ed) have -en be -ing V

Chomsky [14] proposed the existence of transformations that rearrange each
of the above affixes so as to be at the right of the next element in the sequence
above. The details of this analysis have been refined through the years [4, 91]
to talk about movement of heads to other heads (figure 2).5

Head movement has enjoyed a rather checkered existence in the GB com-
munity, as it appears to violate standard constraints on movement (such as
the landing site of movement needing to c-command its trace) and more re-
cently on permissible syntactic operations in general (such as the extension
condition, which has it that all syntactic operations must target the root
of the trees they are defined over). Some have proposed to eliminate head
movement from linguistic theory alltogether [59]. I mean to take no position
on this issue here (but see [83] for a systematic evaluation of different ap-
proaches to head-like movement). One advantage of having head movement
is that it allows us to straightforwardly correlate the structural position of
words with their inflectional form without interfering with other syntactic
operations. An influential school of thought has it that head movement is
not a seperate syntactic operation, but is rather a phonological reflex of mor-
phological properties of expressions [6, 11, 63]. Still, head movement appears
sensitive to syntactic boundaries, and not phonological ones, as the actual
string distance between the affix and its host is potentially unbounded. For

5Head movement does not commit us to a morphemic morphological theory (i.e. Item
and Process or Item and Arrangement [39]). It is fully compatible with a Word and
Paradigm approach [2, 76, 89]—heads are viewed either as lexemes or as morphological
features (devour corresponding to devour and -s corresponding to 3rd person singular
present tense), and complex heads are then lexemes (which identify the paradigm) associ-
ated with various features (which determine the cell in the paradigm).

10



TP

will, {-s, -ed} PerfP

have enP

-en ProgP

be ingP

-ing VP

V

1

Figure 2: Head movement of auxiliaries in English

example, subject auxiliary inversion in questions is commonly analyzed as
head movement of the inflectional element in T0 to the complementizer posi-
tion C0, and the subject, a full DP of potentially unbounded size, intervenes
between these two heads (figure 3). So it seems that we cannot leave head

CP

C′

C0 TP

DP T′

T0 VP

1

Figure 3: T-to-C movement

movement out of the domain of syntax altogether. Instead, we decide to re-
solve the morphological requirements of the merged head at each merge step

11



(as done in [82, 85]).
An affix may either trigger raising of the head of its complement (stan-

dard head movement), or may lower itself onto the head of its complement
(affix hopping) in order to satisfy its morpho-phonological dependence.6 For
simplicity, we assume that the syntactic effects of this morphological combi-
nation (whether the base raises to the affix or the affix lowers to the base) are
determined by the affix itself. As the ‘base’ in question is always the head
of the complement (i.e. the first merged phrase) to the affix, we indicate on
the complement-selecting =f feature itself whether the lexical item bearing
said feature is an affix, and, if it is, whether it triggers raising of the head
of its complement, or it lowers onto the head of its complement. In the first
case (raising), we write =>f, and in the second (lowering), we write f=> .
Using head movement, we can describe the English auxiliary system more
succinctly (figure 4).7 8

will::=perf =d t have::=en perf be::=ing prog devour::=d v

-s::perf=> =d t -en::=>prog en -ing::=>v ing

-ed::perf=> =d t ε::=>prog perf ε::=>v prog

Figure 4: The English auxiliary system (II)

We derive the sentence “John is devouring the ointment” as follows. First,
we merge devour with the phrase the ointment

6Note that we are assuming that affixes are all structurally higher than the bases to
which they attach. This is by no means a necessary assumption, but it not only seems to
hold given our assumptions thus far about English, but also seems to be relatable to a cross-
linguistic tendency for more ‘abstract’ meanings to be expressed via bound morphemes
more frequently than more ‘contentful’ meanings [10]. In the government and binding
style perspective we adopt here, more contentful expressions tend to occupy hierarchically
subordinate positions to the more abstract, or ‘functional’ expressions.

7Although now we generate terminal sequences like

John be -s kiss -ing Mary

which is yet another step removed from the data. Thus, the apparent elegance of this
approach needs to be evaluated in conjunction with the modifications necessary to the
morphological module implicitly appealed to.

8The ‘empty’ lexical items in figure 4 serve the same function as lexical redundancy
rules—they encode generalizations about predictable patterns in the lexicon; without them
we would have three entries for every (transitive) verb differing only in their categorial
feature (this would still constitute an improvement over the lexicon in figure 1, which
requires five entries for each verb in English).

12



<

devour:v <

the: ointment:

1

We then merge -ing with devour the ointment

<

-ing:ing <

devour: <

the: ointment:

1

and the morphological properties of the merged affix trigger morphological
readjustment—the head devour raises to the head -ing :

<

devour -ing:ing <

ε: <

the: ointment:

1

and be with devouring the ointment

<

be:prog <

devour -ing: <

ε: <

the: ointment:

1

and ε::=>prog perf with be devouring the ointment

13



<

ε:perf <

be: <

devour -ing: <

ε: <

the: ointment:

1

and again, the morphological properties of the merged affix trigger raising of
the head be to the higher head:

<

be:perf <

ε: <

devour -ing: <

ε: <

the: ointment:

1

and -s with the above phrase

<

-s:=d t <

be: <

ε: <

devour -ing: <

ε: <

the: ointment:

1

and once more the morphological properties of the suffix -s trigger morpho-
logical readjustment, this time lowering -s to the head of its complement

14



<

ε:=d t <

be -s: <

ε: <

devour -ing: <

ε: <

the: ointment:

1

and finally is devouring the ointment with John

>

John: <

ε:t <

be -s: <

ε: <

devour -ing: <

ε: <

the: ointment:

1

This approach bears more than just a passing similarity to [63], where
head movement is also viewed as the result of a morphological operation
(there called ‘m-merger’) which applies during the course of the derivation.
Head movement as implemented here is a representative of a ‘post-syntactic’
(really: ‘extra-syntactic’) readjustment operation (as are commonplace in
Distributed Morphology [24, 35]), and serves to illustrate some interesting
properties of the copy mechanism introduced in chapter 4 of Kobele [48].

1.4 Phrasal Movement

Consider the following sentences.

15



(23) A pirate ship appeared (in the distance).

(24) *A pirate ship to appear (in the distance).

(25) A pirate ship seemed to appear (in the distance).

(26) *A pirate ship seemed appeared (in the distance).

It appears that non-finite clauses (sentences with to) do not license surface
subjects. Assuming that will and to have the same category,9 we can explain
the above data with the simple addition of the expression to::=perf t to
our lexicon, and of the sentential complement-taking verb seem::=t v. Note
however that this move makes the choice of subject independent of the choice
of (lower) verb. While it has been argued that so-called external arguments
of verbs should be selected not by the verb itself but by a structurally higher
projection [53, 61, 72], this is not as straightforward as our current theory
would seem to predict.10

(27) There appeared a pirate ship (in the distance).

(28) *There sunk a pirate ship (in the distance).

(29) There seemed to appear a pirate ship.

(30) *There seemed to sink a pirate ship.

While the precise factors that license expletive-there subjects are not
well understood, it seems that the question as to whether expletive-there is
licensed is fully determined by the choice of verb (phrase) in the lower clause
(appear vs sink), and is independent of the choice of auxiliary, and of whether
seem-type verbs intervene, and, if so, of how many. Our current theory is not
capable of accounting for these ‘long-distance’ dependencies in a simple and

9Although this is not true in terms of surface distribution, as shown by the position of
negation in the examples below, it is good enough for our purposes here.

1. John will not have kissed the lizard (by daybreak).

2. It was best for John to not have kissed the lizard.

3. *John not will have kissed the lizard.

4. It was best for John not to have kissed the lizard.

10A treatment of there-insertion can be found in chapter 3 of Kobele [48], where long-
distance agreement is investigated.

16



revealing way.11 There are two basic options available to us at this point.
We could either make the information relevant to the decision about whether
expletive-there is a permissible surface subject available at the point when
the surface subject is merged in its canonical position, or we can introduce
the surface subject at the point when this information becomes available,
and then ‘move’ it to its surface position. The former option is exemplified
by Generalized Phrase Structure Grammar [30] and its decendents. These
formalisms can be seen as making information about the derivation available
in a ‘store’, which can be modified through the course of the derivation.
Derivation steps can then be made contingent on properties of this store
(e.g. ‘insert there if the store contains [+there]’). Wartena [93] provides a
detailed investigation of this perspective on non-local dependencies.

The pursuit of the latter option is one of the hallmarks of the transfor-
mational tradition in generative grammar. According to this perspective, we
have at some intermediate stage of the derivation a structure in which the
main clause subject is in the lower clause (figure 5). We thus need to specify

seem ...

There to appear a pirate ship

1

Figure 5: An intermediate stage in the derivation of 29

how the subsequent ‘movement’ of the subject occurs. As the movement
seems to be to particular positions only, and of the subject only (cf (31) and
(32)),12 we conclude that movement is not free, i.e. there are restrictions
governing it.

(31) *Will have therei seemed ti to be a pirate ship.

11All dependencies in our current theory are handled selectionally, and with simplex cat-
egories. Thus the lexical items between the subject (or rather, the projection introducing
the subject) and the lower verb (or rather, the minimal phrase in which it is determinable
whether the expletive is introducable) need to be doubled, so as to allow for the requisite
upward percolation of this information. However, as appropriate grammars can be written
so as to avoid duplication of contentful material, the grammar size increase is negligible
(i.e. a constant). Thus, the intuition about ‘simplicity’ is unfortunatly little more than a
sound bite at this point.

12The phrases with index i are intended to have been moved from the positions occupied
by the trace t with the same index.

17



(32) *A pirate shipi will have seemed there to be ti.

We decide to make the question of what can move, and what allows movement
to it, an idiosyncratic property of lexical items. One question to ask is
whether the features driving movement are the same as the features driving
merger. To simplify matters (by cutting down on the number and kind of
interactions in the system), we assume that movement features and merger
features are drawn from disjoint sets.13 Accordingly, we take movement
features to be divided into those that license movement (+f) and those that
indicate a requirement to be moved (-f). Where can things move to? One
long-standing observation is that movement is generally to a c-commanding
position (33).

(33) *(It) ti hopes that Johni is raining

(John hopes that it is raining)

In other words, movement is upwards in the tree. It is commonly assumed
that movement is always to the root of the tree (a consequence of Chomsky’s
[16] ‘Extension Condition’). We adopt this here. We adopt also a general
principle of ‘immediacy’, which (informally) requires that an expression move
as soon as possible. More precisely, an expression with licensee feature -x

will move as soon as the root of the tree makes available a licensor feature
+x. This principle allows us to derive something like Rizzi’s [75] Relativized
Minimality. Given our principle, we know that if a tree contains more than
one expression with the same accessible licensee feature, it is not part of
a convergent derivation.14 This means that move is a fully deterministic
operation (i.e. a function)—given an expression whose root has first feature
+x, it will be in the domain of move just in case it has exactly one proper
constituent whose head has first feature -x. In that case, that constituent
moves to the specifier of the root.

Koopman and Sportiche [52] note that the same considerations that mo-
tivate a raising analysis for seem-type clauses (that the information about
what kind of subject is permitted is present already in the embedded clause
verb) suggest that the subject is introduced below the auxiliaries as well. Let

13Relaxing this assumption (as done in [84]) might provide the foundation for a natural
account of expletive subjects (it), which have a sort of ‘last resort’ quality, in that they
seem to appear in case positions (+k in our notation), in case there is no other element
which needs case in the tree.

14Constraints on movement can be incorporated into the domain of the move operation.
Different constraints result in different generative power [29, 49, 65]. Thus, although
we adopt here the principle of immediacy, and thereby something like the minimal link
condition, other constraints on extraction are straightforwardly adaptable to this system.

18



us christen the feature that drives movement of the subject to the surface
subject position ‘K’, and let us systematically substitute the feature +k for
the feature =d in our auxiliaries. Our current inflectional lexical items are
shown in figure 6.

will::=perf +k t have::=en perf be::=ing prog

-s::perf=> +k t -en::=>prog en -ing::=>v ing

-ed::perf=> +k t ε::=>prog perf ε::=>v prog

to::=perf t

Figure 6: The English auxiliary system (III)

Then the sentences

(34) John has arrived.

(35) John seems to have arrived.

(36) John seems to seem to have arrived.
...

can be derived using the lexical items John::d -k, arrive::=d v, seem::=t v and
the auxiliaries from figure 6.

We derive the sentence John has arrived by first merging arrive and John,

<

arrive:v John:-k

1

merging ε::=>v prog with the above expression (with the concommittant mor-
phological readjustment)

<

arrive:prog <

ε: John:-k

1

merging -en with the above (and resolving the morphological requirements
of the merged affix)

19



<

arrive -en:en <

ε: <

ε: John:-k

1

merging have with the above

<

have:perf <

arrive -en: <

ε: <

ε: John:-k

1

merging -s with the above (and lowering onto the head of its complement)

<

ε:+k t <

have -s: <

arrive -en: <

ε: <

ε: John:-k

1

and then finally moving John in the above expression.15

15For convenience, we represent the source of phrasal movements with a λ.

20



>

John: <

ε:t <

have -s: <

arrive -en: <

ε: <

ε: λ

1

The sentence ‘John seems to have arrived’ can be derived by merging to
with the expression have arrived John derived above

<

to:t <

have: <

arrive -en: <

ε: <

ε: John:-k

1

merging seem with the above

<

seem:v <

to: <

have: <

arrive -en: <

ε: <

ε: John:-k

1

21



merging ε::=>v prog with the above expression (and raising the head of its
complement)

<

seem:prog <

ε: <

to: <

have: <

arrive -en: <

ε: <

ε: John:-k

1

merging ε::=>prog perf with the expression above (and raising)

<

seem:perf <

ε: <

ε: <

to: <

have: <

arrive -en: <

ε: <

ε: John:-k

1

merging -s with the above expression (and lowering)

22



<

ε:+k t <

seem -s: <

ε: <

ε: <

to: <

have: <

arrive -en: <

ε: <

ε: John:-k

1

and then finally applying move to seems to have arrived John

>

John: <

ε:t <

seem -s: <

ε: <

ε: <

to: <

have: <

arrive -en: <

ε: <

ε: λ

1

23



Our current implementation of ‘raising to subject’ phenomena does not
involve successive cyclic movement (see [69] for a protracted defense of this
position). We shall see, however, that in the same sense that movement, as
described here, simply is copy movment, it is also successive cyclic in the
strong sense of involving every specifier position between it and its landing
site. Thus, the lack of successive cyclicity is only apparent.

Within the context of our treatment of the raising to subject construction,
our principle of immediacy allows for a simple account of the impossibility of
so-called super-raising in English (as in 39 below). As is well known, raising
sentences (such as 35) have non-raised counterparts (such as 37) in which
the subject position of the matrix clause is filled by an expletive it.

(37) It seems John has arrived.

(38) *It seems John to have arrived.

(39) *John seems it has arrived.

As tensed clauses in our grammar uniformly bear +k features, it is natural,
in the light of the sentences above, to treat expletive it as bearing a -k

feature. We allow it to be freely introduced at the v level (i.e. above the
merge position of the subject, and below the +k feature of t) by means of the
lexical items ε::=>v =expl v and it::expl -k.16 A derivation for the super-
raising sentence in 39 would go through an intermediate form such as the
below (merging ε::=>v =expl v and then it with arrive John from above)

>

it:-k <

arrive:v <

ε: John:-k

1

which will run afoul of our principle of immediacy as soon as a tense head
is merged (in the matrix clause in 38, and in the embedded clause in 39).
The grammatical sentence 37 is derived by merging the expletive into the
structure after the lower clause subject has checked its -k feature (i.e. once

16Our implementation of expletive insertion here thus differs from the common treatment
in terms of merger licensed by what is here a +k feature (with concomitant appeal to
numerations and subnumerations and preferences for merge over move). This approach is
formally blocked for us by our decision to treat movement and merger features as distinct
(see the discussion in footnote 13).

24



seem has been merged). There is then no conflict with the principle of
immediacy when the matrix tense is merged.

This treatment of expletives immediately extends to encompass ‘weather-
it’, as in 40 below.

(40) It is raining.

Including the expression rain::v into our lexicon, we derive the sentence it is
raining in seven steps. We first merge ε::=>v =expl v with rain, and then
continue by merging the resulting expression with it.

>

it:-k <

rain:v ε:

1

We then merge -ing with the above expression, followed by be and then
ε::=>prog perf.

<

be:perf <

ε: <

rain -ing: >

it:-k <

ε: ε:

1

Finally we merge -s with the expression above, and then move it to subject
position.17

25



>

it: <

ε:t <

be -s: <

ε: <

ε: <

ε: <

rain -ing: >

λ <

ε: ε:

1

We will assume that having the feature sequence ‘d -k’ is constitutive of
the property of ‘being a DP’, and therefore that objects as well as subjects
are in need of being moved to a position higher than their base position.
Thus “the” has the type =n d -k. In light of this, consider now the following
sentences.

(41) John will have been devouring the ointment.

(42) The ointment will have been being devoured.

(43) George expects the ointment to be devoured.

(44) The ointment is expected to be devoured.

The pair 41 and 42 suggest to us that the external argument (here, the agent
John) can be dissociated from the verb, and that, in that case, the internal
argument moves to the canonical subject position to check its -k feature.

17This analysis makes sentences like “It seems to have rained” ambiguous, as it may be
introduced in either clause. This seems to be a case of ‘spurious ambiguity’ (where there
are two or more different derivations of a sentence corresponding to the same meaning),
analogous to the situation in various deduction systems, where numerous (typically an
infinite number) proofs are derivable for any given sequent. The ideal of one proof–one
meaning can be recovered by either placing constraints on what is to count as an acceptable
proof in the current system (normalization), or by developing a novel representation that
equates irrelevantly different proofs (one example of such is given by proof nets in Linear
logic and the Lambek calculus).

26



In other words, the possibility of checking a -k feature internal to the verb
phrase is dependent upon whether the external arugment is present. This is
essentially Burzio’s generalization [9]:

A verb which lacks an external argument fails to assign accusative
case.

In a basic transitive sentence like 41, our principle of immediacy forces us
to check the -k feature of the object before the subject is introduced (a
position familiar from [51, 52]). We assign to the lexeme “devour” the type
=d V, and recast Burzio’s generalization in our system with the lexical item
ε::=>V +k =d v. Then 41 can be derived by first merging the and ointment.

<

the:d -k ointment:

1

Then devour is merged with the ointment, and then ε::=>V +k =d v with the
resulting expression (with the appropriate morphological readjustments), fol-
lowed by movement of the ointment.

>

<

the: ointment:

<

devour:=d v <

ε: λ

1

We continue by merging the expression above with John, and then merging
-ing with the result, and then be with the result of that.

27



<

be:prog <

devour -ing: >

John:-k >

<

the: ointment:

<

ε: <

ε: λ

1

Next we merge -en with be devouring John the ointment (and then readjust-
ing morphologically), followed by merging have with the result, and finally
we merge will with have been devouring John the ointment and then move
John in the resulting expression.

>

John: <

will:t <

have: <

be -en: <

ε: <

devour -ing: >

λ >

<

the: ointment:

<

ε: <

ε: λ

1

Sentence 42, with its passive ‘be’ and its associated perfective participial
morphology, can be nicely accomodated with our existing head movement

28



operation. We add the expressions be::=pass v and -en::=>V pass to our
lexicon. Sentence 42 can then be derived by first merging passive -en with
the expression devour the ointment derived above followed by merging passive
be with devoured the ointment.

<

be:v <

devour -en: <

ε: <

the:-k ointment:

1

We then successively merge -ing, be, -en, have and will (performing the
necessary morphological operations when appropriate). Finally, we move the
ointment in the resulting expression.

>

<

the: ointment:

<

will:t <

have: <

be -en: <

ε: <

be -ing: <

ε: <

devour -en: <

ε: λ

1

To derive sentences 43 and 44 we need only add the lexical item ex-
pect::=t V. Note that, descriptively, we can have raising to object, and then

29



passivization, and then more raising without any additional stipulations—
raising and passive feed each other. Formally, object to subject movement
in passives is motivated by the same thing that motivates raising in raising
constructions. Sentence 43 is derived by successively merging ε::=>v prog,
ε::=>prog perf, and to (with the appropriate morphological readjustments)
with the expression be devoured the ointment derived above.

<

to:t <

be: <

ε: <

ε: <

devour -en: <

ε: <

the:-k ointment:

1

We then merge expect and then ε::=>V +k =d v with the above, followed by
movement of the ointment into what might be considered to be the object
position of the matrix clause (an analysis forcefully argued for in [71]).18

18Really we have two ‘object’ positions: one in which the object checks its d feature,
which we can think of as the ‘deep’ object position, and one in which the object checks
its -k feature, which can be thought of as the ‘surface’ object position.

30



>

<

the: ointment:

<

expect:=d v <

ε: <

to: <

be: <

ε: <

ε: <

devour -en: <

ε: λ

1

Next we successively merge George::d -k, ε::=>v prog, ε::=>prog perf, and
-s::perf=> +k t. Finally, we move George in the resulting expression.

31



>

George: <

ε:t <

expect -s: <

ε: >

λ >

<

the: ointment:

<

ε: <

ε: <

to: <

be: <

ε: <

ε: <

devour -en: <

ε: λ

1

1.5 Interim Summary

This section has motivated the particular assumptions we have made about
syntax by showing how natural analyses of A-movement constructions can
be directly implemented in our formal framework. For concreteness’ sake,
our assumptions regarding the architecture of the syntactic component of
the grammar are the following:

1. we have two feature-driven operations, one binary (merge) and one
unary (move)

2. features are checked in a particular order

3. features come in attractor-attractee pairs, and checking is symmetric

4. there are constraints on movement such as the principle of immediacy

We have not discussed many architectural options that are or have been
hot topics in the minimalist tradition. Nothing has been said about numer-
ations, lexical subarrays, preferences for merge over move, trans-derivational

32



economy constraints, covert movement, sidewards movement, adjunction,
scrambling, the EPP, or Agree.19 Also, we have not yet explored how
phases fit into the picture we have painted here. In this system, phases
are admissible—nothing changes even if every node is a phase. This will be
taken up in the next section.

2 Introducing Phases

Recall that our (immediate) goal is to specify the associations between the
pronounced form of a sentence on the one hand and the range of interpreta-
tions that it may have on the other. The way we have approached this task of
defining a relation is by defining a set of abstract objects, together with two
operations, which we may call Π and Λ, which map these abstract objects
into (mental representations of) pronounced forms, and meanings respec-
tively. In our current system, our lexical items together with our operations
of merge and move determine a set of trees; those that can be derived start-
ing from lexical items and repeatedly applying merge or move. Even more
abstractly, we can view a derivation as a description of (or even: a recipe
for) the process of constructing its object. So a derivation of the expression
the ointment proceeds by first selecting the lexical items the and ointment,
and then merging them together. We can represent this as a tree:

merge

the::=n d -k ointment::n

1

This derivation can be continued by merging devour with the expression the
ointment, and then by merging the active voice ε::=>V +k =d v with the
expression just derived, and then moving the ointment. We can represent
this as a tree:

19Some of these have been explored within the context of the assumptions made here
elsewhere. In particular, Stabler [84, 85] discusses covert and sidewards movement, and
Frey and Gärtner [27] discuss adjunction and scrambling. Covert movement and Agree
are discussed and formalized in chapter 3 of Kobele [48].

33



move

merge

ε::=>V +k =d v merge

devour::=d V merge

the::=n d -k ointment::n

1

We can define the set of all possible derivations over a particular lexicon in
the following way.

1. First, we take each lexical item to be a derivation which stands for itself

2. Second, given derivations α and β, we describe the merger of the ex-
pression stood for by α with the expression stood for by β with the
derivation merge(α, β), or, as a tree

merge

α β

1

3. Finally, given a derivation α, we describe the result of applying the
operation of move to the expression stood for by α by the derivation
move(α), or, as a tree

move

α

1

The set of possible derivations defined above includes those that do not
stand for any well-formed expression (e.g. move(the)). Derivations that do
stand for well-formed expressions we will call successful, or convergent. Those
that do not we will say have crashed.20 Note that a successful derivation
stands for just a single expression, so we can look at a (successful) derivation
as a name of an expression. Note also that expressions may have different
names (see footnote 17).

20We could define a notion of ‘where’ an unsuccessful derivation crashes in terms of
maximal successful subderivations.

34



Our conception of grammar thus far can be expressed in the following
terms. We have a derivation (Deriv) which stands for (i.e. specifies how
to construct) a tree (Tree), which itself determines a pairing of form and
meaning, as given by the maps Π (which turns the tree into a PF-legible
object PF ) and Λ (which transforms the tree into an LF-legible object LF ).
This is schematized in figure 7.21 The procedural metaphor dominating much

PF LF

Tree
Λ

::vvvvvvvvvΠ

ddIIIIIIIII

Deriv

OO

Figure 7: Specifying the associations between sounds and meanings

of syntax, while intuitive, has had the effect of obscuring the distinction
between derivational structure, derived (tree) structure, and the mapping
between them. Disentangling these notions, we see that there are actually
three components to our theory of syntax, the derivation, the derived tree,
and the relation between them, and allows us to formulate the question of
whether all three components are necessary (i.e. useful) in specifying the
relation between form and meaning (i.e. our knowledge of language).

Phases, from our current perspective, should be understood as constrain-
ing the relationships between the levels in figure 7 above. To say that the
derivation proceeds in phases says that the mappings Π and Λ can be given
a recursive bottom-up (what Chomsky [12] calls a ‘cyclic’) characterization,
whereby the mappings Π and Λ are defined such that their output on a par-
ticular subtree is determined within a certain structural ‘window.’ The size
of this window is generally taken to be defined in terms of the categorial sta-
tus of the various nodes in the tree, with at least CPs and v∗Ps (active voice
phrases) specifying the upper bounds on these windows (where the material
between a v∗P and a CP may be taken into consideration when computing
an expression’s PF or LF representation, but nothing more). As pointed out
in [62], given the possibility of iterated adjunction (of, say, relative clauses,
adjectives, or adverbs) and of iterated raising constructions, the window of

21The terms ‘PF’ and ‘LF’ are ambiguous in modern generative linguistics, sometimes
being used as a name for the process of constructing a representation that is used by
non-syntactic systems, and sometimes as a name for the representation so constructed.
Here, we reserve the terms ‘PF’ and ‘LF’ for the representations used by these interface
levels (and also as a cover term for these levels themselves), and use ‘Π’ and ‘Λ’ to refer
to the process of constructing such a representation from a syntactic object.

35



context that the mappings to the interfaces may take into account is un-
bounded in size (and thus the mappings are not guaranteed to be finitely
specifiable—an undesirable consequence of a too unrestrictive theory). If the
range of possible distinctions that could be drawn were given a principled
upper bound, we could eliminate the derived tree altogether, encoding the
finitely relevant information about a subtree by parameterizing the mappings
Π and Λ (making them homomorphisms with state, or transducers).22 This
has the effect of eliminating both derived structure as well as the relation
between derivation and derived structure from our grammar, leaving us with
a ‘directly compositional’ picture of syntax (as shown in figure 8), according
to which

[. . . ]syntactic structure is merely the characterization of the
process of constructing a [form–meaning pair], rather than a rep-
resentational level of structure that actually needs to be built[. . . ]
([88], pp xi)

PF LF

Deriv
Λ

::vvvvvvvvvΠ

ddIIIIIIIII

Figure 8: Directly interpreting derivations

We shall see how this project can be realized in minimalist grammars in the
remainder of this section. We first show (§ 2.1) how the mapping Π from the
derived tree to PF can be computed without needing to construct the derived
tree in the first place. We then (§ 2.2) show how to construct an LF-legible
representation directly from the derivation, modifying Heim and Kratzer’s
[37] semantic theory to this more dynamic perspective. To achieve this we
make precise a long-standing intuition that “chains and not chain-members
are the elements input to principles of interpretation” ([8], pp. 130). We end
this section by extending our grammar for A-movement to account for cases
of obligatory control, as well as for basic quantifier scope ambiguities.

22This is investigated in Kobele et al. [50], where it is shown that in the grammars
presented here the mappings Π and Λ can be realized by deterministic top-down tree
transducers with regular look-ahead [25]. As the set of well-formed derivation trees of
minimalist grammars is recognizable, the form-meaning mappings computed by minimalist
grammars are bimorphisms of type B(M,M), where M is the class of tree homomorphisms
[80].

36



2.1 To PF Without Trees

We begin with the observation that much of the tree structure we are repre-
senting expressions as having is functionally inert—no operation of the (syn-
tactic) grammar ‘cares’ about the internal structure of subtrees that have no
syntactic features. Consider the expressions in figure 9. These expressions

>

John:-k >

<

the: ointment:

<

devour:v <

ε: λ

1

<

seem:v <

to: <

have: <

arrive -en: <

ε: <

ε: John:-k

1

Figure 9: Syntactically indistinguishable expressions

are indistinguishable syntactically—the heads of both have the feature se-
quence v, and both have exactly one constituent with licensee features, the
heads of which share the same feature sequence: -k. The position within
the tree-structures of the moving constituent is not relevent in our current
formalism, and so needn’t be explicitly represented. Eliminating the syntac-
tically superfluous information contained in the derived structures above, we
can represent these expressions in the following manner.

(the ointment, devour, ε) : v, (John, -k)

(ε, seem, to have arrive -en) : v, (John, -k)

More generally, we can go from derived trees to these more minimal rep-
resentations in two steps. First, we build a list of all of the constituents in
the derived tree t whose heads have a licensee feature -x, and remove these
constituents from t (in case a constituent whose head bears a licensee fea-
ture itself containts another constituent with the same property, we remove
this latter constituent from the former and put it into the list). For each
sub-tree s in this list, we replace it with the pair (yield(s), δs), where δs is
the feature sequence of the head of s, and yield(s) is the interpretation of s
at the PF interface (which we will represent as a string of lexemes). Finally,
for t′ the result of removing each such subtree from t, we replace t′ with the

37



object (edget′ , headt′ , interiort′) : δt′ , where δt′ is the feature sequence of the
head of t′, edget′ is the interpretation of the specifiers of the head of t′ at
the PF interface (the spell-out of the material in the specifiers of the head
of t′), headt′ is the interpretation at the PF interface of the head of t′, and
interiort′ is the interpretation at the PF interface of the complement of the
head of t′. Schematically,

(Spec, Head, Comp) : features, Moving sub-constituents

Lexical items like John::d -k are considered as abbreviations for represen-
tations like (ε, John, ε)::d -k.

We work through a derivation of the sentence “John devoured the oint-
ment,” showing at each step both the derived tree, as well as its abbreviation
according to our convention. The crucial fact of note is that the operations
of merge and move can be directly defined over these reduced expressions,
rendering the derived tree unnecessary for the computation of a PF legible
representation. Precise definitions of the generating functions are given in
appendix A.2.

We begin by merging the::=n d -k and ointment::n to get the expression
below, which is abbreviated by the representation below it.

<

the:d -k ointment:

1

(ε, the, ointment) : d -k

Next we merge devour::=d V with the above expression.

<

devour:V <

the:-k ointment:

1

(ε, devour, ε) : V, (the ointment, -k)

We merge ε::=>V +k =d v with the expression above, performing the accom-
panying morphological readjustment, to get the below.

<

devour:+k =d v <

ε: <

the:-k ointment:

1

38



(ε, devour, ε) : +k =d v, (the ointment, -k)

Move applies to the expression thus derived, to get

>

<

the: ointment:

<

devour:=d v <

ε: λ

1

(the ointment, devour, ε) : =d v

The above expression merges with John::d -k.

>

John:-k >

<

the: ointment:

<

devour:v <

ε: λ

1

(the ointment, devour, ε) : v, (John, -k)

Next the lexical item ε::=>v prog is merged with the above.

<

devour:prog >

John:-k >

<

the: ointment:

<

ε: <

ε: λ

1

(ε, devour, the ointment) : prog, (John, -k)

Then we merge ε::=>prog perf with the expression above.

39



<

devour:perf <

ε: >

John:-k >

<

the: ointment:

<

ε: <

ε: λ

1

(ε, devour, the ointment) : perf, (John, -k)

Finally we merge -ed::perf=> +k t.

<

ε:+k t <

devour -ed: <

ε: >

John:-k >

<

the: ointment:

<

ε: <

ε: λ

1

(ε, ε, devour -ed the ointment) : +k t, (John, -k)

Move applies to the above expression, yielding the desired

40



>

John: <

ε:t <

devour -ed: <

ε: >

λ >

<

the: ointment:

<

ε: <

ε: λ

1

(John, ε, devour -ed the ointment) : t

2.1.1 Successive Cyclic Movement

As mentioned in § 1.4, our implementation of minimalist grammars over
trees did not involve successive cyclic movement in any obvious way. Before
moving on to the presentation of a compositional semantics for minimalist
grammars (§ 2.2), we will see how a strong version of successive cyclicity is
nonetheless maintained in our formalism.

There is near-universal agreement that non-finite TPs in English (those
headed by to) are defective in some sense, in comparison with finite TPs. In
our present system, this ‘defectivity’ is captured by the lack of a +k feature
on to (i.e. non-finite T doesn’t assign case). There is still disagreement in
the transformational-generative community over whether DPs which undergo
raising move through the non-finite T.23 This movement has a different char-
acter than the others we have or will encounter in this thesis. Unlike our other
movements (thus far driven all by -k features), successive cyclic movement
does not appear to check features of the expressions moving—the self-same
DP may raise once, twice, or not at all.

Consider the two derived trees in figure 10, which represent the raising
and non-raising analysis of the same point in the derivation of the expression
John seems to have arrived, respectively. In our new notation, the same
expression represents both of the trees in figure 10.

(ε, to, have arrive -en) : t, (John, -k)

23This question is currently posable as: “Does non-finite T have an EPP feature?”

41



>

John:-k <

to:t <

have: <

arrive -en: <

ε: <

ε: λ

1

<

to:t <

have: <

arrive -en: <

ε: <

ε: John:-k

1

Figure 10: Two accounts of the structure of the non-finite TP

Thus, we could just as easily interpret moving expressions as successive
cyclicly moving to every intermediate specifier between feature-driven move-
ment positions. The essential observation, which also holds for the copy
theory of movement, is that information about a moving constituent is car-
ried along and is therefore potentially available to every intermediate node
between where it is first introduced, and where it finally ends up.

2.2 Direct Compositionality

An adequate semantic representation, in the context of the computational
theory of mind that is the mainstay of modern cognitive science, is one over
which the appropriate inferential relations (of entailment, synonymy, etc) can
be simply defined. These relations are often given model-theoretic counter-
parts by means of associating semantic representations with model-theoretic
objects (e.g. sets of models in which the representation is ‘true’). This allows
us to give precise accounts of semantic relations between sentences without
committing ourselves to a particular mode of mental symbol manipulation.
Many find it desirable to ‘directly interpret’ either the derivation tree or the
derived tree into some model theoretic object. This amounts to taking the
tree (derivation or derived) as the semantic representation itself, with the
‘interface map’ just being the identity function. This is a logical possibility,
and one which, under one reading, cannot help but be right—we can always
compose the interface map with the map from semantic representations to
model theoretic objects. However, there is also a sense in which this is a bold
conjecture. Under this reading, the proposal is that the derivation tree will
provide the right kind of structure over which to simply define the rules of

42



inference for the ‘language of thought’. (See [28, 92, 94] for discussion, and
progress on this front.)

The main idea on the syntactic side of work on the syntax-semantics
interface has been that expressions may be interpreted in places in which
they do not appear on the surface, but that those places in which they may
be interpreted are characterizable in terms of positions through which they
have moved in the course of the derivation. As we will be directly mapping
our derivations into model-theoretic objects, and will therefore not have the
use of derived trees which record the positions through which our objects
have moved, we will need to decide upon an appropriate interpretation of
our objects as they move through each of their intermediate positions. An
extremely simplistic implementation of this idea in the context of our cur-
rent assumptions is to associate a semantic value with each feature of an
expression, and that as each feature is checked, its associated semantic value
interacts appropriately with the semantic value associated with the feature
of the expression that it checks/is checked by. Our approach bears obvi-
ous (and non-coincidental) resemblances to [20], perhaps the main difference
lies in our restrictions on access to the quantifier store, which enforce that
quantificational elements can take scope only in their chain positions.

The next section discusses the basic idea underlying the model-theoretic
semantics for minimalist grammars detailed in § 2.4 and put to work in the
domain of quantifier scope (§ 2.5) and control (§ 2.7).

2.3 Semantics in Chains

Sentences like 45 are commonly thought to be compatible with two seemingly
different states of affairs.

(45) Exactly one maggot will devour more than two carcasses.

The subject wide scope reading of the above sentence has it that the set of
maggots who end up eating more than two carcasses will be a singleton set.
In such a situation, the discourse may be continued with an utterance of 46.

(46) John will too.

According to another interpretation, there are more than two carcasses which
have a single solitary maggot worming its way through them, although there
may be many more carcasses which are chock full of the little creatures, and
each maggot may well be dining upon a smörg̊asbord of dead entities. In this
situation, an utterance of 46 would be infelicitous.

These readings are logically distinct, in the sense that neither of them
entails the other. To see this, consider a situation in which there are an

43



equal number of maggots and carcasses, say three. If maggot one is eating
all three of the carcasses, maggot two is eating carcass one, and maggot three
is eating carcass three, then the subject wide scope reading of sentence 45 is
true of this situation (as there is exactly one maggot (one) which is eating
more than two carcasses, the others are eating just one apiece). The subject
narrow scope reading is not (as only carcass three is being eaten by just one
maggot). This is depicted in figure 11. If, on the other hand, we imagine

m1

m2

m3

c1

c2

c3

1

Figure 11: A model for the subject-wide scope reading of sentence 45

the same maggots and carcasses engaged in a different pattern of feeding
behaviour, where maggot one is eating carcass one, maggot three is eating
carcasses two and three (and maggot two is slowly starving to death), the
wide scope reading is false (as no maggot is eating more than two carcasses),
but the narrow scope reading is true (as all three carcasses are being eaten
by a single maggot—carcass one by maggot one, and carcasses two and three
by maggot three). This is depicted in figure 12.

m1

m2

m3

c1

c2

c3

1

Figure 12: A model for the subject-narrow scope reading of sentence 45

Quantified noun phrases (QNPs) are usefully thought of as making two
general meaning contributions to the clauses in which they appear. The
first is the role they play in the clause (i.e. is exactly one maggot the de-
vourer or the devouree). The second is their logical priority with respect to
other elements (as Hintikka [38] calls it). For example, the two readings of
sentence 45 assign the same grammatical role to the two QNPs, but invert
their logical priority (with the subject being logically prior to the object in
the subject-wide reading, and the object prior to the subject in the subject-
narrow reading). This bipartite meaning contribution is usually represented

44



by means of variables (which serve to saturate the appropriate argument po-
sition) and variable binding operators (which demarcate the semantic scope
of the quantifier).

Our expressions already record information about their future syntactic
relationships in their features. For example, from the expression every car-
cass:d -k we garner that every carcass will be selected by another with an
appropriate feature (either =d, =>d, or d=> ), and will then move to a position
licensing its case feature (where it will be pronounced). We might just as
well have represented this information in terms of the following, ‘chain’-like
representation (as in [81]).

-k

<

every carcass

! d

λ

1

Given our discussion about the bipartite meaning contribution of QNPs, this
representation is suggestive, in that to the two meaning components we wish
to be expressed correspond two syntactic positions. A straightforward im-
plementation of this intuition is to simply associate the slot-filler component
of the meaning of this expression with the category feature, and the quan-
tificational component with the licensee feature.

-k

every(carcass)

! d

x

1

The intuition, then, is that to each ‘link’ in a chain we can associate that
link’s meaning contribution when incorporated into the structure. This will
be a useful intuition to cultivate, as it captures the essence of our strategy—
everything else is just details (where the devil resides).

In § 2.4 we spell out these details in all of their model-theoretic glory.
While we have no “variables in the syntax,” and more generally no levels in
our syntactic theory at all, we will make use of variable assignments in the
sense of Tarski [90] (and thus sentences denote sets of satisfying assignments,
as in [54]). This allows us to identify a class of model theoretic objects which
act as abstraction operators, leaving us with the benefits of translation into
an intermediate language with variables and variable binders. This treat-
ment of abstraction operators, while implicit in the literature, is obscured
by treating (at least notationally) variable assignments as objects not on the
same level as individuals, truth values, and functions between them. We fol-
low § 2.4 with a proposal about how to implement a direct and incremental

45



model-theoretic translation of derivations in § 2.5. Particular to the Princi-
ples and Parameters tradition in syntax is the notion of a chain, and we show
how quantifiers and quantifier scope is dealt with in our system. We imple-
ment the ideas of Hornstein [41], whereby there is no separate mechanism
of Quantifier Raising (QR) by which quantifiers are moved to their scope
positions. Instead, Hornstein suggests that a QNP may reconstruct in any of
its chain positions for the purposes of taking scope. In § 2.6 we show how our
syntax-semantics mapping assigns reasonable model theoretic objects to the
raising and passive sentences from § 1.4. Finally, in § 2.7, we tackle control
constructions, again adapting Hornstein’s [40, 42] proposal to treat control
as movement to a θ position. Such a proposal fits in quite naturally with the
system developed here, and allows for an elegant treatment of the syntax and
semantics of control clauses, in particular of the difference between raising
and control constructions in terms of the possibility of scope reconstruction.

2.4 Model-Theoretic Glory

Our models have the following denotation domains:

1. E is the set of entities

2. T = {true, false} is the set of truth values

3. G = [N→ E] is the set of assignments

Given g, h ∈ G we write gi for g(i), and g ≈i h is true just in case if g and
h differ, then only in the value they take at i (i.e. for any j, if gj 6= hj then
j = i). So ≈i is an equivalence relation, for every i ∈ N. We write [g]i for
the set {h : g ≈i h}. We write x ∈ y as an abbreviation for y(x) = true.

We will call functions in the set [G→ E] individuals, those in [G→ T ] sets
of assignments, functions from individuals to sets of assignments properties,
functions from properties to sets of assignments generalized quantifiers, and
functions from properties to generalized quantifiers determiners. We will also
call sets of assignments nullary relations, and functions from individuals to
n-ary relations n+1-ary relations (and so properties are unary relations).

There are two kinds of individuals that are of interest to us. We will call
the constant functions names, and for each e ∈ E denote by e the function
taking each g ∈ G to e. Those individuals f that for some i ∈ N, f(g) = gi
for all g ∈ G we will call variables, and denote with xi the function taking
each g ∈ G to gi.

46



It will be useful to have a name for the following determiners.

every(A)(B)(g) = true iff for every f ∈ [G→ E]

if g ∈ A(f) then g ∈ B(f)

some(A)(B)(g) = true iff for some f ∈ [G→ E]

g ∈ A(f) and g ∈ B(f)

We will also name the following families of functions (abstraction over xi
and the ‘Geach’ combinator respectively).

for each i ∈ N,
λi : [G→ T ]→ [G→ E]→ G→ T

λi(H)(f)(g) = true iff there is some h ∈ H such that

h ≈i g and f(g) = hi

G : [α→ γ]→ [β → α]→ β → γ

Gxyz = x(yz)

An Arithmetical Example

Let’s begin with a simple arithmetical language, with non-logical symbols
the constant 0, and the unary function symbol ′. In addition, our language
contains the logical symbols =, &, and ¬, as well as the punctuation symbols
‘(’ and ‘)’.

The sets of terms of type τ ∈ {Num,Bool} are defined inductively to
be the smallest sets Termτ such that

1. 0 ∈ TermNum

2. t′ ∈ TermNum, if t ∈ TermNum

3. (t1 = t2) ∈ TermBool, if t1, t2 ∈ TermNum

4. ¬(φ) ∈ TermBool, if φ ∈ TermBool

5. (φ & ψ) ∈ TermBool, if φ, ψ ∈ TermBool

A model for our language is determined by a structure M = 〈E, 0, σ〉. The
interpretation function [[·]]M is defined inductively over terms in the following
manner (recall that G = EN and T = {true, false}).

47



1. [[0]]M = f : G→ E such that for any g ∈ G, f(g) = 0

2. [[t′]]M = f : G→ E such that for any g ∈ G, f(g) = σ([[t]]M(g))

3. [[(t1 = t2)]]M = {g : [[t1]]M(g) = [[t2]]M(g)}

4. [[¬(φ)]]M = G− [[φ]]M

5. [[(φ & ψ)]]M = [[φ]]M ∩ [[ψ]]M

We determine the interpretation of the formula (0′ = 0′′) ∈ TermBool as
follows.

g ∈ [[(0′ = 0′′)]]M iff [[0′]]M(g) = [[0′′]]M(g)

iff [[0′]]M(g) = σ([[0′]]M(g))

iff σ([[0]]M(g)) = σ(σ([[0]]M(g)))

iff σ(0) = σ(σ(0))

Thus, [[(0′ = 0′′)]]M is either G or ∅ depending upon whether σ(0) = σ(σ(0))
in M or not. Note that all φ ∈ TermBool denote denote either G or ∅, and
that all t ∈ TermNum denote names (constant functions in [G→ E]).

Adding Variables and Variable Binders

Next we extend the non-logical vocabulary of our language to include a de-
numerably infinite set of variable symbols Var = {x0, x1, x2, . . .}. We extend
the logical vocabulary with the quantifier symbol ∀. The following two cases
are added to the definition of terms.

6. Var ⊆ TermNum

7. (∀x)φ ∈ TermBool, if φ ∈ TermBool and x ∈ Var

The definition of [[·]]M needs to be extended to include these cases.

6. [[xi]]M = xi

7. [[(∀xi)φ]]M = every(G(E))(λi([[φ]]M))

Note that g ∈ (G(E))(f) iff f(g) ∈ E, and therefore that

g ∈ every(G(E))(λi([[φ]]M))(g)

iff for every f ∈ [G→ E] g ∈ λi([[φ]]M))(f)

iff for every f ∈ [G→ E] there is some h ∈ [[φ]]M

such that h ≈i g and f(g) = hi

48



To see better how this works, consider the interpretation of the sentence
(x0 = 0′′) ∈ TermBool, which we can calculate as follows.

g ∈ [[(x0 = 0′′)]]M iff [[x0]]M(g) = [[0′′]]M(g)

iff x0(g) = σ(σ(0))

iff g0 = σ(σ(0))

That is, [[(x0 = 0′′)]]M is the set of all assignments which assign the value
σ(σ(0)) to the index 0. The denotation of (∀x0)(x0 = 0′′) ∈ TermBool is
given as a function of the denotation of this subformula.

g ∈ [[(∀x0)(x0 = 0′′)]]M iff for every f ∈ [G→ E] there is an h ∈ [[(x0 = 0′′)]]M

such that h ≈0 g and f(g) = h0

iff f(g) = σ(σ(0)) for every f ∈ [G→ E]

That is, [[(∀x0)(x0 = 0′′)]]M will be G if E = {0}, and will be ∅ otherwise.
Note that [[(∀x1)(x0 = 0′′)]]M = [[(x0 = 0′′)]]M.

Application and Abstraction

Now we add another type to our language, Num→ Bool, along with the
symbol h. The set of terms of type τ is expanded as follows.

8. (hx)φ ∈ TermNum→Bool if φ ∈ TermBool and x ∈ Var

9. (α(t)) ∈ TermBool if α ∈ TermNum→Bool and t ∈ TermNum

The interpretation function is extended in the following manner so as to be
defined over these new terms.

8. [[(hxi)φ]]M = λi([[φ]]M)

9. [[(α(t))]]M = [[α]]M([[t]]M)

The sentence (hx0)(x0 = 0′′) denotes a function which assigns to each
f ∈ [G→ E] the set {g : f(g) = σ(σ(0))}. We can calculate this as follows.
For any f ∈ [G→ E],

g ∈ [[(hx0)(x0 = 0′′)]](f) iff g ∈ λ0([[(x0 = 0′′)]])(f)

iff ∃h ∈ [[(x0 = 0′′)]]. h ≈0 g and f(g) = h0

iff f(g) = σ(σ(0))

As special cases, we see that [[(hx0)(x0 = 0′′)]]M(0) = [[(0 = 0′′)]]M and that
[[(hx0)(x0 = 0′′)]]M(x1) = [[(x1 = 0′′)]]M.

We are now ready for some of the complications of natural language.

49



2.5 Quantifiers and Scope

In this section, we develop an approach to the interpretation of minimalist
grammars that exploits the fact that an expression may be ‘active’ for multi-
ple steps of a derivation (as long as it has unchecked licensee features). The
particular semantic modes of combination we explore here involve storage
of semantic objects, and subsequent retrieval of these objects. In specifying
the mapping from syntax to semantics we may place restrictions both on the
kinds of access one has to the stored elements (e.g. whether it be pop and
push, or enqueue and dequeue, or random access), as well as on when one
may access them. Clearly, there are many possibilities to be explored. As
regards the shape of the store, we adopt an array-like structure (stack shaped
stores are explored in [47]), as this allows us to straightforwardly implement
the widely-held belief in the close connection between the c-command re-
lation in syntax and the logical priority relation in semantics. As regards
access to the store, we adopt a strong position here, permitting a single re-
trieval from the store during each movement step in the derivation. This
allows us to straightforwardly implement the widely-held belief in the close
connection between chain positions and scope positions. These restrictions
already provide us with a sort of ‘island effect’—no expression may remain
in storage after its window of ‘activity’ has closed.24 As this is not a treatise
on semantics, but rather a proof of concept of the possibility of directly in-
terpreting minimalist grammars, the reader will forgive me for not providing
new proposals with better coverage of the emprical data, but only of showing
how old ideas may be incarnated in the formal system implemented here.

The Basics

We begin by considering simple intransitive sentences like 47 below.

(47) Some abbot died.

We can treat some on a par with the, assigning to it the syntactic type
=n d -k. Abbot is, as are other common nouns, of type n, and die, like other
unaccusative verbs, is of type =d v. The derivation starts out by merging
some with abbot, which, in Heim and Kratzer’s [37] system, is interpreted as
the application of the denotation of the noun to the function denoted by the
determiner. We adopt this idea here, allowing that function application is a

24Others ([20]) have considered the addition of non-logical conditions to the storage,
such as the requirement that it be empty at various syntactically determined positions
(such as at canonical syntactic islands, for example). This provides us with another locus
of variation for our semantic theory, but this is one we shall not take advantage of.

50



possible mode of semantic combination associated with an instance of merger
(see figure 13). To be of the right semantic type to allow for application
to some, abbot should denote a function from individuals (type [G→ E])
to sets of assignment functions (type [G→ T ]), a predicate. Let’s call the
function denoted by abbot abbot. Then the denotation of the result of
merging some with abbot is some(abbot), which is itself a function from
predicates to sets of assignments. The next step in the derivation of sentence
47 is to merge die with some abbot. Die denotes a predicate, which is of
the type appropriate for application to the denotation of some abbot. Let’s
call the predicate denoted by die die. Allowing that semantic application
of the denotation of the syntactic functor to the denotation of the syntactic
argument is another possible mode of semantic combination associated with
merger (see figure 13), the denotation of the result of merging die with some
abbot is some(abbot)(die), which is a set of assignment functions. We
ignore the semantic contribution of tense and aspect, and, for the moment,
of movement. Thus, at the end of the derivation, we are left with the set of
assignments some(abbot)(die). An assignment function g is in this set just
in case there is some individual f who is both an abbot (g ∈ abbot(f)) and
died (g ∈ die(f)).

[[merge(α, β)]]→ [[α]]([[β]]) (FA)

[[merge(α, β)]]→ [[β]]([[α]]) (BA)

Figure 13: Modes of Semantic Combination (I)

Quantifiers in Object Positions

Turning now to transitive sentences like 48 with quantificational DPs in the
object position, we run into familiar problems.

(48) George shaved some abbot.

We calculate the denotation of the result of merging some and abbot as
before, but now the verb, shave, denotes not a predicate, but a function
from individuals to predicates, and thus cannot combine with the general-
ized quantifier denotation of some abbot. One approach to this problem,
advocated by Keenan [46], among others, is to take the denotation of a DP
to be not a function from predicates to sets of assignments, but rather a
function from n+1-ary relations to n-ary relations, ‘valencey reducers’, as it

51



were. While certainly a logical possibility, and a workable one at that, this
approach doesn’t take advantage of the particular structure of our current
syntactic theory. Instead, we adopt the ‘Quantifying-In’ approach put forth
in [67], whereby a quantificational DP may make multiple semantic contri-
butions in a sentence—first marking its grammatical role (with a variable),
and then marking its scope (with a variable binder). Intuitively, we allow
a DP, when merged, to introduce a variable, storing its normal, quantifica-
tional meaning for later insertion [20]. We will allow a stored meaning to be
retrieved not ad libitum, but rather only when its associated DP moves—an
incremental approach to ‘reconstruction.’

To implement this intuition, we add a final possible semantic mode of
composition to the merge rule; we feed a new variable to the denotation of
the syntactic functor, and Store the quantificational meaning (as shown in
figure 14).

Store

[[merge(α, β)]]→ [[α]]([[β]]) store(α)_store(β) (FA)

[[merge(α, β)]]→ [[β]]([[α]]) store(α)_store(β) (BA)

[[merge(α, β)]]→ [[α]](xi) store(α)_G([[β]])(λi)
_store(β) (Store)

Figure 14: Modes of Semantic Combination (II)

The calculation of the interpretation of sentence 48 proceeds as fol-
lows. First, some and abbot are merged, denoting (via function application)
some(abbot). Next, we merge shave with some abbot. The only viable
mode of semantic combination available to us (given the respective types of
the denotations of these expressions) is our newly introduced storage mode.
Thus the denotation of the verb phrase shave some abbot is shave(x0) with
the function G(some(abbot))(λ0) in storage.

We next merge the active voice head ε::=>V +k =d v with our VP. We
ignore any semantic effect this may have, treating the denotation of this
merger as identical to the denotation of the merged VP (formally, the active
voice head denotes the identity function over properties). But now again we
are in trouble: we next have to move the phrase some abbot, which checks
its case feature, rendering it syntactically inert, but we can neither leave
its stored meaning in the store (because we then lose the connection we are
trying to maintain between an expression’s scope and its chain positions),
nor combine the stored meaning with the meaning of the expression as a
whole in a straightforward way (as the types still do not match). Intuitively,

52



what we want is for the stored meaning to be retrieved after the subject
is merged, saturating the shave relation. Thus, we want the phrase some
abbot to move again, after the subject is introduced. We implement this by
adding a new licensing feature type, ‘Q’, and assigning the determiner some
the type =n d -k -q, and the active voice head the type =>V +k =d +q v.
Now, when we move some abbot to check its -k feature, we leave its stored
meaning untouched (and thus associated with the move operation must be
an ‘empty’ mode of semantic combination (see figure 15)). We next merge
George, which denotes the name g, the result of which merger denotes the set
of assignments shave(x0)(g), with stored G(some(abbot))(λ0). Now when
we move some abbot to check its -q feature, we apply the set of assignments
shave(x0)(g) to the stored G(some(abbot))(λ0) (see figure 15), yielding

G(some(abbot))(λ0)(shave(x0)(g))

= some(abbot)(λ0(shave(x0)(g)))

= {h : for some f ∈ [G→ E] , g shaved f(h)

and f(h) is an abbot}

Our final modes of semantic combination are as schematized in figure 15
(for precision see appendix A.3). The Q in the figure represents the stored
meaning of the moving constituent.

Store

[[merge(α, β)]]→ [[α]]([[β]]) store(α)_store(β) (FA)

[[merge(α, β)]]→ [[β]]([[α]]) store(α)_store(β) (BA)

[[merge(α, β)]]→ [[α]](xi) store(α)_G([[β]])(λi)
_store(β) (Store)

[[move(α)]]→ [[α]] store(α) (Id)

[[move(α)]]→ Q([[α]]) store(α)−Q (Retrieve)

Figure 15: Modes of Semantic Combination (III)

Before we move on to a discussion of quantifier scope interactions, a word
is in order about the introduction of the Q licensing feature—which lexical
items have -q and +q features? In other words, is the +q feature on our active
voice head (newly of type =>V +k =d +q v) optional, or not? If we decide to
make it optional, we need some way of blocking sentences like 49 below, in
which a QNP in a lower clause checks its -q feature in the higher clause.

53



(49) *John thinks some abbot (that) George shaved.

This kind of movement of a DP seems to be in need of blocking anyways, as
(many) quantifiers seem to be limited in their scopal positions to their closest
c-commanding tensed head. We might correctly rule sentence 49 out, and
thereby implement this generalization, by requiring that our tensed lexical
items bear a +q feature (so will, -s, and -ed have the type =perf +k +q t).
Given the grammaticality of sentences without quantified DPs, such as 50
below, we need to at least allow all DPs, quantificational or not, to bear a
-q feature.

(50) John devoured George.

Again, we need to ensure that sentences like the ungrammatical below (51)
are not generated.25

(51) *George John devoured.

There are two possibilities that suggest themselves. We might either allow
moving expressions to be pronounced in positions other than the highest
through which they move (i.e. covert movement), or we might decide that
the active voice head does, after all, have an obligatory +q feature. Were we
to introduce covert movement (à la [85]) we could stipulate that all movement
driven by the Q feature is covert. This has a number of advantages, among
them the possibility of a straightforward account of inverse linking.26 As
adding covert movement to our current system is irrelevant for the syntax-
semantics interface we have developed here, we take the conservative path,
and adopt the second option, that of making the +q feature on the active
voice head obligatory. (Covert movement is discussed in chapter 3 of Kobele
[48].) This makes the -q feature on every DP obligatory (as DPs without -q
features will not be permitted in either subject or object positions).

Interleaving Chains

Hornstein [40, 42] proposes to do away with the standard quantifier rais-
ing (QR) operation (an operation usually conceived of as being different

25This word order is fine, if George is topicalized. While topicalization could be driven
by the same features driving standard DP/QNP movement, here I will simply assume that
it is not.

26As in sentences like

i. Someone in every left-of-right-of-center organization is a mole.

which has a reading (arguably the most natural one) according to which the universal
quantifier every outscopes the existential quantifier some.

54



from normal feature-driven movement), instead allowing the scope-bearing
element to be positioned by any movement. Given our new Q feature, in-
troduced above, the movements of the subject and object cross, which gives
rise to the possibility of inverse scope when the subject is merged without
storage. We go through a derivation of the sentence below, showing how the
two interpretations arise via our semantic rules.

(52) Something devoured everyone.

We take something and everyone to be typed with other DPs (and thus
to have the type d -k -q), and to denote some(G(E)) and every(G(E))
respectively, where E is the universe of the model (ignoring the distinction
between ‘something’ and ‘someone’). This sentence has the single derivation
below:27

1. merge(devour::=d V, everyone::d -k -q)

2. merge(ε::=>V +k =d +q v, 1)

3. move(2)

4. merge(3, something::d -k -q)

5. move(4)

6. merge(ε::=>v prog, 5)

7. merge(ε::=>prog perf, 6)

8. merge(-ed::perf=> +k +q t, 7)

9. move(8)

10. move(9)

Assuming that all lexical items other than something, devour, and everyone
are semantically vacuous (i.e. denote the identity function over the appropri-
ate type), the subject narrow scope reading of sentence 52 is calculated from

the derivation above in the following manner (the notation α; β represents

27The number of readings sentences have can increase exponentially with the number of
quantifiers. Much work in computational semantics has investigated the question of how
to compactly represent this information (leading to the development of Hole Semantics
[7] and Minimal Recursion Semantics [21], among others). Here, treating with Cooper
[20] the semantic scope of DPs as (partially) independent of the syntactic derivation, our
derivation tree is an underspecified semantic representation.

55



the denotation α with β in storage). We simplify the notation whenever
possible, writing x(yz) for Gxyz.

1. devour(x0); G(every(G(E)))(λ0) Store

2. devour(x0); G(every(G(E)))(λ0) FA

3. devour(x0); G(every(G(E)))(λ0) Id

4. some(G(E))(devour(x0)); G(every(G(E)))(λ0) BA

5. every(G(E))(λ0(some(G(E))(devour(x0)))) Retrieve
6. every(G(E))(λ0(some(G(E))(devour(x0)))) FA
7. every(G(E))(λ0(some(G(E))(devour(x0)))) FA
8. every(G(E))(λ0(some(G(E))(devour(x0)))) FA
9. every(G(E))(λ0(some(G(E))(devour(x0)))) Id
10. every(G(E))(λ0(some(G(E))(devour(x0)))) Id

We can calculate the subject wide scope reading of sentence 52 in the follow-
ing way. Note that we may retrieve the stored function either in step 9 or
10.28

1. devour(x0); G(every(G(E)))(λ0) Store

2. devour(x0); G(every(G(E)))(λ0) FA

3. devour(x0); G(every(G(E)))(λ0) Id

4. devour(x0)(x1); G(some(G(E)))(λ1), G(every(G(E)))(λ0) Store

5. every(G(E))(λ0(devour(x0)(x1)); G(some(G(E)))(λ1) Retrieve

6. every(G(E))(λ0(devour(x0)(x1)); G(some(G(E)))(λ1) FA

7. every(G(E))(λ0(devour(x0)(x1)); G(some(G(E)))(λ1) FA

8. every(G(E))(λ0(devour(x0)(x1)); G(some(G(E)))(λ1) FA

9. every(G(E))(λ0(devour(x0)(x1)); G(some(G(E)))(λ1) Id

10. some(G(E))(every(G(E))(λ0(devour(x0)(x1))) Retrieve

2.6 Raising and Passive

Raising

The same possibilities that exist for non-surface scopal relationships between
subjects and objects in simple transitive sentences seem to be preseved under

28We also stand in need of a way to guarantee that the variables introduced during the
Store rule are globally new/fresh. A system of explicit substitutions influenced by the λσ-
calculus [1] is developed in appendix B (viewing object level substitutions as instructions
to systematically permute assignment functions).

56



raising. For example, there is a reading of sentence 53 (53.ii) according to
which the object is logically prior to the raised subject.

(53) Something seems to be devouring everyone.

i. (it seems that) there is a particular entity (Grendel, say), such
that that entity is devouring everyone.

ii. (it seems that) for each person, there is some entity or other that
is devouring him.

The existence of unraised equivalents to 53 in which the verb seem seems to
be acting as a sentential operator, motivates the semantic treatment of seem
as a function over sentence-type denotations. However, our extensional se-
mantics doesn’t allow for enough distinctions to be drawn between sentences
to provide for an adequate treatment of the inferential patterns involving
seem. The standard move to make is to adopt a richer set of truth-values;
instead of the simple boolean algebra 2, we move to the algebra [W → 2]
of functions from an index set W (of worlds) to truth values.29 Our useful
functions (e.g. every and λi) are given the obvious reinterpretations.

every(A)(B)(g)(w) = true iff for every f ∈ [G→ E]

if w ∈ A(f)(g) then w ∈ B(f)(g)

λi(H)(f)(g)(w) = true iff there is some h ≈i g such that

w ∈ H(h) and f(g) = hi

We can now define sentential operators (like necessarily) which quantify
over possible words.

necessarily(H)(g)(w) = true iff for every v ∈ W, v ∈ H(g)

Letting seem denote seem : [G→ W → T ] → G → W → T , we can derive
the following two readings for sentence 53.

i. some(G(E))(λ1(seem(every(G(E))(λ0(devour(x0)(x1))))))

ii. seem(every(G(E))(λ0(some(G(E))(devour(x0)))))

Although we have argued that, in a well-defined sense, movement just is suc-
cessive cyclic, clearly our current semantic modes of combination, which allow
for retrieval from storage only during feature driven movements, discriminate

29Treating possible worlds in this manner (as just a richer set of truth values) entails
that names are “rigid designators” [55] as they have no world parameter.

57



between feature driven and successive cyclic movements. If we wanted to al-
low for the possibility of QNPs to take scope in intermediate, successive
cyclic positions (which has been argued against in the case of A-movement
[57, 69, 71]),30 we could simply allow retrieval to apply freely throughout the
derivation, making our proposal even more similar to Cooper’s [20] original
one.31 This would allow us to generate the currently ungenerable reading iii
according to which the raised subject scopes over the object but beneath the
raising predicate.

iii. seem(some(G(E))(λ1(every(G(E))(λ0(devour(x0)(x1))))))

It is worth saying again what is going on here, just to allay any possible
confusion. Our syntax is strongly successive cyclic, as witnessed by the fact
that our semantics can be tweaked so as to make use of this.32 It is our
semantics that either takes advantage of this successive cyclicity, or ignores
it. The same fact is true of (one kind of) copying—our syntax ‘copies.’33

Whether we design our semantics (more generally, our interface maps) to
take advantage of this or not is a separate issue.

Passive

We note that a passive sentence like 54 below is roughly synonymous with
(the subject narrow scope reading of) the active 55 with an existentially
quantified subject.

(54) Everyone was devoured.

(55) Something devoured everyone.

This observation leads naturally to the idea that the passive voice head exis-
tentially quantifies over the external argument of the verb. Formally, we can

30Indeed, these same authors would prohibit QNPs from taking scope in their first
merged positions, allowing only scope taking from moved-to positions (translating into
our terms). This would be simple to implement in our system; instead of allowing the
modes of store and FA/BA to be in free variation, we force storage for moving elements
(those which are introduced by the merge3 rule in A.2).

31Keeping, of course, the restriction that after an element has finished its feature-driven
movements, its stored semantic contribution must have already been retrieved.

32This allows us to formulate in a notation-independent way just what ‘successive cyclic-
ity’ means. Successive cyclicity refers to whether information about a moving object is
in principle available at a particular point in the derivation. (Copying, then, refers to
how much of this information is available.) Note that what we are here talking about as
‘syntax’ is the derivation tree.

33For more on this see chapter 3 of Kobele [48].

58



assign to the passive voice head the same denotation as we assign to the QNP
something. The lack of an ‘inverse scope’ reading in 54 is a consequence of
the fact that we can’t store the denotation of a non-moving expression (i.e. a
trivial chain).

[[-en::=>V pass]] = some(G(E))

Again, assuming the semantic vacuity of the other functional heads in our
lexicon, we assign to sentence 54 the denotation below.

every(G(E))(λ0(some(G(E))(devour(x0))))

As noted in § 1.4, raising and passivization feed one another, giving rise
to sentences like 56 below.

(56) Everyone is expected to devour John.

We let expect denote expect : [G→ W → T ] → [G→ E] → G → W → T ,
which combines with a proposition and an individual to yield a proposition.
Not allowing for free retrieval, we generate two readings for 56, the subject-
wide scope (SWS) and the subject-narrow scope (SNS) readings, as shown
below.

(SWS) every(G(E))(λ0(some(G(E))(expect(devour(j)(x0)))))

(SNS) some(G(E))(expect(every(G(E))(devour(j))))

2.7 Control

Alongside verbs like seem and expect we find the superficially similar want
and persuade, as exemplified below.

(57) John seemed to shave an abbot.

(58) John wanted to shave an abbot.

(59) George expected John to shave an abbot.

(60) George persuaded John to shave an abbot.

As is well-known, the similarities in form between these sentences conceal a
structural distinction. While sentences like 57 and 59 entail the passivized
lower-clause versions 61 and 63 below, 58 and 60 do not.

(61) (`) an abbot seemed to be shaved.

(62) ( 6`) an abbot wanted to be shaved.

59



(63) (`) George expected an abbot to be shaved.

(64) ( 6`) George persuaded an abbot to be shaved.

Furthermore, expletive subjects are permitted in the raising clauses 65 and
67 but not in 66 or 68.

(65) It seemed to be raining.

(66) *It wanted to be raining.

(67) George expected it to be raining.

(68) *George persuaded it to be raining.

These two kinds of verbs then seem to form natural classes. We have al-
ready encountered the raising class, the second is called control. Sentences
with control verbs have been analyzed as involving obligatory deletion under
identity with the controller of the lower clause subject (equi-NP deletion),
as involving a relationship of ‘control’ between the controller and an unpro-
nounced unique-to-control element in the lower clause (PRO), as well as being
syntactically identical to raising sentences, with the differences being cashed
out in more semantic terms. Despite their differences, these approaches are
all implementations of a common idea; control verbs bear the same kind of
relation to their DP satellites as do other verbs—DPs in control clauses are
semantic arguments of the control verb.

Control as Movement

Recently [40, 42, 58, 60, 70], proposals have emerged which treat control as
being mediated by movement. While such a move encounters difficulties (to
be discussed shortly), it offers a simple and elegant account of a surprising
range of data, providing a new perspective on old facts. Furthermore, as we
shall soon see, treating control as movement is easy to accomodate within
our directly compositional version of minimalism.

The semantic intuition the reader was asked to cultivate in § 2.3 was
illustrated with the help of the following picture.

-k

every(carcass)

! d

x

1

60



In particular, the semantic force of this expression was broken up into two
components, an argument component and a quantificational component.
Now, the merge operation is always associated with argument saturation
(FA, BA, and Store), not because of some mystical connection between the
operation of merger and function application, but rather because we have
situated the argumental force of an expression in its categorial feature, and
merge is currently the only operation that deals with categorial features.34

Intuitively, what we will do is to allow the same categorial feature to con-
tribute its associated meaning again and again. Given that control appears
to be iterable without bound (69), we decide to allow for asymmetric feature
checking.

(69) George persuaded John to want to shave an abbot.

We allow categorial features to come in two flavours, f and *f, corresponding
to whether asymmetric feature checking is allowed, or not. Categorial fea-
tures like *f behave like their f brethren in all respects seen thus far. They
differ, however, in being subject to merger without checking, and movement.
Since it seems that all and only DPs are controllable, we assign these new
categorial features accordingly; a ‘DP’ is now anything with the syntactic
type *d -k -q. We need now three additional syntactic modes of combi-
nation. We need to be able to merge something with a starred categorial
feature, and not delete it. We also need to be able to move something with a
categorial feature. This control movement comes in two varieties. First, we
might check the categorial feature driving the control movement. Second, we
might not check the categorial feature, saving it for later control movement.
We will name these operations cmerge (for ‘control merge’) and cmove1 and
cmove2 (for ‘control move’). Semantically, cmerge works as follows. First, a
new variable is created, and fills the argument position our DP is cmerged
into. Then we put the quantificational meaning of the DP along with a copy
of the new variable into the store.

[[cmerge(α, β)]]→ [[α]](xi) store(α)_〈xi, G([[β]])(λi)〉_store(β)

Control movement saturates an argument position of a predicative expression
with the semantic variable (f) associated with the moving DP in the store.
If we do not eliminate the feature on this moving DP (*d), we leave the store
unchanged, allowing for future control movements.

[[cmove2(α)]]→ [[α]](f) store(α)

34Sometimes, such as when the subject takes narrow scope, both the argumental force
and the quantificational force of an expression are realized simultaneously. This does not
affect the point being made.

61



If we decide to eliminate the *d feature, ceasing the control movements, we
may either retreive the scopal information (Q) associated with our DP as
well, giving it narrow scope, or we may leave the scopal information in the
store, allowing for wider scope.

[[cmove1(α)]]→ Q([[α]](f)) store(α)− 〈f,Q〉
[[cmove1(α)]]→ [[α]](f) (store(α)− 〈f,Q〉)_Q

We work through a derivation of sentence 70 below, which we present in the
treeless form discussed in 2.1. After each step in the derivation, we exhibit
the denotation of the resulting expression below it. When there is a choice,
we prefer wider scope.

(70) Every barber promised George to be persuaded to shave an abbot.

We assign the object control verb persuade the type =t =d V, and promise
the type =d +k =t =d +q v.35 In a tree, these type assignments indicate that
the object of persuade is introduced higher than its clausal complement, and
that the object of promise is introduced lower than its clausal complement.
Assuming the existence of an argument structure template, according to
which arguments across different verbs occupy canonical positions, this might
be taken to suggest that the DP object of persuade is of a different type than
that of promise. This typing is forced upon us by our principle of immediacy,
which derives something like the minimal distance principle (MDP) [78],
which is a coding up of the observation that control across another DP is
generally not possible. Promise-type verbs constitute counter-examples to a
näıve version of the MDP, one in which ‘across-ness’ is calculated in terms
of linear order in the surface string. We will come back to this shortly.

1. merge(a::=n *d -k -q, abbot::n)

(ε, a, abbot) : *d -k -q

some(abbot)

2. merge(shave::=d V, 1)

(ε, shave, ε) : V, (a abbot, -k -q)

shave(x0), G(some(abbot))(λ0)

35The type assigned to promise is very nearly the composition of the standard VP type
(=d V) with the active voice type (=>V +k =d +q v). In fact, it is, with an additional =t
stuck in. This is done in part because promise doesn’t passivize well, and in part because
doing otherwise would necessitate revision and or duplication of functional lexical items.
The most natural treatment of verbs like promise in our current system is this one, which
attributes the awkwardness of passivization to grammatical factors.

62



3. merge(ε::=>V +k =d +q v, 2)

(ε, shave, ε) : +k =d +q v, (a abbot, -k -q)

shave(x0), G(some(abbot))(λ0)

4. move(3)
(ε, shave, ε) : =d +q v, (a abbot, -q)

shave(x0), G(some(abbot))(λ0)

5. merge(every::=n *d -k -q, barber::n)

(ε, every, barber) : *d -k -q

every(barber)

6. cmerge(4, 5)

(ε, shave, ε) : +q v, (a abbot, -q), (every barber, *d -k -q)

shave(x0)(x1), G(some(abbot))(λ0), 〈x1, G(every(barber))(λ1)〉

7. move(6)

(a abbot, shave, ε) : v, (every barber, *d -k -q)

some(abbot)(λ0(shave(x0)(x1)), 〈x1, G(every(barber))(λ1)〉

8. merge(ε::=>v prog, 7)

(ε, shave, a abbot) : prog, (every barber, *d -k -q)

some(abbot)(λ0(shave(x0)(x1)), 〈x1, G(every(barber))(λ1)〉

9. merge(ε::=>prog perf, 8)

(ε, shave, a abbot) : perf, (every barber, *d -k -q)

some(abbot)(λ0(shave(x0)(x1)), 〈x1, G(every(barber))(λ1)〉

10. merge(to::=perf t, 9)

(ε, to, shave a abbot) : perf, (every barber, *d -k -q)

some(abbot)(λ0(shave(x0)(x1)), 〈x1, G(every(barber))(λ1)〉

63



11. merge(persuade::=t =d V, 10)

(ε, persuade, to shave a abbot) : =d V, (every barber, *d -k -q)

persuade(some(abbot)(λ0(shave(x0)(x1))),

〈x1, G(every(barber))(λ1)〉

12. cmove2(11)

(ε, persuade, to shave a abbot) : V, (every barber, *d -k -q)

persuade(some(abbot)(λ0(shave(x0)(x1)))(x1),

〈x1, G(every(barber))(λ1)〉

13. merge(-en::=>V pass, 12)

(ε, persuade -en, to shave a abbot) : pass, (every barber, *d -k -q)

some(G(E))(persuade(some(abbot)(λ0(shave(x0)(x1)))(x1)),

〈x1, G(every(barber))(λ1)〉

14. merge(be::=pass v, 13)

(ε, be, persuade -en to shave a abbot) : v, (every barber, *d -k -q)

some(G(E))(persuade(some(abbot)(λ0(shave(x0)(x1)))(x1)),

〈x1, G(every(barber))(λ1)〉

15. merge(ε::=>v prog, 14)

(ε, be, persuade -en to shave a abbot) : prog, (every barber, *d -k -q)

some(G(E))(persuade(some(abbot)(λ0(shave(x0)(x1)))(x1)),

〈x1, G(every(barber))(λ1)〉

64



16. merge(ε::=>prog perf, 15)

(ε, be, persuade -en to shave a abbot) : perf, (every barber, *d -k -q)

some(G(E))(persuade(some(abbot)(λ0(shave(x0)(x1)))(x1)),

〈x1, G(every(barber))(λ1)〉

17. merge(to::=perf t, 16)

(ε, to, be persuade -en to shave a abbot) : t, (every barber, *d -k -q)

some(G(E))(persuade(some(abbot)(λ0(shave(x0)(x1)))(x1)),

〈x1, G(every(barber))(λ1)〉

18. merge(promise::=d +k =t =d +q v, George::*d -k -q)

(ε, promise, ε) : +k =t =d +q v, (George, -k -q)

promise(g)

19. move(18)
(ε, promise, ε) : =t =d +q v, (George, -q)

promise(g)

20. merge(19, 17)

(ε, promise, to be persuade -en to shave a abbot) : =d +q v,

(George, -q), (every barber, *d -k -q)

promise(g)(H), 〈x1, G(every(barber))(λ1)〉
H = some(G(E))(persuade(some(abbot)(λ0(shave(x0)(x1)))(x1))

21. cmove1(20)

(ε, promise, to be persuade -en to shave a abbot) : +q v,

(George, -q), (every barber, -k -q)

promise(g)(H)(x1), G(every(barber))(λ1)

H = some(G(E))(persuade(some(abbot)(λ0(shave(x0)(x1)))(x1))

65



22. move(21)

(George, promise, to be persuade -en to shave a abbot) : v,

(every barber, -k -q)

promise(g)(H)(x1), G(every(barber))(λ1)

H = some(G(E))(persuade(some(abbot)(λ0(shave(x0)(x1)))(x1))

23. merge(ε::=>v prog, 22)

(ε, promise, George to be persuade -en to shave a abbot) : prog,

(every barber, -k -q)

promise(g)(H)(x1), G(every(barber))(λ1)

H = some(G(E))(persuade(some(abbot)(λ0(shave(x0)(x1)))(x1))

24. merge(ε::=>prog perf, 23)

(ε, promise, George to be persuade -en to shave a abbot) : perf,

(every barber, -k -q)

promise(g)(H)(x1), G(every(barber))(λ1)

H = some(G(E))(persuade(some(abbot)(λ0(shave(x0)(x1)))(x1))

25. merge(-ed::perf=> +k +q t, 24)

(ε, ε, promise -ed George to be persuade -en to shave a abbot) : +k +q t,

(every barber, -k -q)

promise(g)(H)(x1), G(every(barber))(λ1)

H = some(G(E))(persuade(some(abbot)(λ0(shave(x0)(x1)))(x1))

26. move(25)

(ε, ε, promise -ed George to be persuade -en to shave a abbot) : +q t,

(every barber, -q)

promise(g)(H)(x1), G(every(barber))(λ1)

H = some(G(E))(persuade(some(abbot)(λ0(shave(x0)(x1)))(x1))

27. move(26)

(every barber, ε, promise -ed George to be persuade -en to shave a abbot) : t

every(barber)(λ1(promise(g)(H)(x1))
H = some(G(E))(persuade(some(abbot)(λ0(shave(x0)(x1)))(x1))

66



2.8 Reflections on Control

We have assigned promise the type =d +k =t =d +q v, blocking object control
by virtue of the fact that the object argument is selected for before the clausal
complement housing the controlling DP is merged (and thus we arrive at the
same broad clausal architecture suggested in Larson [56]). This aspect of the
typing (that arguments that cannot be controlled must be selected before
the introduction of the controller) is forced upon us by the architecture of
our system, in particular, by our principle of immediacy. Here we will delve
into the rationale for the rest of this type. It will turn out that this type is
literally forced upon us by our system, there being no other option given the
patterns of grammaticality and ungrammaticality in the data. Although it
is widely known that subject control verbs resist passivization (cf. 71, 72),
they allow for passivization when their clausal complement is finite (cf. 73,
74).

(71) George promised John to arrive on time.

(72) *John was promised to arrive on time.

(73) Mary promised John that George would arrive on time.

(74) John was promised that George would arrive on time.

We will show how to derive these facts. In so doing we will see that our
principle of immediacy will need to be sharpened, taking on somewhat of
a counterfactual flavour (though formally there is no counterfactuality in-
volved; see appendix A.2). To fully appreciate the analysis and the system
we have developed, it is instructive to begin by considering why we cannot
assign promise the simple type =d =t V (the ‘mirror image’ of persuade’s
=t =d V).

The type of promise

Given that 71 above means that George is supposed to arrive on time, and
not John, (i.e. that the subject of the matrix clause and not the object
is the controller), our principle of immediacy forces us to make the object
position of promise inaccessible to elements within the subordinate clause
(by ordering the =d feature that introduces the object before the =t feature
that introduces the subordinate clause with all of its moving bits and pieces).
We might be tempted by the promise of an elegant account of the contrast
between object control verbs (of type =t =d V) and subject control verbs,
and assign the type =d =t V to subject control verbs. While we can clearly

67



still derive the standard subject control constructions (such as 71), we now
overgenerate wildly, predicting the existence of control through finite clauses.

1. to arrive every barber

(ε, to, arrive) : t, (every barber, *d -k -q)

arrive(x0), 〈x0, G(every(barber))(λ0)〉

2. merge(promise::=d =t V, George::*d -k -q)

(ε, promise, ε) : =t V, (George, -k -q)

promise(g)

3. merge(2, 1)

(to arrive, promise, ε) : V, (George, -k -q), (every barber, *d -k -q)

promise(g)(arrive(x0)), 〈x0, G(every(barber))(λ0)〉

4. merge(-en::=>V pass, 3)

(ε, promise -en, to arrive) : pass, (George, -k -q),

(every barber, *d -k -q)

some(G(E))(promise(g)(arrive(x0))), 〈x0, G(every(barber))(λ0)〉

5. merge(be::=pass v, 4)

(ε, be, promise -en to arrive) : v, (George, -k -q),

(every barber, *d -k -q)

some(G(E))(promise(g)(arrive(x0))), 〈x0, G(every(barber))(λ0)〉

6. merge(ε::=>v prog, 5)

(ε, be, promise -en to arrive) : prog, (George, -k -q),

(every barber, *d -k -q)

some(G(E))(promise(g)(arrive(x0))), 〈x0, G(every(barber))(λ0)〉

68



7. merge(ε::=>prog perf, 6)

(ε, be, promise -en to arrive) : perf, (George, -k -q),

(every barber, *d -k -q)

some(G(E))(promise(g)(arrive(x0))), 〈x0, G(every(barber))(λ0)〉

8. merge(will::=perf +k +q t, 7)

(ε, will, be promise -en to arrive) : +k +q t, (George, -k -q),

(every barber, *d -k -q)

some(G(E))(promise(g)(arrive(x0))), 〈x0, G(every(barber))(λ0)〉

9. move(8)

(ε, will, be promise -en to arrive) : +q t, (George, -q),

(every barber, *d -k -q)

some(G(E))(promise(g)(arrive(x0))), 〈x0, G(every(barber))(λ0)〉

10. move(9)

(George, will, be promise -en to arrive) : t, (every barber, *d -k -q)

some(G(E))(promise(g)(arrive(x0))), 〈x0, G(every(barber))(λ0)〉

As the expression derived in 10 is syntactically identical to the infinitival
control clause we began with (in 1), they of necessity have identical distri-
butions. Therefore, we predict erroneously the existence of ungrammatical
form-meaning pairings like in 76 alongside the grammatical 75.

(75) Every barber wanted to arrive.

every(barber)(λ0(want(arrive(x0))(x0)))

(76) *Every barber wanted (that) George will be promised to arrive.

every(barber)(λ0(want(some(G(E))(promise(g)(arrive(x0))))(x0)))

69



The problem is due to the fact that our only locality condition (the principle
of immediacy) is a relativistic one, in the sense that it doesn’t care about
‘absolute distances’, but only about intervention. By passivizing the verb
phrase in step 4, we eliminate the subject position we want the controller to
control from, thereby allowing the controller to float up through the clause.
As promise (and subject control verbs in general) don’t passivize well, an
obvious fix is to simply prohibit promise from combining with the passive
voice. Our type assignment to promise is a way of requiring that promise
only combine with the active voice—putting =d =t V and =>V +k =d +q v

together we get =d =t +k =d +q v, which, but for the order of the =t and +k

features, is precisely the type we have assigned. Justifying this difference,
we will discover a broader set of problems, which will lead us to a better
understanding of the principle of immediacy.

The Immediacy of Syntax

Given that our merge and cmerge rules overlap in their application, we have
no simple way to ‘force’ a non-finite clause to be either a raising, or a control
structure. Thus, to every non-finite clause, there corresponds both a raising,
and a control analysis (as in 77).

(77) to arrive every barber

raising (ε, to, arrive):t, (every barber, -k -q)

arrive(x0), G(every(barber))(λ0)

control (ε, to, arrive):t, (every barber, *d -k -q)

arrive(x0), 〈x0, G(every(barber))(λ0)〉

Likewise, there are two possibilities for combining promise with its DP object
(as in 78).

(78) promise some abbot

merge (ε, promise, ε):=t +k =d +q v, (some abbot, -k -q)

promise(x0), G(some(abbot))(λ0)

cmerge (ε, promise, ε):=t +k =d +q v, (some abbot, *d -k -q)

promise(x0), 〈x0, G(some(abbot))(λ0)〉

70



There are thus four logical possibilities for combining promise some abbot
with to arrive every barber, two of which are ruled out straightaway by our
principle of immediacy (merge + raising and cmerge + control). Of the
remaining two, the merge + control option converges, and nets us the fa-
miliar subject control reading. However, the cmerge + raising option also
converges, and yields (among others) the following monstrosity, which has
the paraphrase in 80.

(79) *Some abbot promised every barber to arrive.

some(abbot)(λ1(every(barber)(λ0(promise(x1)(arrive(x0))(x1)))))

(80) Some abbot promised himself that every barber would arrive.

By inverting the order of the =t and +k features in the type assignment to
promise (from =d =t +k =d +q v to =d +k =t =d +q v), we force the object
of promise to combine via standard merger, ruling out the deviant cmerge +
raising possibility.

While this fixes the problem with promise, it is symptomatic of a more
general malaise. If we combine persuade with a raising infinitival comple-
ment, we can derive a similar horror.

1. merge(persuade::=t =d V, raising)

(ε, persuade, to arrive) : =d V, (every barber, -k -q)

persuade(arrive(x0)), G(every(barber))(λ0)

2. some abbot
(ε, some, abbot) : *d -k -q

some(abbot)

3. cmerge(1, 2)

(ε, persuade, to arrive) : V, (every barber, -k -q),

(some abbot, *d -k -q)

persuade(arrive(x0))(x1),
G(every(barber))(λ0),
〈x1, G(some(abbot))(λ1)〉

71



4. merge(ε::=>V +k =d +q v, 3)

(ε, persuade, to arrive) : +k =d +q v, (every barber, -k -q),

(some abbot, *d -k -q)

persuade(arrive(x0))(x1),
G(every(barber))(λ0),
〈x1, G(some(abbot))(λ1)〉

5. move(4)

(ε, persuade, to arrive) : =d +q v, (every barber, -q),

(some abbot, *d -k -q)

persuade(arrive(x0))(x1),
G(every(barber))(λ0),
〈x1, G(some(abbot))(λ1)〉

6. cmove1(5)

(ε, persuade, to arrive) : +q v, (every barber, -q),

(some abbot, -k -q)

persuade(arrive(x0))(x1)(x1),
G(every(barber))(λ0),
G(some(abbot))(λ1)

7. move(6)

(every barber, persuade, to arrive) : v, (some abbot, -k -q)

every(barber)(λ0(persuade(arrive(x0))(x1)(x1)),

G(some(abbot))(λ1)

8. merge(ε::=>v prog, 7)

(ε, persuade, every barber to arrive) : prog, (some abbot, -k -q)

every(barber)(λ0(persuade(arrive(x0))(x1)(x1)),

G(some(abbot))(λ1)

72



9. merge(ε::=>prog perf, 8)

(ε, persuade, every barber to arrive) : perf, (some abbot, -k -q)

every(barber)(λ0(persuade(arrive(x0))(x1)(x1)),

G(some(abbot))(λ1)

10. merge(will::=perf +k +q t, 9)

(ε, will, persuade every barber to arrive) : +k +q t, (some abbot, -k -q)

every(barber)(λ0(persuade(arrive(x0))(x1)(x1)),

G(some(abbot))(λ1)

11. move(10)

(ε, will, persuade every barber to arrive) : +q t, (some abbot, -q)

every(barber)(λ0(persuade(arrive(x0))(x1)(x1)),

G(some(abbot))(λ1)

12. move(11)

(some abbot, will, persuade every barber to arrive) : t

some(abbot)(λ1(every(barber)(λ0(persuade(arrive(x0))(x1)(x1)))

Although we cannot discriminate syntactically between raising and control
infinitivials, we need somehow to block persuade (and promise) from merging
with a raising clause. Looking at the deviant derivations, each has a point in
which a control-merged DP (*d -k -q) coexists with a merged DP (-k -q).
If we can block such a state of affairs, we will have solved our problem.
The principle of immediacy states that a moving expression must check its
features as soon as possible. Although at step 5 of the previous derivation,
the moving subexpression some abbot does not have an accessible -k feature,
it would have, had it been merged instead of cmerged. We can think of
cmerging as a sort of wager—an expression is free to be cmerged, just as
long as in so doing it doesn’t end up having lost an opportunity to check its
licensee features. This allows us to give a teleological slant to the principle

73



of immediacy: an expression wants to check its licensee features as soon as
possible. While it cannot influence the course of the derivation on a global
scale (like, demanding that another expression be merged or not), it can on a
local scale (by choosing to be merged or cmerged). If it makes a decision that
ends up having cost it the chance to check a licensee feature, the derivation
crashes. Although this way of understanding the principle of immediacy has
a definite ‘transderivational economy’ flavour, it is in fact locally evaluable,
and is formally of the same complexity as our previous understanding of it.36

Now, finally, we are in a position to see that the type =d +k =t =d +q v

is the only such that we could assign to promise. The ‘uninverted’ type
=d =t +k =d +q v would make the lexical item useless; the principle of imme-
diacy would rule out both the bad cmerge + raising option, in addition to
the good merge + control option, as both would involve subexpressions with
the same first licensee feature.

Passivization of Subject Control Verbs

Thus far we are able to derive the grammaticality patterns in 81 and 82 on
the one hand, and 83 and 84 on the other.

(81) John promised George to shave an abbot.

(82) *George was promised to shave an abbot.

(83) John persuaded George to shave an abbot.

(84) George was persuaded to shave an abbot.

However, the patterns in the below still remain unaccounted for. In partic-
ular, subject control verbs with a single DP argument exceptionally permit
passivization, which eliminates all selected DPs in the matrix clause.

(85) John promised George that every barber had shaved an abbot.

(86) George was promised that every barber had shaved an abbot.

(87) George hoped to shave an abbot.

(88) *George was hoped to shave an abbot.

36Formally, this amounts to requiring that

1. no two subexpressions may have the same first feature, and

2. no two subexpressions may have the same first licensee feature

See appendix A.2.

74



(89) George hoped that every barber had shaved an abbot.

(90) It was hoped that every barber had shaved an abbot.

As we were able to account for the distinction between 81 and 82 above
only by stipulating that promise does not combine with the passive voice,
it seems unlikely that we will be able to find a simple extension to deal
with the examples 85 and 86. However, it seems that subject control verbs
do indeed permit passivization, but only when their complement clause is
finite. Currently, we have no way of expressing the difference between finite
and non-finite clauses in a way that allows for the simple expression of this
generalization (as currently both finite and non-finite clauses are of category
t). Accordingly, we make a categorial distinction between finite and non-
finite clauses, assigning to finite clauses the special category s.37 As some
expressions select for clausal complements, irrespective of their tensedness,
we express that finite clauses are also clauses with the lexical item38

that :: =s t

The only change that this requires is the substitution of the category s for
the category t in our tensed lexical items (i.e. will, -s, and -ed). We assign
to promise the additional type =d =s V, the near mirror-image of the type
of persuade. We then assign to hope (and other intransitive subject control
verbs like want, and expect) the type =t =d v, which allows for the derivation
of sentences 87 and 89, and correctly rules out 88. To allow for the ability
of hope to passivize when it takes a finite clausal complement, we assign to
it the additional type =s V (which allows for 90 while still correctly ruling
out an ECM variant of 89). To intransitive raising to object verbs like expect
and want, we assign the minimally different type =t V, which allows for both
ECM as well as sentences like 90. Although it may seem less than maximally
elegant to assign two types to intransitive subject control verbs (such as hope
and expect), the very fact that there exist among the intransitive subject
control verbs, some which allow for object control (and passivization with
non-finite complements), and the rest which don’t (and don’t), seems to be
a brute fact, underivable from anything else. Our complete lexicon is given
in figure 16. Although our type system is not strong enough to premit us to

37This allows us now to discriminate between sentences i and ii

i. It rained.

ii. *To rain.

38We might just as well have given this lexical item a phonetically null exponent. How-
ever, its distribution coincides with the distribution of the word “that” to a fairly large
degree, which is suggestive.

75



will::=perf +k +q s have::=en perf be::=ing prog

-s::perf=> +k +q s -en::=>prog en -ing::=>v ing

-ed::perf=> +k +q s ε::=>prog perf ε::=>v prog

to::=perf t be::=pass v ε::=>V +k =d +q v

that::=s t -en::=>V pass

arrive::=d v devour::=d V

shave::=d V

seem::=t v expect::=t V expect::=t =d v

want::=t V want::=t =d v

hope::=s V hope::=t =d v

persuade::=t =d V

promise::=d =s V promise::=d +k =t =d +q v

ε::=>v =z v it::z -k -q

George::*d -k -q the::=n *d -k -q ointment::n
John::*d -k -q every::=n *d -k -q abbot::n
Mary::*d -k -q some::=n *d -k -q barber::n

Figure 16: A Grammar for English A-movement

derive the full range of behaviour of each word from a single type assignment,
note that it is precisely the subject control verbs which require multiple types.
Given that it is precisely subject control verbs that children have difficulty
acquiring, and that successful theories of grammatical inference can be built
around assumptions about the number of types assigned to words [3, 44],
this fact is tantalizingly suggestive!

3 Summary

In this chapter, we have introduced the version of minimalism (minimalist
grammars [22, 27, 29, 36, 64–66, 81–87]) we will take as our background
theory in this dissertation. We have made quite meagre assumptions, which
we have tried to justify during the course of this introduction. Perhaps
the most important such is the assumption that grammatical operations are
resource sensitive, and that the resources which drive them are structured in

76



a simple way (as a unary tree). This allows us to formulate a well-formedness
condition we have called the principle of immediacy, from which we can derive
both the ban on super-raising, as well as the minimal distance principle.

We have shown how all non-interface levels can be eliminated from syn-
tax, and the mappings to form and meaning incrementally computed in the
course of the derivation. We have presented a compositional semantics which
takes advantage of the fact that our syntax allows expressions to be multiply
connected to others. We have demonstrated that lexical items are to chains
as the acorn is to the oak tree, and that our syntax is inherently successive
cyclic, and shown how to extend our semantics to take advantage of this fact.

Hornstein treats reflexivization in English as an instance of control move-
ment. Clearly, as we currently block such ‘too-local’ movement (in the sense
of Grohmann [33]) by our principle of immediacy (together with our lexical
type assignments), there is no necessary connection between treating control
as mediated by movement, and treating reflexivization as a species of control.

I have said nothing about non-obligatory control, or obligatory control
out of adjuncts. (This latter is related to the fact that I have said nothing
about adjuncts.) Indisputably, our characterization of the competence of a
native speaker of English will not be complete until the form and interpre-
tation of the class of sentences referred to with the terms ‘non-obligatory
control’ and ‘adjunct control’ is specified. Insofar as other approaches to
control deal with more data than does this one, they are empirically more
adequate.39 As other approaches to control are at least twenty years more
established than the movement approach, it would be surprising were this
upstart not empirically deficient in comparison. We should not require that
novel approaches to a phenomenon (much less a novel ‘slicing of the pie’) be
as far reaching and as empirically adequate as the orthodoxy (see e.g. [26] for
discussion). Nor should we be reluctant to entertain multiple (even incom-
patible) perspectives on a particular range of data, as this often highlights
strengths and weaknesses of each (see [5] for an interesting comparison of
CCG and minimalist approaches to scope).

Throughout this chapter, we have been agnostic about the contents of the
positions from which movement occurs, choosing to write a ‘λ’ as something
of a ‘catch-all.’ It is generally accepted, however, that, in many cases, the
source position of movement needs to be structured, and in ways that reflect
the object that thence moved. It is common, in fact, to regard what we have
been representing as λ as a copy of the moved element. In the next chapter,
we explore two perspectives on how this might be achieved, what Chomsky
[13] calls (copying via) ‘internal merge’ and ‘external merge.’ These two

39Insofar as ‘empirically more adequate’ just means ‘deals with more data’.

77



positions on copying can be fruitfully viewed in terms of where they take the
structure copied to be. In particular, ‘internal merge’ takes copying to be of
the derived tree, while ‘external merge’ takes copying to be of the derivation
itself. We take this up in the next chapter.

This chapter’s appendices are organized as follows. In appendix A a
formal foundation for the syntactic theory appealed to in this chapter is pro-
vided. In appendix A.1, grammatical operations are defined over labelled
binary ordered trees. Because the trees are binary, I have taken the liberty
of defining ordered trees so as to take advantage of this additional structure.
Appendix A.2 gives a precise characterization of the ‘treeless’ version of min-
imalist grammars used in § 2.1. (The control-specific operations are included
here, as they are used later in that section.) The proof that minimalist
grammars over trees are equivalent in weak generative capacity to multiple
context-free grammars (MCFGs, [79]) and thus to these treeless variants is
presented in [36, 64, 66], and will not be reproduced here. Next (A.3) comes
the formal definition of the semantic operations appealed to in § 2.2, as well
as a brief discussion of ‘direct compositionality’. In appendix B, I set myself
the problem of making the grammar do the work of selecting appropriate
variables (so as to avoid accidental capture). This is similar to the prob-
lem of making substitutions explicit in the computer science literature (see
e.g. [1]).

A Definitions

A.1 Minimalist Grammars on Trees

A.1.1 Trees

Given a structure τ = 〈Nτ ,Cτ 〉 where Nτ is a finite set and Cτ ⊆ Nτ ×Nτ ,
we say, for r, s ∈ Nτ , that r is a parent of s (equivalently, s is a child of r)
if r Cτ s, that r is a leaf if r has no children, and that r is a root if r has
no parents. Nodes r, s ∈ Nτ are siblings if they share a parent. For nodes
r, s ∈ Nτ , we say that r dominates s, if r C∗τ s, where C∗τ is the reflexive
transitive closure of Cτ . τ is an unordered tree if there is exactly one root,
every node has at most one parent, and the root dominates every node. Tree
τ is binary if every parent has exactly two children. An asymmetric relation
R ⊆ Nτ × Nτ orders binary τ if for any two nodes r, s ∈ Nτ , r and s are
related by R iff they are siblings.

Operations on Ordered Trees Given two binary trees ρ, σ (such that Nρ

and Nσ are disjoint) which are ordered by R and S respectively, we denote

78



by [T ρ σ] the binary tree τ ordered by T , where, denoting with r and s the
roots of ρ and σ respectively,

1. Nτ = Nρ ∪Nσ ∪ {t}, where t is some object not in Nρ or Nσ

2. Cτ = Cρ ∪Cσ ∪ {〈t, r〉, 〈t, s〉}

3. T = R ∪ S ∪ {〈r, s〉}

Given a binary tree τ ordered by R, and t ∈ Nτ , we define t/Nτ := {r ∈
Nτ : tC∗τ r} and Nτ/t := {r ∈ Nτ : ¬(tC∗τ r)} to be a partitioning of Nτ into
nodes dominated by t and nodes not dominated by t, respectively. t/τ , the
subtree of τ rooted at t, is 〈t/Nτ ,Ct/τ 〉, where Ct/τ is the restriction of Cτ to
t/Nτ . t/tau is ordered by the restriction of R to Nt/τ . The result of replacing
in τ the subtree rooted at t with a leaf ` /∈ Nτ is τ/t := 〈Nτ/t,Cτ/t〉, where
Nτ/t := Nτ/t∪ {`} and rCτ/t s iff either r, s ∈ Nτ/t and rCτ s, or s = ` and
r Cτ t. τ/t is ordered by Rτ/t, where rRτ/ts iff r, s ∈ Nτ and rRs, or s = `
and rRt.

Functions over Ordered Trees Let τ be a binary tree ordered by R. We
define headR : Nτ → Nτ and yieldR : Nτ → N∗τ as follows.

headR(t) :=

{
t if t is a leaf
headR(r) otherwise, where tCτ r, s and rRs

yieldR(t) :=

 〈t〉
if t is a leaf

yieldR(r)_yieldR(s)
otherwise, where tCτ r, s
and rRs

Given a node t ∈ Nτ , we denote by projR(t) the set of nodes that have the
same head as t with respect to R (projR(t) := {t′ : headR(t) = headR(t′)}).
Note that projR(·) induces an equivalence relation over Nτ , where each block
projR(t) is totally ordered by C∗τ . A node t ∈ Nτ is a maximal projection just
in case t is the least element of projR(t) with respect to C∗τ (i.e. the unique
r ∈ projR(t), such that for any s ∈ projR(t), r C∗τ s).

A.1.2 Labels

Let Σ be a finite alphabet. The set of labels for a minimalist grammar over
Σ is determined by a finite set sel of selection feature types, and a disjoint

79



finite set lic of licensing feature types. The set Syn of syntactic features is
given by

Syn := selector ∪ selectee ∪ licensor ∪ licensee

where

licensor := {+f : f ∈ lic}
licensee := {-f : f ∈ lic} and

selector := {=f, =>f, f=> : f ∈ sel}
selectee := {f : f ∈ sel}

Features f, f ′ ∈ Syn match just in case one of the following conditions
obtain

1. for some s ∈ sel, one of f and f ′ is s and the other is one of =s, =>s,
or s=> ,

2. for some l ∈ lic, one of f and f ′ is -l and the other is +l.

The set of labels is Σ∗ × Syn∗. We denote with λ the label 〈ε, ε〉.

A.1.3 Expressions

Given a set L of labels, a minimalist expression (over L) is a five-tuple
〈N,C,≺, <, µ〉 such that 〈N,C,≺, <〉 is a binary tree ordered by the two
relations, ≺ and < (linear precedence and projection, respectively), together
with a partial function µ : N → L which assigns labels to the leaves of
〈N,C〉. An expression is simple if its underlying tree is a single node, and
is complex otherwise. The head hd(e) of an expression e is the head< of the
root of its underlying tree. An expression e begins with feature f just in
case the label of hd(e) is 〈σ, fδ〉, for σ ∈ Σ∗ and δ ∈ Syn∗. With respect to
some f ∈ Syn, an expression e is said to be complete just in case the only
syntactic feature of e is f , and no subtree of e has any syntactic features.
Given an expression e = 〈N,C,≺, <, µ〉, we say “e′ is like e except that the
label of the head of e′ is `” to describe the expression e′ = 〈N,C,≺, <, µ′〉,
where

µ′(t) :=

{
` if t = hd(e)
µ(t) otherwise

We take Exp(L) to denote the set of all expressions over L.

The Linear Correspondence Axiom Kayne’s [45] linear correspondence
axiom (LCA) can be understood as demanding that ≺ be definable in terms
of <

∀t, t′ ∈ N. if t < t′, then t ≺ t′ iff t is a leaf (LCA)

80



The LCA as given above is admissible in the system of [85]. We adopt
it explicitly here, as it allows for a slight simplification in our statement of
the generating functions. Accordingly, we suppress reference to the relation
≺ throughout the following.

Operations on Expressions The operations on trees defined in § A.1.1
are extended over expressions in the obvious manner:

• [< 〈Nc,Cc, <c, µc〉 〈Nd,Cd, <d, µd〉 ] is the expression consisting of the
tree [< 〈Nc,Cc, <c〉 〈Nd,Cd, <d〉 ] and the labeling function µ := µc∪µd.

• Given e = 〈Ne,Ce, <e, µe〉, for any t ∈ Ne,

– t/e is the expression consisting of the tree t/〈Ne,Ce, <e〉, and the
labeling function which is the restriction of µ to Nt/e

– e/t is the expression consisting of the tree 〈Ne,Ce, <e〉/t and the
labeling function µe/t, where

µe/t(r) := if r = ` then λ else µ(r)

• Given an expression e = 〈Ne,Ce, <e, µe〉, the yield of e, Y ield(e), is
defined to be the concatenation of the first components of the labels
of the leaves of its underlying tree, in the order given by the linear
precedence relation ≺. That is,

Y ield(e) := (π1 ◦ µe)(yield≺(〈Ne,Ce, <e〉))

where π1 is the first projection function, and π1 ◦ µe is extended over
sequences of pairs in the obvious way.

A.1.4 Merge and Move

Merge The domain of the merge operation is the set of pairs 〈e0, e1〉, where
e0 begins with f ∈ selector, and e1 begins with matching g ∈ selectee. For
e0, e1 ∈ Dom(merge), with 〈σ0, fδ0〉 the label of the head of e0 and 〈σ1, xδ1〉
the label of the head of e1,

merge(e0, e1) := [< e
′
0 e
′
1 ]

where e′0 and e′1 are just like e0 and e1, except that

if f = =x then the head of e′0 is 〈σ0, δ0〉 and that of e′1, 〈σ1, δ1〉

if f = =>x then the head of e′0 is 〈σ1σ0, δ0〉 and that of e′1, 〈ε, δ1〉

if f = x=> then the head of e′0 is 〈ε, δ0〉 and that of e′1, 〈σ1σ0, δ1〉

81



Move An expression e is in the domain of the move operation just in case e
begins with +x and there is exactly one maximal projection t ∈ Ne such that
the head of t begins with matching -x. For e ∈ Dom(move), with t ∈ Ne the
unique maximal projection such that the head of t begins with the matching
licensee feature,

move(e) := [< e0 e1 ]

where e0 and e1 are just like e/t and t/e respectively, except that the first
feature of each of these expressions has been deleted.

A.1.5 Minimalist Grammars

A minimalist grammar (MG) is a five-tuple G = 〈Σ, lic, sel, Lex, c〉, where
Σ, lic, and sel are finite sets (the alphabet, licensing feature types, and se-
lection feature types respectively) which together determine a set of labels
L, Lex is a finite set of simple expressions over L, and c ∈ selectee is the
designated type of complete expressions.

An expression e is generated by a minimalist grammar G just in case
e ∈ CLn(G) for some n ∈ N, where

CL0(G) :=Lex

CLk+1(G) :=CLk(G) ∪ {move(e) : e ∈ Dom(move) ∩ CLk(G)}
∪{merge(e0, e1) : 〈e0, e1〉 ∈ Dom(merge) ∩ CLk(G)× CLk(G)}

The string language of a minimalist grammar G is

L(G) := {Y ield(e) : e ∈
⋃
n=0

CLn(G) and e is complete}

A.2 Minimalist Grammars without Trees

The trees of appendix A.1 provide for more distinctions between expressions
than are strictly necessary to determine whether a string is generated by a
minimalist grammar (as follows from a result of Michaelis [66]). Instead of
trees, it has become standard to view minimalist expressions as sequences
of categorized strings. Given a minimalist grammar G = 〈Σ, lic, sel, Lex, c〉,
where

1. Σ is a finite, non-empty set

2. lic, sel are the licensing and selection feature types, respectively, which
together determine a set Syn of syntactic features as follows.

82



(a) for l ∈ lic, +l, -l ∈ Syn

(b) for s ∈ sel, =s, =>s, s=> , s, *s ∈ Syn

(c) nothing else is in Syn

3. c ∈ selectee is the designated type of complete expressions

4. Lex is a finite subset of {ε} × Σ× {ε} × {::} × Syn∗

we define a minimalist expression to be a pair 〈i, N〉, where i ∈ I := Σ∗ ×
Σ∗ ×Σ∗ × {:, ::} × Syn∗, and N ∈ N := (Σ∗ × Syn+)∗. Given an expression
〈i, N〉, where N = n1, . . . , nk, we write i, n1, . . . , nk. If k = 0, we write simply
i. We set E := I × N . The functions merge and move are partial functions
from E × E → E and E → E respectively. We present them here in an
inference-rule format for convenience.

merge : E × E → E is the union of the following five functions, for
si, ti ∈ Σ∗ (for 1 ≤ i ≤ 3), · ∈ {:, ::}, f ∈ sel, g ∈ {f, *f}, γ, δ ∈ Syn+, and
α, β ∈ N satisfying

(IMM1) no element of α or β has *f as its first feature

(s1, s2, s3) :: =fγ (t1, t2, t3) · g, β
(s1, s2, s3t1t2t3) : γ, β

merge1

(s1, s2, s3) : =fγ, α (t1, t2, t3) · g, β
(t1t2t3s1, s2, s3) : γ, αβ

merge2

(s1, s2, s3) · =fγ, α (t1, t2, t3) : gδ, β

(s1, s2, s3) : γ, α(t1t2t3, δ)β
merge3

(s1, s2, s3) :: =>fγ (t1, t2, t3) · g, β
(s1, t2s2, s3t1t3) : γ, β

affixRaise

(s1, s2, s3) :: f=>γ (t1, t2, t3) · g, β
(s1, ε, s3t1t2s2t3) : γ, β

affixLower

As the domains of merge1, merge2, merge3, affixRaise and affixLower are
all pairwise disjoint, their union is a function.

move : E → E is the union of the following two functions, for s1, s2, s3, t ∈
Σ∗, f ∈ lic, γ, δ ∈ Syn+, and α, β ∈ N satisfying:

(IMM2) no element of α or β has -f as its first licensee feature

(s1, s2, s3) : +fγ, α(t, -f)β

(ts1, s2, s3) : γ, αβ
move1

83



(s1, s2, s3) : +fγ, α(t, -fδ)β

(s1, s2, s3) : γ, α(t, δ)β
move2

Again, as the domains of move1 and move2 are disjoint, their union is a
function.

To deal with control we add the following three rules to our grammar, for
si, t, ti ∈ Σ∗ (for 1 ≤ i ≤ 3), · ∈ {:, ::}, f ∈ sel, γ, δ ∈ Syn+, and α, β ∈ N
satisfying

(IMM3) no element of α or β has *f as its first feature

(s1, s2, s3) · =fγ, α (t1, t2, t3) : *fδ, β

(s1, s2, s3) : γ, α(t1t2t3, *fδ)β
cmerge

(s1, s2, s3) : =fγ, α(t, *fδ)β

(s1, s2, s3) : γ, α(t, δ)β
cmove1

(s1, s2, s3) : =fγ, α(t, *fδ)β

(s1, s2, s3) : γ, α(t, *fδ)β
cmove2

The conditions ‘IMM’ implement what we have called the ‘principle of
immediacy’, which states that a feature of an expression must be checked
as soon as it is in principle possible to do so. The condition IMM2 on the
domain of the move operation is referred to in all other work on minimalist
grammars as the SMC, which is intended to recall Chomsky’s [18] ‘shortest
move’ constraint. As the actual shortest move constraint is different from
the SMC, I have renamed it here so as to avoid possible terminology-induced
confusion.

We define CL(G) :=
⋃
n=0 CL

n(G) to be the closure of Lex under merge,
move, and our three control operations. Then the string language generated
by a minimalist grammar G = 〈Σ, lic, sel, Lex, c〉 is defined to be

L(G) := {s1s2s3 : (s1, s2, s3) · c ∈ CL(G) for · ∈ {:, ::}}

A.3 A Semantics for MGs

Just as we associated a string (more generally, a term in a phonological
algebra) with a syntactic derivation in appendix A.2, here we show how to
associate a meaning (a term in a semantic algebra) with a derivation.

Here, we take our semantic alphabet M to contain the binary function
symbols G (interpreted as the geach combinator), F (interpreted as function
application) and for each i ∈ N, the nullary function symbols xi and λi. This
is a constant across languages. Furthermore, each of the denotations of our

84



lexical items is a nullary function symbol (e.g. abbot is a nullary function
symbol).

As in appendix A.2, we present the generating functions in inference-
rule format, with arguments on top, and result on bottom. The functions
below are logically independent of the cases of merge and move presented
previously. A specification of the form-meaning pairing (or what we might
more traditionally call ‘assigning meanings to expressions’) requires us to
specify which meaning generating functions can be used in tandem with
which string generating functions (in the case of ‘Free Retrieval’ we need an
‘identity’ string generating function). Thus, our ‘actual’ generating functions
are pairings 〈σ, µ〉 of string and meaning generating functions.

On the semantic side of things, a minimalist expression is a pair 〈i, N〉,
where i ∈ I := TM ×{:, ::}×Syn∗, and N ∈ N := (T ∗M ×Syn+)∗. Elements
of T ∗M we write between angled brackets (〈, 〉), and given t, t′ ∈ T ∗M , t_t′ is
the concatenation of t and t′ in that order. Given an expression 〈i, N〉, where
N = n1, . . . , nk, we write i, n1, . . . , nk. If k = 0, we write simply i. We set
E := I ×N .

We have the following three binary generating functions (which on the
string side are associated with merge). σ and τ are elements of the meaning
term algebra TM , •f ∈ {=f, =>f, f=>}, · ∈ {:, ::}, γ, δ ∈ Syn+, and α, β ∈
N .40

σ · •fγ, α τ · g, β
σ(τ) : γ, αβ

FA

σ · •fγ, α τ · g, β
τ(σ) : γ, αβ

BA

σ · •fγ, α τ · gδ, β
σ(xi) : γ, α(〈G(τ, λi)〉, δ)β

store

The following four unary generating functions are associated with move
on the string side. σ, τ ∈ TM , t ∈ T ∗M , · ∈ {:, ::}, γ, δ ∈ Syn+, and α, β ∈ N .

σ · +fγ, α(〈τ〉, -f)β

τ(σ) · γ, αβ
Retrieve1

σ · +fγ, α(〈τ〉_t, -fδ)β
τ(σ) · γ, α(t, δ)β

Retrieve2

σ · +fγ, α(〈〉, -f)β

σ · γ, αβ
Ignore1

40We indicate here the results of interpreting the terms we generate in the intended
model. This amounts to basically cashing out the F combinator at each step.

85



σ · +fγ, α(t, -fδ)β

σ · γ, α(t, δ)β
Ignore2

The functions below are associated with thir namesakes from appendix
A.2, and are tailored specifically for the movement theory of control outlined
in § 2.7. σ, τ ∈ TM , t ∈ T ∗M , · ∈ {:, ::}, γ, δ ∈ Syn+, and α, β ∈ N .

σ · =fγ, α τ · *fδ, β
σ(xi) : γ, α(〈xi, Gτλi〉, *fδ)β

cmerge

σ : =fγ, α(〈τ〉_t, *fδ)β
σ(τ) : γ, α(t, δ)β

cmove1

σ : =fγ, α(〈τ〉_t, *fδ)β
σ(τ) : γ, α(〈τ〉_t, *fδ)β

cmove2

The generating function below is intended to allow for non-feature-driven
scope-taking, or, in other words, reconstruction into landing sites of succes-
sive cyclic movements. To achieve the intended effects, we need an identity
function on the string side, which maps each expression to itself, to be paired
with this one. σ, τ ∈ TM , t ∈ T ∗M , · ∈ {:, ::}, γ, δ ∈ Syn+, and α, β ∈ N .

σ · γ, α(〈τ〉_t, δ)β
τ(σ) · γ, α(t, δ)β

FreeRetrieval

B Eliminating Indices

The rule of β-conversion in the lambda calculus allows us to substitute a
formula for a variable, as shown below:

(λx.a)b := a{b/x} (β-conversion)

We must be certain, in performing this substitution, that variables in b don’t
accidentally get ‘captured’ by binders in a.41 Accordingly, one standardly
assumes that the variables in a and b are distinct—the α-conversion rule
allows us to uniformly rename all instances of a variable, which guarantees
that we can always construct appropriate a′ and b′ with distinct variables.
However, this renaming of variables during β-conversion is left at the meta-
level, and thus is not part of the calculus proper.

A similar problem arises in transformational syntax, where traces and
other objects are assumed to have indices, and the distribution of indices on

41This is the condition that all that matters for variables is whether they are bound (or
bindable) by the same binder or not.

86



objects is severely restricted. Here, we need to worry about how the index
assigned to a term is decided. While it is easy for the linguist to assign the
desired indices to structures, our utterances come out ‘correctly indexed’,
and thus our theory needs to account for this. In the GB theory [15] indices
were assumed to be freely generated, with filters (or constraints) ruling out
all but a few be-indexed structures. Rogers [77] shows that free indexation
increases the complexity of GB to the point where the emptiness problem
becomes undecidable. Thus, we’d like some way of only generating correctly
indexed structures to begin with.

In our current system, we don’t have traces as syntactic objects. More-
over, we also don’t have variables that we can refer to, to check whether an
index has been already used (the variables in our notation (and the indices
on them) are merely names for functions). For us, the problem of assigning
the correct index is the problem of deciding which of the infinite number of
functions xi we select, and must be computed on the fly, as we build up our
model-theoretic interpretation.42

In our case, we want to avoid putting together two independently con-
structed objects that have the same variables. How are we to do this, if we
can’t see which variables are in each object? Because our binders shadow
the expressions into which they bind, we can avoid accidental variable cap-
ture by telling the binders to look at different indices in a systematic way.
Given two assignments, g and h, we can put them together without losing
any information by forming the new assignment g on h := 〈g0, h0, g1, h1, . . .〉,
which is the result of interleaving g and h. Now, given sets of assignments H1

and H2, we can combine them to form H = H1 on H2, which is the pairwise
interleaving of assignments in H1 with those in H2. If λ3 and λ17 are the
binders shadowing H1 and H2 respectively, then λ6 will have the same effect
on H that λ3 does on H1, and λ35 will have the same effect on H had by λ17

on H2.

B.1 Model-Theoretic Glory (cont’d)

The signatures of our meaning algebras contain the following six function
symbols: nullary x, unary e and o, and binary F, R and λ. In the intended

42The issue is somewhat more nuanced than I have presented it here. Although if we do
our computations over the model-theoretic objects, we can clearly not see indices, do we
really think that the language user computes over these (infinitely large) objects? Certainly
a computer program (which is still the best mental model we have) would compute over
the formula itself, where the indices are visible. However, the question needs to be raised
as to how this computation is effected. I am giving an explicit account thereof here.

87



model, x is x0. e and o are functions of type [G→ E]→ G→ E such that

e(f)(g) = f(∨g) o(f)(g) = f(∧g)

where (∨g)(i) = g(2i) and (∧g)(i) = g(2i+1). Note that when f is a variable
xi,

e(xi)(g) = g2i o(xi)(g) = g2i+1

We can think of ∨ and ∧ as functions over G that take just the even and odd
values respectively of their argument assignments, as schematized below.

∨g = 〈g0, g2, g4, . . .〉 ∧g = 〈g1, g3, g5, . . .〉

F is interpreted as function application. R is a function of type
[G→ β → γ]→ [G→ β]→ G→ γ such that

RABg = (A(∨g))(B(∧g))

Intuitively, R interprets assignment functions as encoding two others, and
then decodes and passes the encoded assignments down into its arguments.
λ : [G→ E]→ [G→ T ]→ [G→ E]→ G→ T such that43

λ(f)(H)(f ′)(g) = true iff ∃h ∈ H. f ′(g) = f(h) and either g = h

or ∃!j. gj 6= hj ∧ gj = f(g) ∧ hj = f(h))

Informally, λ takes an object f to abstract over, a formula H to bind it in,and
returns a function that takes another object f ′, and yields the first formula
with the first object substituted by the second. In particular, λ(xi) = λi.

B.2 A Semantics for MGs with Variable Management

On the semantic side of things, a minimalist expression is a pair 〈i, N〉, where
i ∈ I := TM×{:, ::}×Syn∗, and N ∈ N := ((TM×TM)×Syn+)∗. Sequences
over TM × TM we write between angled brackets (〈, 〉). Given an elements
f, τ ∈ TM , we write E(〈f, τ〉) for 〈e(f), τ〉 (similarly, O(〈f, τ〉) is 〈o(f), τ〉).
E and O are extended over sequences in the usual way. Given an expression
〈i, N〉, where N = n1, . . . , nk, we write i, n1, . . . , nk. If k = 0, we write simply
i. We set E := I ×N .

43This is a monstrous type. Logical operators like λ, ∀, ∃, and even ∧, ∨ and ¬ are
standardly not given an explicit denotation, their meaning contribution being left implicit
and in the meta-language (a notable exception is Church [19], who assigns explicit deno-
tations to all but λ). Once everything is made fully explicit, the type we in fact do assign
to λ emerges.

88



We have the following three binary generating functions (which on the
string side are associated with merge). σ and τ are elements of the meaning
term algebra TM , •f ∈ {=f, =>f, f=>}, · ∈ {:, ::}, γ, δ ∈ Syn+, and α, β ∈ N .

σ · •fγ, α τ · g, β
σ(τ) : γ, αβ

FA

σ · •fγ, α τ · g, β
τ(σ) : γ, αβ

BA

σ · •fγ, α τ · gδ, β
R(σ)(x) : γ,E(α)(〈ox, τ〉, δ)O(β)

store

The following four unary generating functions are associated with move
on the string side. σ, τ ∈ TM , · ∈ {:, ::}, γ, δ ∈ Syn+, and α, β ∈ N .44

σ · +fγ, α(〈f, τ〉, -f)β

τ(λ(f)(σ)) · γ, αβ
Retrieve1

σ · +fγ, α(〈f, τ〉, -fδ)β
τ(λ(f)(σ)) · γ, α(〈〉, δ)β

Retrieve2

σ · +fγ, α(〈〉, -f)β

σ · γ, αβ
Ignore1

σ · +fγ, α(〈f, τ〉, -fδ)β
σ · γ, α(〈f, τ〉, δ)β

Ignore2

The functions below are associated with their namesakes from appendix
A.2, and are tailored specifically for the movement theory of control outlined
in § 2.7. σ, τ ∈ TM , t ∈ T ∗M , · ∈ {:, ::}, γ, δ ∈ Syn+, and α, β ∈ N .

σ · =fγ, α τ · *fδ, β
R(σ)(x) : γ,E(α)(〈ox, τ〉, *fδ)O(β)

cmerge

σ : =fγ, α(〈f, τ〉, *fδ)β
σ(f) : γ, α(〈f, τ〉, δ)β

cmove1

σ : =fγ, α(〈f, τ〉, *fδ)β
σ(f) : γ, α(〈f, τ〉, *fδ)β

cmove2

The generating function below is intended to allow for non-feature-driven
scope-taking, or, in other words, reconstruction into landing sites of succes-
sive cyclic movements. To achieve the intended effects, we need an identity

44The notation here again gives the interpretation of the generated term in the intended
model. As a term, the result of Retrieval is F(τ, λ(f, σ)), which evaluates to the object
which is written.

89



function on the string side, which maps each expression to itself, to be paired
with this one. σ, τ ∈ TM , · ∈ {:, ::}, γ, δ ∈ Syn+, and α, β ∈ N .

σ · γ, α(〈f, τ〉, δ)β
τ(λ(f)(σ)) · γ, αβ

FreeRetrieval

Our expressions must take as their first argument an assignment function
(given the proliferation of the combinator R). Accordingly, verbs (like shave)
need to denote functions that take (and then throw away) an assignment
function. Moreover, we will derive meaning terms like the following

R(sleep)(xi)

which, upon being supplied with an assignment function g reduces in the
manner below, where the argument to the predicate is of type E, not of type
G→ E.

R(sleep)(xi)(g)

= (sleep(∨g))(xi(
∧g))

= sleep(xi(
∧g))

= sleep((∧g)(i))

= sleep(g(2i+ 1))

= sleep(g2i+1)

We therefore need to re-assign types to lexical expressions in our grammar.
We do this systematically as per figure 17 (Pn is an n-place predicate, CN
is a common noun, GQ is a generalized quantifier, and Det is a determiner).
Note that we are forced to assign different types to one place predicates (P1s)

P0 : G→ T
P1 : G→ E → T
P2 : G→ E → E → T
...

CN : [G→ E]→ G→ T
GQ : [[G→ E]→ G→ T ]→ G→ T
Det : [[G→ E]→ G→ T ]→ [[G→ E]→ G→ T ]→ G→ T

Figure 17: The semantic type of expressions of natural language

and common nouns (CNs). These two grammatical categories (n and V) are
usually treated as denoting in the same domain (e → t), which fact makes
puzzling their quite different syntactic distributions—why, in language after

90



language, do common nouns differ syntactically from verbs, although they
denote the very same objects (sets of entities)? Having derived a semantic
difference between predicates and nouns, we are presented with an oppor-
tunity to try and explain their observed differences based on this motivated
formal one. In this case, the formal difference allows us to maintain a strong
connection between semantic type and syntactic type: the relation between
syntactic and semantic type is one-to-one.

We work through an example. The expression every barber will shave an
abbot has the derivation below. We continue to assume for simplicity that
only verbs, determiners, and nouns have non-trivial semantic contributions
to make.

1. 〈merge1, FA〉(an::=n *d -k -q, abbot::n)

(ε, an, abbot) : *d -k -q

some(abbot) : *d -k -q

2. 〈merge3, store〉(shave::=d V, 1)

(ε, shave, ε) : V, (an abbot, -k -q)

R(shave)(x) : V, (〈ox, some(abbot)〉, -k -q)

3. 〈affixRaise, FA〉(ε::=>V +k =d +q v, 2)

(ε, shave, ε) : +k =d +q v, (an abbot, -k -q)

R(shave)(x) : +k =d +q v, (〈ox, some(abbot)〉, -k -q)

4. 〈move2, Ignore2〉(3)

(ε, shave, ε) : =d +q v, (an abbot, -q)

R(shave)(x) : =d +q v, (〈ox, some(abbot)〉, -q)

5. 〈merge1, FA〉(every::=n *d -k -q, barber::n)

(ε, every, barber) : *d -k -q

every(barber) : *d -k -q

91



6. 〈merge3, store〉(4, 5)

(ε, shave, ε) : +q v, (an abbot, -q), (every barber, -k -q)

R(R(shave)(x))(x) : +q v, (〈eox, some(abbot)〉, -q),

(〈ox, every(barber)〉, -k -q)

7. 〈move1, Retrieve1〉(6)

(an abbot, shave, ε) : v, (every barber, -k -q)

some(abbot)(λ(eox)(R(R(shave)(x))(x))) : v,

(〈ox, every(barber)〉, -k -q)

8. 〈affixRaise, FA〉(ε::=>v prog, 7)

(ε, shave, an abbot) : prog, (every barber, -k -q)

some(abbot)(λ(eox)(R(R(shave)(x))(x))) : prog,

(〈ox, every(barber)〉, -k -q)

9. 〈affixRaise, FA〉(ε::=>prog perf, 8)

(ε, shave, an abbot) : perf, (every barber, -k -q)

some(abbot)(λ(eox)(R(R(shave)(x))(x))) : perf,

(〈ox, every(barber)〉, -k -q)

10. 〈merge1, FA〉(will::=perf +k +q s, 9)

(ε, will, shave an abbot) : +k +q s, (every barber, -k -q)

some(abbot)(λ(eox)(R(R(shave)(x))(x))) : +k +q s,

(〈ox, every(barber)〉, -k -q)

11. 〈move2, Ignore2〉(10)

(ε, will, shave an abbot) : +q s, (every barber, -q)

some(abbot)(λ(eox)(R(R(shave)(x))(x))) : +q s,

(〈ox, every(barber)〉, -q)

92



12. 〈move1, Retrieve1〉(11)

(every barber, will, shave an abbot) : s

every(barber)(λ(ox)(some(abbot)(λ(eox)(R(R(shave)(x))(x))))) : s

An assignment function g belongs to the set denoted by 12 just in case for
every f such that f(g) ∈ barber, g belongs to the set denoted by

(λ(ox)(some(abbot)(λ(eox)(R(R(shave)(x))(x)))))(f)

This happens just in case there is some assignment function g′ which differs
from g on at most the index i, such that f(g) = ox(g′), gi = ox(g), g′i =
ox(g′), and g′ belongs to the set denoted by

some(abbot)(λ(eox)(R(R(shave)(x))(x)))

Because gi = ox(g) = x(∧g) = (∧g)(0) = g(2 · 0 + 1) = g1 and g′i = ox(g′) =
g′1, since g differs from g′ if at all then only at i, either i = 1 or g = g′.
Accordingly, g ≈1 g

′. The new assignment g′ belongs to the above set just
in case there is some e such that e(g′) ∈ abbot, and g′ belongs to the set
denoted by

(λ(eox)(R(R(shave)(x))(x)))(e)

This in turn obtains iff there is another assignment function h differing from g′

on at most the index j, such that e(g′) = eox(h), g′j = eox(g′), hj = eox(h),
and h belongs to the set denoted by

R(R(shave)(x))(x)

Again, g′ ≈2 h, and therefore f(g) = g′1 = h1. Also, e(g′) = eox(h) =
x(∧∨h) = h2. Finally, h belongs to R(R(shave)(x))(x) just in case

R(R(shave)(x))(x)(h)

=(R(shave)(x))(∨h)(x(∧h))

=(shave(∨∨h))((x)(∧∨h))(x(∧h))

=shave(x(∧∨h))(x(∧h))

=shave((∧∨h)(0))((∧h)(0))

=shave((∨h)(1))(h(1))

=shave(h(2))(h1)

=shave(h2)(h1)

Therefore, every barber will shave an abbot is true with respect to an assign-
ment g, just in case for every f such that f(g) ∈ barber, there is some g′,
and some e such that e(g′) ∈ abbot, and shave(e(g′))(f(g)).

93



References

[1] M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. Lévy. Explicit substitu-
tions. Journal of Functional Programming, 1(4):375–416, 1991.

[2] S. R. Anderson. A-Morphous Morphology. Cambridge University Press,
1992.

[3] D. Angluin. Inference of reversible languages. Journal of the Association
for Computing Machinery, 29:741–765, 1982.

[4] M. Baker. Incorporation: a theory of grammatical function changing.
MIT Press, Cambridge, Massachusetts, 1988.

[5] J. Blaszczak and H.-M. Gärtner. Intonational phrasing, discontinuity,
and the scope of negation. Syntax, 8(1):1–22, 2005.

[6] C. Boeckx and S. Stjepanović. Head-ing toward PF. Linguistic Inquiry,
32(2):345–355, 2001.

[7] J. Bos. Predicate logic unplugged. In P. Dekker and M. Stokhof, ed-
itors, Proceedings of the Tenth Amsterdam Colloquium, pages 133–143,
Amsterdam, 1996.

[8] M. Brody. Lexico-Logical Form: A Radically Minimalist Theory. MIT
Press, Cambridge, Massachusetts, 1995.

[9] L. Burzio. Italian syntax: A Government-Binding approach. D. Reidel,
Dordrecht, 1986.

[10] J. L. Bybee. Morphology: A study of the relation between meaning and
form. Benjamins, Philadelphia, 1985.

[11] N. Chomsky. Minimalist inquiries: The framework. In R. Martin,
D. Michaels, and J. Uriagereka, editors, Step by Step: Essays on Min-
imalist Syntax in Honor of Howard Lasnik, pages 89–155. MIT Press,
Cambridge, Massachusetts, 2000.

[12] N. Chomsky. Three factors in language design. Linguistic Inquiry, 36
(1):1–22, 2005.

[13] N. Chomsky. On phases. In R. Freidin, C. P. Otero, and M. L. Zu-
bizarreta, editors, Foundational Issues in Linguistic Theory, pages 133–
166. MIT Press, Cambridge, Massachusetts, 2008.

94



[14] N. Chomsky. Syntactic Structures. Mouton, The Hague, 1957.

[15] N. Chomsky. Lectures on Government and Binding. Foris, Dordrecht,
1981.

[16] N. Chomsky. A minimalist program for linguistic theory. In Hale and
Keyser [34].

[17] N. Chomsky. Bare phrase structure. In G. Webelhuth, editor, Govern-
ment and Binding Theory and the Minimalist Program, pages 383–439.
MIT Press, Cambridge, Massachusetts, 1995.

[18] N. Chomsky. The Minimalist Program. MIT Press, Cambridge, Mas-
sachusetts, 1995.

[19] A. Church. A formulation of the simple theory of types. Journal of
Symbolic Logic, 5(2):56–68, 1940.

[20] R. Cooper. Quantification and Syntactic Theory. D. Reidel, Dordrecht,
1983.

[21] A. Copestake, D. Flickinger, C. Pollard, and I. A. Sag. Minimal recursion
semantics: An introduction. Research on Language and Computation, 3
(4):281–332, 2005.

[22] T. Cornell. Derivational and representational views of minimalist trans-
formational grammar. In A. Lecomte, F. Lamarche, and G. Perrier,
editors, Logical Aspects of Computational Linguistics, volume 1582 of
Lecture Notes in Computer Science, pages 92–111, Berlin Heidelberg,
1999. Springer-Verlag.

[23] P. de Groote, G. F. Morrill, and C. Retoré, editors. Logical Aspects of
Computational Linguistics, volume 2099 of Lecture Notes in Artificial
Intelligence, Berlin, 2001. Springer Verlag.

[24] D. Embick and R. Noyer. Movement operations after syntax. Linguistic
Inquiry, 32(4):555–595, 2001.

[25] J. Engelfriet. Top-down tree transducers with regular look-ahead. Math-
ematical Systems Theory, 10:289–303, 1977.

[26] P. K. Feyerabend. How to be a good empiricist—a plea for tolerance in
matters epistemological. In P. H. Nidditch, editor, The Philosophy of
Science, Oxford Readings in Philosophy, chapter 1, pages 12–39. Oxford
University Press, 1968.

95



[27] W. Frey and H.-M. Gärtner. Scrambling and adjunction in minimalist
grammars. In G. Jäger, P. Monachesi, G. Penn, and S. Wintner, editors,
Proceedings of Formal Grammar 2002, pages 41–52, 2002.

[28] Y. Fyodorov, Y. Winter, and N. Francez. Order-based inference in nat-
ural logic. Logic Journal of the IGPL, 11(4):385–416, 2003.

[29] H.-M. Gärtner and J. Michaelis. A note on the complexity of constraint
interaction: Locality conditions and minimalist grammars. In P. Blache,
E. Stabler, J. Busquets, and R. Moot, editors, Logical Aspects of Compu-
tational Linguistics, volume 3492 of Lecture Notes in Computer Science,
pages 114–130. Springer, Berlin, 2005.

[30] G. Gazdar, E. Klein, G. Pullum, and I. Sag. Generalized Phrase Struc-
ture Grammar. Harvard University Press, Cambridge, MA, 1985.

[31] J.-Y. Girard. Linear logic. Theoretical Computer Science, 50:1–102,
1987.

[32] J. H. Greenberg, editor. Universals of Language. MIT Press, Cambridge,
Massachusetts, 1963.

[33] K. K. Grohmann. Prolific Peripheries: A Radical View From The Left.
PhD thesis, University of Maryland, 2000.

[34] K. Hale and S. J. Keyser, editors. The View from Building 20. MIT
Press, Cambridge, Massachusetts, 1993.

[35] M. Halle and A. Marantz. Distributed morphology and the pieces of
inflection. In Hale and Keyser [34], pages 111–176.

[36] H. Harkema. A characterization of minimalist grammars. In de Groote
et al. [23].

[37] I. Heim and A. Kratzer. Semantics in Generative Grammar. Blackwell
Publishers, 1998.

[38] J. Hintikka. No scope for scope? Linguistics and Philosophy, 20:515–
544, 1997.

[39] C. F. Hockett. Two models of grammatical description. Word, 10:210–
231, 1954.

[40] N. Hornstein. Move! A Minimalist Theory of Construal. Blackwell,
2001.

96



[41] N. Hornstein. Logical Form: From GB to Minimalism. Blackwell, Cam-
bridge, Massachusetts, 1995.

[42] N. Hornstein. Movement and control. Linguistic Inquiry, 30(1):69–96,
1999.

[43] G. Jäger, P. Monachesi, G. Penn, J. Rogers, and S. Wintner, editors.
Proceedings of the 10th conference on Formal Grammar and the 9th
Meeting on Mathematics of Language, Edinburgh, 2005.

[44] M. Kanazawa. Learnable Classes of Categorial Grammars. CSLI Publi-
cations, Stanford University., 1998.

[45] R. Kayne. The Antisymmetry of Syntax. MIT Press, Cambridge, Mas-
sachusetts, 1994.

[46] E. L. Keenan. Beyond the Frege boundary. Linguistics and Philosophy,
15:199–221, 1992.

[47] W. R. Keller. Nested cooper storage: The proper treatment of quan-
tification in ordinary noun phrases. In U. Reyle and C. Rohrer, editors,
Natural Language Parsing and Linguistic Theories, number 35 in Stud-
ies in Linguistics and Philosophy, pages 432–447. D. Reidel, Dordrecht,
1988.

[48] G. M. Kobele. Generating Copies: An investigation into structural iden-
tity in language and grammar. PhD thesis, University of California, Los
Angeles, 2006.

[49] G. M. Kobele and J. Michaelis. Two type 0-variants of minimalist gram-
mars. In Jäger et al. [43].

[50] G. M. Kobele, C. Retoré, and S. Salvati. An automata theoretic ap-
proach to minimalism. In J. Rogers and S. Kepser, editors, Proceedings
of the Workshop Model-Theoretic Syntax at 10; ESSLLI ’07, Dublin,
2007.

[51] M. Koizumi. Phrase Structure In Minimalist Syntax. PhD thesis, Mas-
sachusetts Institute of Technology, 1995.

[52] H. Koopman and D. Sportiche. The position of subjects. Lingua, 85:
211–258, 1991.

97



[53] A. Kratzer. Severing the external argument from its verb. In J. Rooryck
and L. Zaring, editors, Phrase Structure and the Lexicon, pages 109–137.
Kluwer, Dordrecht, 1996.

[54] G. Kreisel and J.-L. Krivine. Elements of Mathematical Logic (Model
Theory). North-Holland, Amsterdam, 1967.

[55] S. Kripke. Naming and Necessity. Harvard University Press, 1980.

[56] R. K. Larson. Promise and the theory of control. Linguistic Inquiry, 22
(1):103–139, 1991.

[57] H. Lasnik. Chains of arguments. In S. D. Epstein and N. Hornstein,
editors, Working Minimalism, number 32 in Current Studies in Linguis-
tics, chapter 8, pages 189–215. MIT Press, Cambridge, Massachusetts,
1999.

[58] J. Lidz and W. J. Idsardi. Chains and phono-logical form. In A. Dim-
itriadis, H. Lee, C. Moisset, and A. Williams, editors, University of
Pennsylvania Working Papers in Linguistics, volume 8, pages 109–125,
1998.

[59] A. Mahajan. Eliminating head movement. In The 23rd Generative
Linguistics in the Old World Colloquium, 2000.

[60] M. R. Manzini and A. Roussou. A minimalist theory of A-movement
and control. Lingua, 110(6):409–447, 2000.

[61] A. Marantz. On the Nature of Grammatical Relations. MIT Press,
Cambridge, Massachusetts, 1984.

[62] O. Matushansky. Going through a phase. In M. McGinnis and
N. Richards, editors, Perspectives on Phases, number 49 in MIT Work-
ing Papers in Linguistics, Cambridge, Massachusetts, 2005.

[63] O. Matushansky. Head movement in linguistic theory. Linguistic In-
quiry, 37(1):69–109, 2006.

[64] J. Michaelis. Transforming linear context-free rewriting systems into
minimalist grammars. In de Groote et al. [23].

[65] J. Michaelis. An additional observation on strict derivational minimal-
ism. In Jäger et al. [43].

98



[66] J. Michaelis. Derivational minimalism is mildly context-sensitive. In
M. Moortgat, editor, Logical Aspects of Computational Linguistics,
(LACL ’98), volume 2014 of Lecture Notes in Artificial Intelligence.
Springer Verlag, Berlin, Heidelberg, Germany, 1998.

[67] R. Montague. Formal Philosophy: Selected Papers of Richard Montague.
Yale University Press, New Haven, 1974. edited and with an introduction
by R. H. Thomason.

[68] M. Moortgat. Categorial type logics. In J. van Benthem and A. ter
Meulen, editors, Handbook of Logic and Language. Elsevier, Amsterdam,
1996.

[69] N. Nasu. Aspects of the syntax of A-movement: A study of English
infinitival constructions and related phenomena. PhD thesis, University
of Essex, 2002.

[70] J. H. O’Neil III. Means of Control: Deriving the Properties of PRO in
the Minimalist Program. PhD thesis, Harvard, 1997.

[71] P. M. Postal. On Raising: One Rule of English Grammar and its The-
oretical Implications. MIT Press, Cambridge, Massachusetts, 1974.

[72] L. Pylkkänen. Introducing Arguments. PhD thesis, Massachusetts In-
stitute of Technology, 2002.

[73] G. Restall. An Introduction to Substructural Logics. Routledge, 2000.

[74] C. Retoré and E. P. Stabler. Resource logics and minimalist grammars.
Research on Language and Computation, 2(1):3–25, 2004.

[75] L. Rizzi. Relativized Minimality. MIT Press, Cambridge, Massachusetts,
1990.

[76] R. H. Robins. In defense of WP. Transactions of the Philological Soci-
ety, pages 116–144, 1959. Reprinted in Transactions of the Philological
Society 99(2):171–200.

[77] J. Rogers. A Descriptive Approach to Language-Theoretic Complexity.
CSLI Publications, 1998.

[78] P. S. Rosenbaum. The grammar of English predicate complement con-
structions. MIT Press, Cambridge, Massachusetts, 1967.

99



[79] H. Seki, T. Matsumura, M. Fujii, and T. Kasami. On multiple context-
free grammars. Theoretical Computer Science, 88:191–229, 1991.

[80] S. M. Shieber. Unifying synchronous tree-adjoining grammars and tree
transducers via bimorphisms. In Proceedings of the 11th Conference of
the European Chapter of the Association for Computational Linguistics
(EACL-2006), pages 377–384, Trento, 2006.

[81] E. P. Stabler. Minimalist grammars and recognition. In C. Rohrer,
A. Rossdeutscher, and H. Kamp, editors, Linguistic Form and its Com-
putation, pages 327–352. CSLI Publications, 2001.

[82] E. P. Stabler. Recognizing head movement. In de Groote et al. [23],
pages 254–260.

[83] E. P. Stabler. Comparing 3 perspectives on head movement. In A. Ma-
hajan, editor, Syntax at Sunset 3: Head Movement and Syntactic The-
ory, volume 10 of UCLA/Potsdam Working Papers in Linguistics, pages
178–198, 2003.

[84] E. P. Stabler. Sidewards without copying. In P. Monachesi, G. Penn,
G. Satta, and S. Wintner, editors, Proceedings of the 11th conference on
Formal Grammar, pages 133–146. CSLI, 2006.

[85] E. P. Stabler. Derivational minimalism. In C. Retoré, editor, Logical
Aspects of Computational Linguistics, volume 1328 of Lecture Notes in
Computer Science, pages 68–95. Springer-Verlag, Berlin, 1997.

[86] E. P. Stabler. Remnant movement and complexity. In G. Bouma, E. Hin-
richs, G.-J. M. Kruijff, and R. T. Oehrle, editors, Constraints and Re-
sources in Natural Language Syntax and Semantics, chapter 16, pages
299–326. CSLI Publications, Stanford, CA, 1999.

[87] E. P. Stabler and E. L. Keenan. Structural similarity within and among
languages. Theoretical Computer Science, 293:345–363, 2003.

[88] M. Steedman. The Syntactic Process. MIT Press, 2000.

[89] G. T. Stump. Inflectional Morphology: A Theory of Paradigm Structure.
Cambridge University Press, 2001.

[90] A. Tarski. The concept of truth in formalized languages. In J. Corcoran,
editor, Logic, Semantics, Metamathematics, chapter 8, pages 152–278.
Hackett Publishing Company, Indianapolis, 1983.

100



[91] L. Travis. Parameters and effects of word order variation. PhD thesis,
Massachussets Institute of Technology, Cambridge, Massachusetts, 1984.

[92] J. van Benthem. Meaning: Intrpretation and inference. Synthese, 73:
451–470, 1987.

[93] C. Wartena. Storage Structures and Conditions on Movement in Natural
Language Syntax. PhD thesis, Universität Potsdam, 1999.

[94] A. Zamansky, N. Francez, and Y. Winter. A ‘Natural Logic’ inference
system using the Lambek calculus. Journal of Logic, Language and
Information, 15(3):273–295, 2006.

101


