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Foreword

These are the lecture notes of the ESSLLI 2009 second week course on Abstract Categorial Grammar. This
was an advanced course, while an introductory course was given the first week: Introduction to Abstract
Categorial Grammars: Foundations and main properties, delivered by Philippe de Groote and Sylvain Sal-
vati.

An up-to-date version of these notes, possible errata, and generally ACG papers, can be found at the
ACG homepage: http://www.loria.fr/equipes/calligramme/acg/. At this URL, the ACG
Development Toolkit is also available and downloadable as free software. It might be useful to run some of
the examples given in these notes. In particular, some of the latter are gathered in a special file.

The Abstract Categorial Grammar (ACG) [de Groote, 2001], a grammar formalism based on the typed
lambda calculus, elegantly generalizes and unifies a variety of grammar formalisms that have been proposed
for the description of formal and natural languages. The first part of the course, and the Part II of these
notes, investigate formal-language-theoretic properties of ”second-order” ACGs, a subclass of ACGs that
have ”context-free” derivations. Their generative capacity is precisely characterized, and an efficient Earley-
style algorithm is presented. The second part of the course, and the Part III of these notes, turn to linguistic
applications of ACGs and gives various illustrations of how ACGs provide flexible and explicit ways to
model the syntax-semantics interface of natural language.

Part of these notes are new, some other are almost directly taken from published papers.
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Part I

Abstract Categorial Grammar:
a (Very Brief) Reminder
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Chapter 1

Basic Definitions of Abstract Categorial
Grammars

The main feature of an ACG is to generate two languages: an abstract language and an object language.
Whereas the abstract language may appear as a set of grammatical or parse structures, the object language
may appear as its realization, or the concrete language it generates. This general picture can of course be
adapted to the need of the modeling. In order to be able to model non linearity (this is useful for semantics),
we use an extension of the ACG with both linear and non-linear implication but the principles follow
de Groote [2001]’s definitions.1

Definition 1.1. Let A be a set of atomic types. The set T (A) of implicative types build upon A is defined
with the following grammar:

T (A) ::= A|T (A)( T (A)|T (A) → T (A)

Definition 1.2. A higher-order signature Σ is a triple Σ = 〈A,C, τ〉 where:

• A is a finite set of atomic types;

• C is a finite set of constants;

• τ : C → T (A) is a function assigning a types to constants.

Definition 1.3. Let X be an infinite countable set of λ-variables. The set Λ(Σ) of λ-terms built upon a
higher-order signature Σ = 〈A,C, τ〉 is inductively defined as follows:

• if c ∈ C then c ∈ Λ(Σ);

• if x ∈ X then x ∈ Λ(Σ);

• if x ∈ X and t ∈ Λ(Σ) and x occurs free in t exactly once, then λox.t ∈ Λ(Σ);

• if x ∈ X and t ∈ Λ(Σ) and x occurs free in t, then λx.t ∈ Λ(Σ);

• if t, u ∈ Λ(Σ) and the set of free variables of u and t are disjoint then (t u) ∈ Λ(Σ).

1Formal properties of this extension, as expressiveness and the computational properties, are beyond the scope of this chapter.
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1. Basic Definitions of Abstract Categorial Grammars

Note there is a linear λ-abstraction and a (usual) intuitionistic λ-abstraction. There also are the usual
notion of α-conversion and β-reduction.

Given a higher-order signature Σ, the typing rules are given with an inference system whose judgments
are of the following form: Γ;∆ `Σ t : α where:

• Γ is a finite set of non-linear variable typing declaration;

• ∆ is a finite set of linear variable typing declaration.

Both Γ and ∆ may be empty. Here are the typing rules:

(const.)
Γ;`Σ c : τ(c)

(lin. var.)
Γ;x : α `Σ x : α

(var.)
Γ, x : α;`Σ x : α

Γ;∆, x : α `Σ t : β
(lin. abs.)

Γ;∆ `Σ λox.t : α( β

Γ, x : α;∆ `Σ t : β
(abs.)

Γ;∆ `Σ λx.t : α → β

Γ;∆1 `Σ t : α( β Γ;∆2 `Σ u : α
(lin. app.)

Γ;∆1,∆2 `Σ (t u) : β

Γ;∆ `Σ t : α → β Γ;`Σ u : α
(app.)

Γ;∆ `Σ (t u) : β

Definition 1.4. Let Σ1 = 〈A1, C1, τ1〉 and Σ2 = 〈A2, C2, τ2〉 be two higher-order signatures, a lexicon
L = 〈F,G〉 from Σ1 to Σ2 is such that:

• F : A1 → T (A2). We also note F : T (A1) → T (A2) its homomorphic extension2;

• G : C1 → Λ(Σ2). We also note G : Λ(Σ1) → Λ(Σ2) its homomorphic extension;

• F and G are such that for all c ∈ C1, `Σ2 G(c) : F (τ1(c)) is provable.

We also use L instead of F or G.

Definition 1.5. An abstract categorial grammar is a quadruple G = 〈Σ1,Σ2,L, S〉 where:

• Σ1 = 〈A1, C1, τ1〉 and Σ2 = 〈A2, C2, τ2〉 are two higher-order signatures;

• L : Σ1 → Σ2 is a lexicon;

• S ∈ T (A1) is the distinguished type of the grammar.

2such that F (α ( β) = F (α) ( F (β) and F (α → β) = F (α) → F (β)
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Chapter 2

Generated Languages and Orders

Definition 2.1. Given a set of atomic type A, the order o(α) of a type α of T (A) is inductively defined as:

• o(α) = 0 if α ∈ A;

• o(α → β) = max o(β, α + 1)

• o(α( β) = max o(β, α + 1)

The order of a typed term is the order of its type.

Definition 2.2. The order of an ACG is the maximum of the order of its abstract constants.
The order of the lexicon of an ACG is the maximum of the order of the realizations of its atomic types.

Definition 2.3. Given an ACG G , the abstract language is defined by

A(G ) = {t ∈ Λ(Σ1) | `Σ1 t : S is derivable}

The object language is defined by

O(G ) = {u ∈ Λ(Σ2) | ∃t ∈ A(G ) s.t. u = L(t)}

Note that L binds the parse structures of A(G ) to the concrete expressions of O(G ). Depending on
the choice of Σ1, Σ2 and L, it can map for instance derivation trees and derived trees for TAG de Groote
[2002], derivation trees of context-free grammars and strings of the generated language de Groote [2001],
derivation trees of m-linear context-free rewriting systems and strings of the generated language de Groote
and Pogodalla [2003]. Moreover, this link between an abstract and a concrete structure can apply not only
to syntactical formalisms, but also to semantic formalisms Pogodalla [2004].

A crucial point is that ACG can be mixed in different ways: in a transversal way, were two ACG
use the same abstract language, or in a compositional way, were the abstract language of an ACG is the
object language of an other one (figure 2.1 illustrates these composition between three ACG). This book, in
particular Part III, exemplifies both of these usages.
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2. Generated Languages and Orders

G ′

G G ′′

Figure 2.1: Ways of combining ACG
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Part II

Formal-language-theoretic Properties of
2nd Order ACG

(Makoto Kanazawa)
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This part will be made available by the time of the course at http://research.nii.ac.jp/
˜kanazawa/ and at http://www.loria.fr/equipes/calligramme/acg/. It will investigate
formal-language-theoretic properties of ”second-order” ACGs, a subclass of ACGs that have ”context-
free” derivations. Their generative capacity will be precisely characterized, and an efficient Earley-style
algorithm will be presented.
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Part III

Syntax-Semantics Interface: an ACG
Perspective
(Sylvain Pogodalla)
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Introduction

In this part, we explore the different ways ACG can be composed. The aim is twofold:

1. Offering a unified view on various formalisms (TAG family in Chapter 3, Categorial Grammar in
Chapter 4 and Convergent Grammar in Chapter 5), we may compare them and possibly import some
solutions for the syntax-semantics interface from one to another. For instance, we can import the CG
and CVG approach to scope ambiguity to TAG.

2. Modularizing the different contributions of the grammatical formalism, we can for instance:

• separate what is relevant for computing semantics to what is relevant for controlling derivations
(hence the generated languages) in TAG;

• highlight and explicit the role of “syntax” in the CG formalism and in the CVG one;

• modularize the encoding of some linguistic phenomena.

Chapter 3 gives an ACG account of TAG and MCTAG. The proposed architecture relates TAG with
the formal-language-theoretic properties of ACG. In particular, it makes explicit how generative capacity
can grow and where some control on the derivations has to be added. In particular, the fact that TAG and
(set-local) MCTAG are mildly context-sensitive appears in the overall control of 2nd order ACG.

Then Chapter 4 presents an ACG view on (classical) Categorial Grammar. The aim in this chapter is
to redistribute the syntactic and the semantic contributions of CG typing. In particular, it shows that the
syntactic ambiguities that is required for semantic ambiguities in CG is a “compiled” point of view of the
syntax-semantic interface.

Chapter 5 makes this point of view even more explicit when encoding CVG into ACG. In particular, the
modelling of overt and covert movement makes explicit what are the respective contributions to syntax and
semantics of such phenomena, and how these contributions can be shared. The recently pointed out notions
of CVG such as “simple syntax” and “weak syntactocentrism” [Jackendoff, 2002; Culicover and Jackendoff,
2005] are expressed in the ACG framework and related to the ACG architecture for CG.
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Chapter 3

TAG Formalisms as ACG

3.1 A Functional View on TAG

This section exemplifies the control ACGs provide on the derivation structures, hence on the object language,
by defining the abstract language. It also shows the modular capabilities (function) composition between
ACG gives. We choose to illustrate these features on the well-known framework of TAG [Joshi et al., 1975;
Joshi and Schabes, 1997].

Let’s consider the following auxiliary tree1:
VP

apparently VP∗
. When adjoined to another tree t at

node VP0
2, this auxiliary tree replace its own VP∗ node by the subtree of t rooted at VP0. If we call x

the latter subtree, then we can consider the auxiliary tree as function associating a subtree x to a new tree
VP

apparently x
. Using the λ-calculus notation, the following term represents this tree:

γ′apparently = λox.
VP

apparently x

Let’s now consider an initial tree such as:

S

NP VP

likes NP

. This tree can accept an adjunction at node

VP. In this case, the argument it provides to the auxiliary tree (since the latter can be described as a function

from trees to trees) is the subtree:
VP

likes NP
Then we can describe the initial tree as a function whose parameter is an auxiliary. In the λ-calculus

1Here and in the rest of this paper, for sake of conciseness, we drop the category of the non terminal and the associated node in
the tree.

2The 0 subscript only helps to remember at what node in the tree the adjunction took place.
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3.1. A Functional View on TAG 3. TAG Formalisms as ACG

notation, it gives:

γ′likes = λoa.

S

NP a

 VP

likes NP



The adjunction operation that yields the tree

S

NP VP

apparently VP

likes NP

is then faithfully described by ap-

plying the term γ′likes to γ′apparently . Indeed:

γ′likes γ′apparently =

λoa.

S

NP a

 VP

likes NP




λox.
VP

apparently x



→β

S

NP

λox.
VP

apparently x

  VP

likes NP



→β

S

NP VP

apparently VP

likes NP

Of course, the tree for apparently itself should accept some adjunction at its VP node. So it is rather
described with the term:

γapparently = λoax.a

 VP

apparently x


In order to use γapparently without performing any adjunction, we can use the identity I = λox.x as auxiliary
tree, so we have: γ′apparently = γapparentlyI

Let’s now consider the substitution operation. Actually, the tree

S

NP VP

likes NP

not only accept

adjunctions on its VP node, but also substitutions3 on the two NP nodes. It means it has two additional
arguments s and o, that also are trees, that are substituted at the two NP nodes. This tree is then more

3Substitution nodes are usually represented with a ↓. We drop this notation here.
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3. TAG Formalisms as ACG 3.2. TAG as ACG

faithfully represented by the following term4:

γlikes = λoaso.

S

s a

 VP

likes o


Let’s assume we also have the following terms: γJohn =

NP

John
and γMary =

NP

Mary
. Note that being

constant terms, because they don’t have any parameter, they forbid any adjunction at their NP node.
Then we can build for instance:

γlikes I γJohn γMary =

λoaso.

S

s a

 VP

likes o


 (λox.x)

 NP

John

  NP

Mary



→β

λoso.

S

s

 VP

likes o




 NP

John

  NP

Mary



→β

S

NP

John

VP

likes NP

Mary

The attentive reader may have notice that γlikes does not provide a parameter for the S node (the root). It
means that no adjunction can occur here. The mechanism is now known: just put another λo, and make the
whole tree a parameter of this new variable. However, in the rest of this paper, for sake of legibility, we
usually skip additional parameters when they are irrelevant for the given examples.

Collecting the previously introduced terms, together with a type τ as the type of trees, we have the
constants of Table 3.1.Note that in this representation, leaves are either terminal symbols or variables.

γJohn : τ γlikes : (τ ( τ)( τ ( τ ( τ
γMary : τ γapparently : (τ ( τ)( τ ( τ
I : τ ( τ

Table 3.1: Typing of the constants describing derived trees

3.2 TAG as ACG

We need another ingredient before we can encode TAG into ACG. We need to explicit the coding of trees
using λ-terms build on a signature Σtrees. Indeed, there is no such things like edges in terms. However, the
encoding is straightforward:

4We use the convention for the argument list that auxiliary tree parameter, i.e. function from tree to tree, come in the first place,
then substituted tree, i.e. simple trees, come in the second place
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3.2. TAG as ACG 3. TAG Formalisms as ACG

• First, there is only one atomic type, the type of tree τ .

• Second, for any terminal w, we introduce a constant w of type τ .

• Then, for any non-terminal X of arity n of the ranked alphabet used to define trees, we introduce a
constant Xn of type τ ( · · ·( τ︸ ︷︷ ︸

n times

( τ .

3.2.1 Overview

The encoding of

S

s VP

likes o

is then the term of Λ(Σtrees): S2 s (VP2 (V1 likes) o). Then we can define

the terms we introduced in the previous as in table 3.2.

γJohn = NP1 John : τ γlikes = λa. λs. λo. S2 s (VP2 (V1 likes) o) : (τ ( τ)( τ ( τ ( τ
γMary = NP1 Mary : τ γapparently = λa. λx. a (VP2 apparently x) : (τ ( τ)( τ ( τ
I = λx. x : τ ( τ

Table 3.2: Definition of the terms representing derived trees

Remark 3.1. The previous terms enable the construction of terms that the corresponding TAG would accept.
For instance, the term γapparently I γJohn is a well-formed term of Λ(Σtrees). However, the corresponding tree

VP

apparently NP

John

would not be produced by the TAG. Indeed, we need to provide further control on the

way terms of Λ(Σtrees) are formed. This is the role of the ACG Gtyped trees, whose object vocabulary is Σtrees

and whose abstract vocabulary Σderivations is to be introduced next.

In the encoding of trees we gave, using only the atomic type τ , we lost the typing information on trees
that would prevent the attachment of a tree rooted by an NP at a location were we expect a VP.

We re-introduce the typing control using an ACG. Remember that the object language generated by an
ACG is the image of the abstract language by the lexicon. So the solution here is to have the “correct” trees
in the domain of the lexicon, and the “incorrect” trees in its complement in Λ(Σtrees). So we re-introduce
the types (the syntactic categories) at the abstract level defining Σderivations with :

• The atomic types are the non-terminals

• For each tree in the TAG we introduce a constant.

Let’s take for instance the constant capparently corresponding to the auxiliary tree for apparently:
VP

apparently VP∗

. Just as in Section 3.1, we consider it as a function taking a VP as argument, and returning a VP. And if we

24



3. TAG Formalisms as ACG 3.2. TAG as ACG

want to integrate the fact that some adjunction can take place at the root node, we also specify that it has a
(VP( VP) parameter. So we come with the following type:

capparently : (VP( VP)( VP( VP

Note that it strongly relates to the type we gave to γapparently .
On the other hand, we cannot use anymore the same fake auxiliary tree I , since it should depend on the

category of the node it is adjoined to. So we need a term IX for any atomic type X .
Applying the same approach to the terms we defined until now, we can type the constants of Σderivations

as in table 3.3.

cJohn : NP clikes : (VP( VP)( NP( NP( S
cMary : NP capparently : (VP( VP)( VP( VP
IX : X ( X for every atomic type X

Table 3.3: Typing of the constants of Σderivations

While γapparently I γJohn is a well-typed term, it is not anymore the case of the term capparently IVP cJohn.
This gives an idea of the way the object language, the one of TAG derived trees, is controlled by the abstract
language.

We know have the abstract and the object vocabulary of Gtyped trees. We still need to define its lexicon
Ltyped trees. First at the level of types:

• For every atomic type X of Σderivations, Ltyped trees(X) = τ (we also note it JXKtypedtrees = τ , or
X:=typed trees τ , or even X:= τ if the ACG it relates to is obvious from the context).

• Then, for every constant cw ∈ Σderivations, cw :=typed trees γw . Note that Ltyped trees satisfies the typing
criterion (the type of the image of a constant is the image of the type of this constant).

• Finally, for every constant IX : X ( X , IX := I .

Now Gtyped trees = 〈Σderivations,Σtrees,Ltyped trees, S〉 is completely defined.
For instance, clikes (capparently IVP) cJohn cMary is of type S, hence it belongs to A(Gtyped trees), and its

image by Ltyped trees belongs to O(Gtyped trees).

Exercice 3.1. Check that clikes (capparently IVP) cJohn cMary:=typed trees

S

NP

John

VP

apparently VP

likes NP

Mary

Exercice 3.2. At first sight, using the intermediate construction for trees with Σtrees could seem useless, and
we could directly have used Σderivations. Can you explain give some explanation of why we didn’t choose this
approach?

Remark 3.2. This presentation is actually very close to the one of [Vijay-Shanker, 1992] that introduces
TAG as description of trees. The (X ( X) types expresses that between the two X , there is a dominance
that may not be immediate.
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3.2. TAG as ACG 3. TAG Formalisms as ACG

3.2.2 Enriching the Lexicon

We’re now in position of providing a richer lexicon, given in Table 3.4. When two entries differ only on the
anchor (the terminal symbol, for instance for two adjectives, or two transitive verbs, etc.), we put only one
of them.

Remark 3.3. In this example, we use the modeling of the determiner with an auxiliary tree as in [Group,
2001; Abeillé, 2002]. Note however that we encode the distinction between the N category with the feature
det = + and the one where it is det = − as NP for the former and N for the latter. We could have used
N[+] and N[−] as atomic types instead.

This has several consequences:

1. We distinguish two possible adjunction at node N for nouns: one for modifiers (N( N) and one for
determiners (N( NP).

2. To force the adjunction of a determiner, we don’t provide in the lexicon some identity constant of type
(N( NP). Hence, in order to use a N in a NP, the using a determiner is required. This corresponds
to the OA (obligatory adjunction) described by features as in [Vijay-Shanker, 1992].

3. We should provide an additional entry of type (N ( N) ( N for the nouns in order to use them
in constructs that don’t require an NP. While this can seem awkward, it translates the two TAG
categories N[det = −] and N[det = +] into N and NP resp.

However, it does not change in essence the modelling.

We let the reader check5 that this lexicon allows us to build the terms of A(Gtyped trees) and get their
interpretation as trees as described in Table 3.5.

If we look at the abstract terms (for instance cchases IS IVP(cdog cevery IN) (ccat ca IN) of the second
row of Table 3.5), since it uses only application (and not abstraction), we can represent it the tree of Fig-
ure 3.1(a). Dropping the fake adjunction of IX terms yield a tree (Figure 3.1(b) that looks pretty much the
same as the traditional derivation tree of TAG. Indeed, the type of the parameters of an abstract constant
plays the same role as the addresses of a node in an elementary tree in the definition of the derivation tree
of [Weir, 1988] (plus an order on the addresses).

Since we now also have the derivation tree, as an abstract term, we can use it to build the semantic
representation using the standard ACG architecture for the syntax-semantics interface.

cchases

IS IVP cdog

cevery IN

ccat

ca IN
(a) Abstract term

cchases

cdog

cevery

ccat

ca
(b) Derivation tree

Figure 3.1: Representation of the derivation tree

5Using for instance the ACG Development Toolkit (available at http://www.loria.fr/equipes/calligramme/
acg/).
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Constants of Σderivations Its image by Ltyped trees
The corresponding
TAG tree

csleeps : (S ( S) ( (VP ( VP) ( NP ( S γsleeps
: (τ ( τ)( (τ ( τ)( τ ( τ
= λoavs.a (S2 s (v (VP1 sleeps))

S

NP VP

sleeps

cto love : (S ( S) ( (VP ( VP) ( NP ( NP ( S γto love

: (τ ( τ)( (τ ( τ)( τ ( τ ( τ
= λoavso.S2 o

(a (S2 s (v (VP1 to love))))

S

NP S

NP VP

to love

cclaims : (S ( S) ( (VP ( VP) ( NP ( S ( S γclaims
: (τ ( τ)( (τ ( τ)( τ ( τ ( τ
= λoavsc.a (S2 s (a (VP2 claims c)))

S

NP VP

claims S∗

cseems : (VP ( VP) ( VP ( VP γseems
: (τ ( τ)( τ ( τ
= λovx.v (VP2 seems x)

VP

seems VP∗

cliked : (S ( S) ( (VP ( VP) ( WH ( NP ( S γliked

: (τ ( τ)( (τ ( τ)( τ ( τ ( τ
= λoavws.S2 w

(a (S2 s (v (VP1 liked))))

S

WH S

NP VP

liked

cdoes think : (S ( S) ( (VP ( VP) ( NP ( S ( S γdoes think

: (τ ( τ)( (τ ( τ)
( τ ( τ ( τ

= λoavsc.a (S2 does
(S2 s (v (VP2 think c))))

S

does S

NP VP

think S∗

cwho : WH γwho
: τ
= WH1 who

WH

who

cbig : (N ( N) ( N ( N γbig
: (τ ( τ)( τ ( τ
= λoan.a (N2 big n)

N

big N∗

cdog : (N ( NP) ( (N ( N) ( NP γdog
: (τ ( τ)( (τ ( τ)( τ
= λoda.d (a (N1 dog))

N

dog

ca : N ( NP γa
: τ ( τ
= λon.NP2 a n

NP

a N∗

cevery : N ( NP γevery
: (τ ( τ)( τ ( τ
= λon.NP2 every n

NP

every N∗

Table 3.4: ACG lexicon for a richer TAG (following TAG syntactic analysis of [Gardent and Kallmeyer,
2003])
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Terms of A(Gtyped trees) Representation as TAG derived tree

csleeps IS IVP (cdog ca (cblack (cbig (cfierce IN))))
:= S2 (NP2 a (N2 fierce (N2 big (N2 black (N2 dog))))) (VP1 sleeps)

S
NP

a N
fierce N

big N
black N

dog

VP
sleeps

cchases IS IVP(cdog cevery IN) (ccat ca IN)
:= S2 (NP2 every (N1 dog)) (VP2 chases (NP2 a (N1 cat)))

S
NP

every N
dog

VP
chases NP

a N
cat

cloves (cclaims IS IVP cPaul) IVP cJohn cMary
:= S2 (NP1Paul) (VP2 claims (S2 (NP1John) (VP2 loves (NP1Mary))))

S
NP
Paul

VP
claims S

NP
John

VP
loves NP

Mary

cto love (cclaims IS IVP cPaul) (cseems IVP) cJohn cMary
:= S2 (NP1Mary)

(S2(NP1Paul)
(VP2 claims (S2 (NPJohn) (VP2 seems (VP1 to love)))))

S
NP

Mary
S

NP
Paul

VP
claims S

NP
John

VP
seems VP

to love

cliked , (csaid (cdoes think IS IVP cPaul) IVP cJohn) IVP cwho cBill
:= S2 (WH1 who)

(S2 does (S2 (NP1 Paul)
(VP2 think (S2 (NP1 John) (VP2 said

(S2 (NP1 Bill)(VP1 liked)))))))

S
WH
who

S
does S

NP
Paul

VP
think S

NP
John

VP
said S

NP
Bill

VP
liked

Table 3.5: Terms of A(Gtyped trees) with their interpretation in Λ(Σtrees)
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3.2.3 Computing the Semantic Representation

In the standard ACG architecture for modelling the syntax-semantics interface, two ACGs share the same
abstract level. Here we have a first ACG, Gtyped trees whose abstract vocabulary is Σderivations, that encodes
TAG derivations and TAG derived trees, and we need another GLog = 〈Σderivations,Σ[Log],LLog, S〉, whose
abstract vocabulary will be Σderivations as well, that will encode the semantics we can build from these
derivation trees.

To form the logical propositions, the object signature Σ[Log] contains:

• The atomic types e and t.

• The logical constants6:
∧ : t( t( t ∨ : t( t( t
⇒ : t( t( t ¬ : t( t
∃ : (e → t)( t ∀ : (e → t)( t

• The non-logical constants:

sleep : e( t love, liked : e( e( t
claim, think : e( t( t seem : e( (e( t)( t
WHO : (e( t)( t big, dog : e( t

The definition of LLog mainly raises the question of translating the atomic types of Σderivations. We
simply follow the very standard interpretation of these (syntactic) types into the (semantic) types given
in [Montague, 1974]:

S : t NP : (e( t)( t N : e → t
VP : e( t WH : (e( t)( t

Following these typing constraints, we can complete the definition of the lexicon as in table 3.6.

csleeps:=Log λoSas.s(S(a(λox.sleep x))) cto love :=Log λoSaso.s(S(a(λox.o(λoy.love x y))))
cclaims :=Log λoSasc.S(s(a(λox.claim x c))) cseems :=Log λoar.a(λox.seem x r)
cliked :=Log λoSaws.w(λoy.S(s(a(λox.like x y)))) cdoes think :=Log λoSasc.S(s(a(λox.think xx)))
cwho :=Log λoP.WHO P cbig :=Log λoan.a(λx.(big x) ∧ (n x))
cdog :=Log λoda.d(a(λx.dog x)) ca :=Log λoPQ.∃x.(P x) ∧ (Qx)
cevery :=Log λoPQ.∀x.(P x) ⇒ (Qx)

Table 3.6: ACG lexicon for semantic interpretation

As before, it is left to the reader (or to the ACG development toolkit) to check that the abstract terms of
Table 3.5 are interpreted by LLog as in Table 3.7.

These terms illustrate how using very standard semantic interpretation recipes, the abstract terms, hence
the derivation trees of a TAG, are perfectly able to model:

1. Quantifier scoping: Indeed, while the derivation tree indicated no direct dependence between the
determiner and the verb predicate (see Figure 3.1(b)), and even worse, the scoping is the other way

6As usual, we note the λ-term ∃ (λox.P ) as ∃x.P . The same, mutatis mutandis, holds for ∀.
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csleeps IS IVP (cdog ca (cblack (cbig (cfierce IN)))) :=Log ∃x.((new x) ∧ ((big x) ∧ ((black x)
∧(dog x)))) ∧ (sleep x)

cchases IS IVP(cdog cevery IN) (ccat ca IN) :=Log ∀x.(dog x) ⇒ (∃x′.(cat x) ∧ (chase xx′))
cloves (cclaims IS IVP cPaul) IVP cJohn cMary :=Log claim p (love j m)
cto love (cclaims IS IVP cPaul) (cseems IVP) cJohn cMary :=Log claim p (seem j (λox.love x m))
cliked(csaid (cdoes think IS IVP cPaul) IVP cJohn) IVP cwho cBill :=Log WHO(λoy.think p (say j (like b y)))

Table 3.7: Terms of A(Gtyped trees) and their semantic interpretation in λo(Σ[Log])

around, using type raising (as in [Montague, 1974]) we reverse the functor-argument positions inside
the lexical semantic recipes. While at the abstract level, the term for the noun phrase is a parameter of
the term for the verb, the interpretation of the latter make the former scope over the verbal predicate
(see for instance λos.s(. . . (λox.sleep x))).

Since the same thing occurs in the semantic recipe for nouns where the determiner is interpreted as
taking scope over the nouns predicate (as in λod . . . .d(. . . (λox.dog x))), the result is as expected. This
contrast for instance with the proposal in [Kallmeyer, 2002] to add link information to the derivation
tree.

2. Wh-questions: here again, the scoping relation between the Wh-word and the (complex) sentence
is rendered because while auxiliary trees (S ( S) appear in the abstract term as parameter, the
interpretation of abstract terms for verbs make them appear as taking scope over the other argument
(λoS . . . .S(. . .)).

3. Multiple adjunction: Finally, the interpretation makes precise how to possible auxiliary trees (for
seems and for claims) should interact when occurring on a same abstract term (to love in the ab-
stract term cto love (cclaims IS IVP cPaul) (cseems IVP) cJohn cMary : Mary Paul claims John seems to
love). Indeed, in the interpretation of cto love, the respective scope of the two parameters is completely
described: λoSa · · · . · · ·S(a(· · · )).

Remark 3.4. This lexicon cannot model scope ambiguity and only give the subject wide scope reading.
Various solutions can be found in [Pogodalla, 2004] (using underspecified representation languages) or
in [Pogodalla, 2007a] (using categorial grammar related techniques as exposed in Chapter 4 of this book).

Exercice 3.3. Define an alternative value of Jcto loveKLog so that we get the object wide scope reading.

The current architecture we have is then the one described in Figure 3.2, that relates derived trees with
semantic representations. We can also use the composition (as in “function composition”) properties of
ACG to add the string level. This is the object of the next section.

Λ(Σderivations)Ltyped trees

Λ(Σtrees) Λ(Σ[Log])

LLog

Gtyped trees GLog

Figure 3.2: First ACG architecture for TAG
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3.2.4 Computing the Yield

In order to compute the yield of a tree, wan can make these preliminary remarks:

• Every tree has to be turned into a string. So, in ACG terms, trees (τ ) are interpreted into strings (σ).

• A non terminal (tree) symbol of arity n concatenate the n strings associated to its n daughters.

• A terminal (tree) symbol has to be turned into the same symbol as a string.

So we first need a signature Σstring:

• whose unique atomic type is σ, the type for strings;

• whose constants contain:

– a concatenation operator + : σ( σ( σ;

– the empty string ε : σ;

• whose constants also contain a constant w : σ for each w terminal symbol of the TAG.

Then we can define the ACG Gyield = 〈Σtrees,Σstring,Lyield, τ〉 with:

• τ :=yield σ;

• for any terminal w of the TAG, w:=yield w;

• for any non terminal X of arity n of the TAG, X:=yield λox1 · · ·xn.x1 + · · ·+ xn.

Exercice 3.4. Check that γlikes:=yield λoaso.s + a(likes + o). Remember that γlikes is not a constant of
Σtrees.

We then get the architecture of Table 3.3. It’s worth noting that we could perfectly compose Gtyped trees
and and have only one ACG (the result of the composition, whose lexicon would be Lyield ◦ Ltyped trees).
But the modular approach can also be useful, as the next section shows.

Λ(Σderivations)

Λ(Σtrees) Λ(Σ[Log])

LLog

Gtyped trees GLog

Λ(Σstring)

Gyield

Lyield

Ltyped trees

Figure 3.3: ACG architecture for TAG adding the yield

3.2.5 Adding Some More Control to Get TAG

The construct we proposed until now makes the underlying assumption that whenever there is an adjunction,
that is a parameter (X ( X) itself is the result of some “simple” combination of constants of Σderivations.
Here, “simple” means “by way of application”, what the TAG derivation tree representation illustrate. How-
ever, in the general case, it is possible that a term of type (X ( X) results not only form application of
constants, but also as abstraction as in λox.c1 (c2 x) c3 for instance.
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Take for instance the tree cuncertain : (VP( VP)( S( S which can be interpreted as:

S

S VP

uncertain
(as in whether he will actually survive the experience is uncertain, see [Group, 2001, Section 6.23]. In this
case, the S parameter is meant to be substituted (and the copula is adjoined at the VP node). But nothing
prevent us to build the term λox.cuncertain cis x and to use it as an auxiliary tree at some node S in some
other derivation.

The only way to prevent terms with abstraction is to have a signature with at most 2nd order types for
the constants: using a term with an abstraction would mean having a constant whose type is (α( β)( γ,
hence at least of 3rd order. So on top of Σderivations, we need a new higher-order signature ΣTAG such that:

• it contains an atomic type XA for any X non-terminal symbol that is the root (and the foot) node of
an auxiliary tree (i.e.something that was modelled in Σderivations by a term of type X ( X;

• it contains an atomic type X for any non-terminal symbol where a substitution can occur;

• it contains a constant for each elementary tree (as Σderivations does);

• it contains constants IX of type XA for to represent fake adjunctions of identity.

So for instance, while we have csleeps : (S ( S) ( (VP ( VP) ( S in Σderivations, we have Csleeps :
SA ( VPA ( NP( S in ΣTAG.

And with Cuncertain : VPA ( S ( S, we don’t have any “equivalence” between the type S ( S of
λox.Cuncertain Cisx with the type SA. Hence this term cannot be used as auxiliary tree.

Thanks to the modular architecture of ACG, this can be expressed without changing anything to the
previous construction, but only by adding a new ACG GTAG = 〈ΣTAG,Σderivations,LTAG, S〉 where LTAG is
such that:

• for any type XA of ΣTAG, XA:=TAG X ( X;

• for any other type X of ΣTAG, X:=TAG X;

• for any constant Cw of ΣTAG, Cw :=TAG cw ;

• for any constant IX : XA of ΣTAG, IX :=TAG IX .

Because of the homomorphism betweenA(TAG) andO(TAG), which is the subset of Λ(Σderivations) that can be
represented as trees (that is the TAG derivation trees, as Section 3.2.2 shows),A(TAG) is also a representation
of the usual TAG derivation trees.

Figure 3.4 sums up the overall architecture for modelling TAG with ACG. It goes from the derivation
trees to the yield, and, interestingly, branches at an intermediate level to build the semantic representation.
This presentation is a modularized version of [de Groote, 2002; Pogodalla, 2004].

If we consider G = Gyield ◦Gtyped trees ◦GTAG, the ACG resulting from the composition of the three ACG,
the order of G is 2 (its order, the maximum order of the types of its abstract constants, is the same as the one
of GTAG since they have the same abstract constants). The order of the lexicon of G is 3 (it is the maximum
order of the types of the realizations of its abstract types).

Exercice 3.5. Let ` : N → N be the following function: if n has the form 2k then `(n) = k. Otherwise,
`(n) = 1. Let L = {(an, `(n))|n ∈ N}. Can you find GTAG, Gtyped trees, Gyield and GLog such that:
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Λ(Σderivations)

Λ(Σtrees) Λ(Σ[Log])

LLog

Gtyped trees GLog

Λ(Σstring)

Gyield

Lyield

Ltyped trees

Λ(ΣTAG)

LTAG

GTAG

Figure 3.4: Complete ACG architecture for modelling TAG

• O(Gyield ◦ Gtyped trees ◦ GTAG) = {an|n ∈ N};

• for all n ∈ N and for all t ∈ A(GTAG) such that Lyield◦Ltyped trees◦LTAG(t) = an, LLog◦Ltyped trees◦
LTAG(t) = `(n).

3.2.6 Relaxing the Control to Get MCTAG

In Multicomponent TAGs [Joshi et al., 1975; Joshi, 1988; Weir, 1988], instead of having only one adjunction
in a single tree at a time, it’s possible to specify a sequence of auxiliary trees that can adjoin simultaneously
at different addresses of a sequence of trees. Depending on additional constraints, the complexity of parsing
varies:

Tree-local MCTAG: the adjunctions of a set of auxiliary trees have to take place in a single tree. Then the
same languages can be generated (strings and derived trees);

Set-local MCTAG a sequence of trees can be adjoined into distinct nodes of any member of a single ele-
mentary tree sequence. Then the generative capacity increases and reach m-LCFRS Weir [1988];

Non-local MCTAG the two previous constraints are dropped. Then language for which the world recog-
nition problem is NP-complete can be generated Rambow and Satta [1992]; Rambow [1994]; Cham-
pollion [2007].

Let’s assume the following terms: [Schuler et al., 2000] derives Does John seem likely to sleep using a

Constants of the signatures
(ΣTAG, Σderivations and Σtrees resp.)

The corresponding
TAG tree

Cdoes : SA

cdoes : S( S
γdoes : τ ( τ
γdoes λx.S2 does x

S

does S∗

CS : SA ( SA

cS : (S( S)( S( S
γS : (τ ( τ)( τ ( τ
γS = λax.a x

S∗

pair mdoes seem “made of” the auxiliary trees Cdoes and Cseem, and a pair mlikely “made of” the auxiliary
trees CS and Clikely :
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• Cdoes adjoins on CS while Cseem adjoins to Clikely ;

• the resulting pair adjoin on a same tree for the verb to sleep at the root node S and at the VP node.

It is possible to model pairs (n-uples resp.) as a higher-order term whose parameter is a function taking
two arguments (n arguments resp.). So for instance, mdoes seem would be modelled by λf.f Cdoes Cseem
and mlikely would be modelled by λf.f CS Clikely . These terms belong to a new higher-order signature Σtuple.

While adjunction was modeled until by having the initial tree taking as parameter an auxiliary tree, we
now have to model the initial tree as taking pairs (or n-uples) of auxiliary trees. So we need constants for
initial trees as mto sleep to be of type:

((SA ( VPA ( S)( S)( NP( S

The first parameter (SA ( VPA ( S) ( S is the pair that can be adjoined at note S and at node V P .
mto love would be interpreted as:

mto love := = λoPs.p(λoxy.Cto love x y s0)

The pair P plays the role of the pair, hence take a function with two argument as parameters. These function
precisely describes where the two components x and y of the pair should occur in the whole tree. Note
that it is described using the former definition on Cto love: we simply specify the place where each of the
components of the pair should contribute. The attentive reader may already guess at this point that a new
ACG is showing up...

In the same spirit we would have:

mlikely : ((SA ( VPA ( S)( S)( (SA ( VPA ( S)( S
mlikely := λoPf.P (λoxy.f(λos.CS(x s))(λov.Cseem(y v)))

Hence

mlikely mdoes seem := λof.(λof.f Cdoes Cseem)(λoxy.f(λos.CS(x s))(λov.Clikely (y v)))
→β λof.f(λos.CS (Cdoes s))(λov.Clikely (Cseem v))

mto love (mlikely mdoes seem) := λos0.Cto love (λos.CS (Cdoes s)) (λov.Clikely (Cseem v)) s0 : NP( S

The latter term only lacks its subject. Then, the interpretation into trees and strings is just the same as for
any terms of Λ(ΣTAG). So, actually, we can define a new ACG Gtuple = 〈Σtuple,ΣTAG,Ltuple, S〉 that allows
us to define and use tuples of auxiliary trees.

However, just as Gtyped trees is not enough and would allow us to have ”fake” auxiliary trees by using
abstraction, Gtuple is not enough to model set-local MCTAG: the same mechanism of abstraction could be
used to model “fake” auxiliary tree sequence, hence would allow us to have(at least some of) the same
effects as non-local MCTAG. The solution here again is to add an ACG GMCTAG whose abstract signature
provide an atomic type for each kind of tuple, constants with this type that are realized in Λ(Σtuple) by the
kind of terms we just defined and whose type are 2nd order.

For instance, we would have:

Mto love : [SA, VPA]( NP( S
Mdoes seem : [SA, VPA]
Mlikely : [SA, VPA]( [SA, VPA]
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where [SA, VPA] is an atomic type whose name should help to memorize the kind of tuple it models. And
for the lexicon of GMCTAG we would have:

[SA, VPA] := (SA ( VPA ( S)( S
NP := NP
S := S
Mto love := mto love
Mdoes seem := mdoes seem
Mlikely := mlikely

Figure 3.5 illustrates the final architecture we propose.

Remark 3.5. Because the abstract constants of GMCTAG are at most of order 2, and so is the ACG, we know
that the object language of the ACG Gyield ◦Gtyped trees ◦GTAG ◦Gtuple ◦GMCTAG is in m-LCFRS. Note however
that the order of the lexicon is 5, hence is not ”minimal” (for any ACG of order 2 and whose lexicon is of
order n ≥ 4, the language it generates can be generated by an ACG of order 2 whose lexicon is of order 4).

Remark 3.6. The multiplicity of possible tuples acting on a same other tuple implies multiple abstract
constant. For instance, if there exist possible tuples of length 1 and of type S( S and VP( VP, we need
an additional entry

M ′
to love : [SA]( [VPA]( NP( S

This corresponds to [Weir, 1988, p.102]’s proof of inclusion of the language generated by MCTAG into
the ones generated by LCFRS: “Each composition function mentioned in the CFG encoding the MCTAG
derivations corresponds to one of the ways that n derives tree sequences can be multi-adjoined into an
elementary tree sequence”.

Λ(ΣTAG)

Λ(Σtuple)

Λ(ΣMCTAG)

Λ(Σderivations)

Λ(Σtrees) Λ(Σ[Log])

LLog

Gtyped trees GLog

Λ(Σstring)

Gyield

Lyield

Ltyped trees

LMCTAG

Ltuple

LTAG

GMCTAG

Gtuple

GTAG

Figure 3.5: Complete ACG architecture for modelling TAG and MCTAG

3.3 Scope Ambiguity

By the time of ESSLLI course, I hope there will be here a section on scope ambiguity in TAG, and how we
can relate it to the formalisms studied in Chapters 4 and 5.
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Chapter 4

Syntax-Semantics Architecture: Comparing
CG and ACG

This chapter is an extended version of [Pogodalla, 2007b]. It aims at showing:

1. How ACG relate to more classical Categorial Grammar formalisms.

2. How the compositional property of ACG can highlight the difference of viewpoints on syntax in
various formalisms.

4.1 Semantic Ambiguity in Natural Language

When trying to build the semantic representation of a natural language expression, it may happen that a
single expression produces many semantic representations. This ambiguity may arise from different sources:
lexical ambiguity, as in (1a) for the word bank; structural ambiguity as in (1b which does not by itself
indicate whether the man used a telescope to see the woman, or if the woman the man saw had a telescope;
scope ambiguity as in (1c) that may express that there is a woman that every man loves, but that for every
man, there is a woman he loves as well.

(1) a. I visited the bank

b. The man saw a woman with a telescope

c. Every man loves a woman

In this chapter, we focus on scope ambiguities where a single syntactic analysis can yield many semantic
representations. This kind of scope ambiguity can occur with quantified noun phrases (every, some, most,
etc.) but also with adverbs and how-many questions, conjunctions, etc.

Nevertheless, and this is a main concern for some of the approaches that deal with scope ambiguities, and
for our present proposal as well, this distinction between semantic ambiguity and structural ambiguity may
be quite difficult to express in some formalisms. Basically, there are two ways to address scope ambiguities.
One way is to build two syntactic structures (parse trees) from a single expression, then, from these syntactic
structures, to build two semantic representations in a functional way. The other way is to build a single
syntactic structure from the expression e and to associate to the latter, in a non-functional way, two semantic
representations. These two ways are represented by two frameworks: the type-logical framework, where
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ambiguity is modeled by the process (proof search), and the underspecification framework, where ambiguity
is modeled in a (formal) language.

Our approach aims at providing a proof-theoretic approach (based on proof search) without creating
spurious syntactic ambiguities. The next section gives a description of the type-logical approach and of the
underspecification approach. Then section 4.3 reminds what Abstract Categorial Grammars are and motivate
our proposal in that framework. Section 4.4 gives and exemplifies our proposal and section 4.5 makes some
comparison between our approach and other approaches.

4.2 Type-logical and Underspecification Frameworks

Ambiguity in Categorial and Type-Logical Grammars. From a computational linguistics point of view,
the most influential approach to quantifier scoping phenomena is Montague [1974]. Recent proposals in that
framework are Moortgat [1991]; Carpenter [1997]. We don’t give here the full details of theses approaches
and delay this to the discussion and comparison with our approach at section 4.5.1. But the main ideas are
twofold:

• the parse structure is a proof (in sequent calculus, or in natural deduction);

• the semantic representation is functionally build from the proof via the Curry-Howard isomorphism.

This explain why semantic ambiguity also requires some kind of syntactic ambiguity: since there is just one
way to get the semantic interpretation from the syntactic structure, to get two (or more) semantic represen-
tations require two (or more) of these syntactic structures. This is achieved with types that are higher-order
and enable hypothetical reasoning. Section 4.5.1 gives more formal details.

Despite its success in the modeling of a wide range of scope ambiguity phenomena (see for instance Car-
penter [1997] or Morrill [1994]), this way of modeling ambiguity is a major drawback for people considering
that these ambiguities should occur only at the semantic level and not at the syntactic one. This partly mo-
tivated the storage techniques of Cooper [1983]. More recently, it has been addressed by a wide range of
work around underspecification.

Ambiguity with Underspecification Languages. The underlying idea for underspecification formalisms
(see for instance Muskens [1995]; Bos [1995]; Egg et al. [2001]; Copestake et al. [2005]) is to add a level
between syntactic structures and semantic representation: the underspecified representation. Basically, it is
a tree description Rogers and Vijay-Shanker [1992](or a set of constraints, or a specification) of the syntactic
tree of the logical formulas that are the possible semantic representations. So going to the syntactic structure
to the semantic structure becomes a two stage process: a first one that maps the syntactic structure to a
(unique) underspecified formula, and a second stage that builds from the latter formula the possible semantic
representations.

Drawbacks:

• another intermediate language

• not the one for generation
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Alternatives. Our proposal aims at giving an account of scope ambiguity that does not rely on syntactic
ambiguity nor on another intermediate language. Our model is based on the Abstract Categorial Grammars
(ACG) framework de Groote [2001]. This framework provides both a way to encode different kind of syn-
tactic formalisms (CFG, TAG, m-LCFRS de Groote [2002]; de Groote and Pogodalla [2004]) and way to
specify the syntax-semantics interface Pogodalla [2004]. We are then able to provide a general way of deal-
ing with scope ambiguities in different (syntactical) formalisms, particularly with type-logical formalisms.
Moreover, this framework is suitable to model discourse de Groote [2006].

4.3 Abstract Categorial Grammars

The main feature of an ACG is to generate two languages: an abstract language and an object language.
Whereas the abstract language may appear as a set of grammatical or parse structures, the object language
may appear as its realization, or the concrete language it generates. This general picture can of course be
adapted to the need of the modeling. In order to be able to model non linearity (this is useful for semantics),
we use an extension of the ACG with both linear and non-linear implication but the principles follow
de Groote [2001]’s definitions.1

Definition 4.1. Let A be a set of atomic types. The set T (A) of implicative types build upon A is defined
with the following grammar:

T (A) ::= A|T (A)( T (A)|T (A) → T (A)

Definition 4.2. A higher-order signature Σ is a triple Σ = 〈A,C, τ〉 where:

• A is a finite set of atomic types;

• C is a finite set of constants;

• τ : C → T (A) is a function assigning a types to constants.

Definition 4.3. Let X be an infinite countable set of λ-variables. The set Λ(Σ) of λ-terms built upon a
higher-order signature Σ = 〈A,C, τ〉 is inductively defined as follows:

• if c ∈ C then c ∈ Λ(Σ);

• if x ∈ X then x ∈ Λ(Σ);

• if x ∈ X and t ∈ Λ(Σ) and x occurs free in t exactly once, then λox.t ∈ Λ(Σ);

• if x ∈ X and t ∈ Λ(Σ) and x occurs free in t, then λx.t ∈ Λ(Σ);

• if t, u ∈ Λ(Σ) and the set of free variables of u and t are disjoint then (t u) ∈ Λ(Σ).

Note there is a linear λ-abstraction and a (usual) intuitionistic λ-abstraction. There also are the usual
notion of α-conversion and β-reduction.

Given a higher-order signature Σ, the typing rules are given with an inference system whose judgments
are of the following form: Γ;∆ `Σ t : α where:

1Formal properties of this extension, as expressiveness and the computational properties, are beyond the scope of this chapter.
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• Γ is a finite set of non-linear variable typing declaration;

• ∆ is a finite set of linear variable typing declaration.

Both Γ and ∆ may be empty. Here are the typing rules:

(const.)
Γ;`Σ c : τ(c)

(lin. var.)
Γ;x : α `Σ x : α

(var.)
Γ, x : α;`Σ x : α

Γ;∆, x : α `Σ t : β
(lin. abs.)

Γ;∆ `Σ λox.t : α( β

Γ, x : α;∆ `Σ t : β
(abs.)

Γ;∆ `Σ λx.t : α → β

Γ;∆1 `Σ t : α( β Γ;∆2 `Σ u : α
(lin. app.)

Γ;∆1,∆2 `Σ (t u) : β

Γ;∆ `Σ t : α → β Γ;`Σ u : α
(app.)

Γ;∆ `Σ (t u) : β

Definition 4.4. Let Σ1 = 〈A1, C1, τ1〉 and Σ2 = 〈A2, C2, τ2〉 be two higher-order signatures, a lexicon
L = 〈F,G〉 from Σ1 to Σ2 is such that:

• F : A1 → T (A2). We also note F : T (A1) → T (A2) its homomorphic extension2;

• G : C1 → Λ(Σ2). We also note G : Λ(Σ1) → Λ(Σ2) its homomorphic extension;

• F and G are such that for all c ∈ C1, `Σ2 G(c) : F (τ1(c)) is provable.

We also use L instead of F or G.

Definition 4.5. An abstract categorial grammar is a quadruple G = 〈Σ1,Σ2,L, S〉 where:

• Σ1 = 〈A1, C1, τ1〉 and Σ2 = 〈A2, C2, τ2〉 are two higher-order signatures;

• L : Σ1 → Σ2 is a lexicon;

• S ∈ T (A1) is the distinguished type of the grammar.

Definition 4.6. Given an ACG G , the abstract language is defined by

A(G ) = {t ∈ Λ(Σ1) | `Σ1 t : S is derivable}

The object language is defined by

O(G ) = {u ∈ Λ(Σ2) | ∃t ∈ A(G ) s.t. u = L(t)}
2such that F (α ( β) = F (α) ( F (β) and F (α → β) = F (α) → F (β)
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Note that L binds the parse structures of A(G ) to the concrete expressions of O(G ). Depending on
the choice of Σ1, Σ2 and L, it can map for instance derivation trees and derived trees for TAG de Groote
[2002], derivation trees of context-free grammars and strings of the generated language de Groote [2001],
derivation trees of m-linear context-free rewriting systems and strings of the generated language de Groote
and Pogodalla [2003]. Moreover, this link between an abstract and a concrete structure can apply not only
to syntactical formalisms, but also to semantic formalisms Pogodalla [2004].

A crucial point is that ACG can be mixed in different ways: in a transversal way, were two ACG
use the same abstract language, or in a compositional way, were the abstract language of an ACG is the
object language of an other one (figure 4.1 illustrates these composition between three ACG). This chapter
exemplifies both of this usage. It is also at the heart of our proposal.

G ′

G G ′′

Figure 4.1: Ways of combining ACG

Now, let us run into an example. Here is how scope ambiguities would be modeled in the usual way by
categorial grammars. We first define the syntactic part.

Σsynt =


Asynt = {NP, N, S}
Cevery : N( ((NP( S)( S) Cman : N
Csome : N( ((NP( S)( S) Cwoman : N
Clove : NP( NP( S

Then the language of strings3.

Σstring =


Astring = {STRING}
every : STRING man : STRING some : STRING + : STRING ( STRING

loves : STRING woman : STRING ε : STRING

And finally the lexicon.

L 0
syntax =


N := STRING NP := STRING S := STRING

Cevery := λoxR.R(every + x) Cman := man
Csome := λoxR.R(some + x) Cwoman := woman
Clove := λoxy.x + loves + y

Let Gsyntax = 〈Σsynt,Σstring,L
0

syntax, S〉 be an ACG. Does the sentence( 1c) belong to O(Gsyntax)? It amounts
to find t ∈ A(Gsyntax) such that L 0

syntax(t) = every+man+loves+some+woman4. There are two such terms:

3ε represents the empty string.
4In the very general case, this problem, known as parsing ACG is not decidable. However, some restrictions (as linearity, but

other ones too that are not linear) make it decidable (and polynomial sometime). For such discussions, see Salvati [2005, 2006];
Yoshinaka [2006]
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t1 = (CeveryCman)(λx.(CsomeCwoman)(λy.Clove x y)) and t2 = (CsomeCwoman)(λy.(CeveryCman)(λx.Clove x y)).
Indeed we have:

L 0
syntax(t1) = (λoR.R(every + man))

(λox.(λoQ.Q(some + woman))(λoy.x + loves + y))
= (λoR.R(every + man))

(λox.(λoy.x + loves + y)(some + woman))
= (λoR.R(every + man))(λox.x + loves + some + woman)
= (λox.x + loves + some + woman)(every + man)
= every + man + loves + some + woman

L 0
syntax(t2) = (λoR.R(some + woman))

(λoy.(λoQ.Q(every + man))(λox.x + loves + y))
= (λoR.R(some + woman))

(λoy.(λox.x + loves + y)(every + man))
= (λoR.R(some + woman))(λoy.every + man + loves + y)
= (λoy.every + man + loves + y)(some + woman))
= every + man + loves + some + woman

But it is interesting to look at the corresponding proofs of `Σsynt t1 : S and `Σsynt t2 : S5. Let us define Π1,
Π2 and Π3 the following proofs:

Π1 =

 `Σsynt Cevery : N( (NP( S)( S `Σsynt Cman : N

`Σsynt CeveryCman : (NP( S)( S

Π2 =

 `Σsynt Csome : N( (NP( S)( S `Σsynt Cwoman : N

`Σsynt CsomeCwoman : (NP( S)( S

Π3 =


x : NP `Σsynt x : NP `Σsynt Clove : NP( NP( S

x : NP `Σsynt Clovex : NP( S y : NP `Σsynt y : NP

x : NP, y : NP `Σsynt Clove x y : S

Then, the proof for t1 is the following:

Π1

Π2

Π3

x : NP `Σsynt λoy.Clove x y : NP( S

x : NP `Σsynt (CsomeCwoman)(λoy.Clove x y) : S

`Σsynt λox.(CsomeCwoman)(λoy.Clove x y) : NP( S

`Σsynt (CeveryCman)(λox.(CsomeCwoman)(λoy.Clove x y)) : S

5We omit the non-linear part, hence the ’;’, of the sequent because it is always empty in that example.

42



4. Syntax-Semantics Architecture: Comparing CG and ACG 4.3. Abstract Categorial Grammars

and the proof for t2 is the following:

Π2

Π1

Π3

y : NP `Σsynt λox.Clove x y : NP( S

y : NP `Σsynt (CeveryCman)(λox.Clove x y) : S

`Σsynt λoy.(CeveryCman)(λo.Clove x y) : NP( S

`Σsynt (CsomeCwoman)(λoy.(CeveryCman)(λox.Clove x y)) : S

It is clear that we essentially get there the usual syntactic ambiguity of the type-logical approaches (be
it in the Lambek calculus style or with the ⇑ binder of Moortgat [1991], see [Morrill, 1994, p. 153] or
[Carpenter, 1997, p. 224]) that depends on the order in which abstractions occur.

Now, we can look at the semantic part. It will rely on the same abstract language. However, we need a
higher-order signature for the semantic representation. So we first define Σsem as

Σsem =


Asem = {e, t}
∀ : (e → t)( t ∃ : (e → t)( t
⇒ : t( t( t ∧ : t( t( t
man : e( t woman : e( t
love : e( e( t ¬ : t( t

Then the lexicon6:

Lsem =


N := e( t NP := e S := t

Cevery := λoPQ.∀x.(P x ⇒ Qx) Cman := man
Csome := λoPQ.∃x(P x ∧Qx) Cwoman := woman
Clove := love

We can now define the ACG Gsem = 〈Σsynt,Σsem,Lsem, S〉. And we have the following two readings:

Lsem(t1) = (λoQ.∀x.man x ⇒ Qx)
(λx.(λoQ.∃y(woman y ∧Qy))(λy.love x y))

= ∀x.man x ⇒ ∃y(woman y ∧ love x y)

Lsem(t2) = (λoQ.∃y(woman x ∧Qx))
(λy.(λoQ.∀x.man y ⇒ Qy)(λx.love x y))

= ∃y(woman y ∧ ∀x.man x ⇒ love x y)

This example shows four things:

• how ACG transfer structures by way of sharing the abstract language (the string expression and the
semantic representations share the same structure, namely t1 and t2);

• how scope ambiguity is modeled in type-logical approaches (with higher-order types and the different
possible orders for the derivation rules)

• that as soon as the semantic transfer from the syntactic structure is functional (here by the lexicon),
semantic ambiguity can only occur if there is syntactic ambiguity

6We use the usual notation ∀x.P instead of ∀(λx.P ).

43



4.4. Encoding a Non-Functional Relation 4. Syntax-Semantics Architecture: Comparing CG and ACG

• that parsing (in its usual sense in computational linguistics) requires both inverting a lexicon (here
L 0

syntax) and applying another one (here Lsem.

This last remark is crucial for our proposal: in order to encode a non-functional relation, as the one exem-
plified between syntactic structure and semantic representation, we need to compose at least two ACG that
share a same abstract language. Hence, we get a composition model like in figure 4.1 where G ′ builds the
syntactic structures from strings, where G ′′ builds the semantic representation from a new kind of structures
which is related to the syntactic structure by G . The next section expose our proposal based on that idea.

4.4 Encoding a Non-Functional Relation

The first step is to design an ACG that will model the relation between parse structures and string expres-
sions, and more precisely to define its abstract signature. The requirement that quantifiers do not entail
ambiguity at that level imposes they have not a higher-order type any more. This is the main difference with
the signature Σsynt we previously defined. In the new signature Σsyntax, cevery has now the expected type
N( NP, which is not higher-order. Note we don’t change the set of atomic types.

Σsyntax =


Asynt
cevery : N( NP cman : N
csome : N( NP cwoman : N
clove : NP( NP( S

Lsyntax =


N := STRING NP := STRING S := STRING

cevery := λox.every + x cman := man
csome := λox.some + x cwoman := woman
clove := λoxy.x + loves + y

Let Gsyntax = 〈Σsyntax,Σstring,Lsyntax, S〉 be an ACG. Contrary to the previous example, there now is a
unique t0 ∈ A(Gsyntax) such that Lsyntax(t0) = every + man + loves + some + woman. And t0 =
clove(ceverycman)(csomecwoman).

In order to make ambiguity appear, we need another ACG Gamb whose object signature is the abstract
signature of Gsyntax. As abstract signature for Gamb, we simply use Σsynt. The key part is in the following
lexicon:

Lamb =


N := N NP := NP S := S

Cevery := λoxR.R(ceveryx) Cman := cman
Csome := λoxR.R(csomex) Cwoman := cwoman
Clove := cloves

Note that only the constants dedicated to model quantifiers are changed (they get a higher-order type). With
Gamb = 〈Σsynt,Σsyntax,Lamb, S〉, we have t0 ∈ O(Gamb) because

Lamb(t1) = Lamb(t2) = t0

With Gsem unchanged, we are now able to associate to the expression every man loves some woman a single
syntactic structure (namely t0) and to semantic representations (namely Lamb(t1) and Lamb(t2)). Note that
pushing the higher-order type requirement apart from the syntactic side allows us to avoid the use of a special
type constructor, such as ⇑, hence the need for the corresponding introduction and elimination rules.

(2) John and every kid ran
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Sentences like (2) make the conjunction of quantified and non-quantified NPs. Look for instance at the
following extensions (the name of the constants should make clear to which signature, lexicon or ACG this
extension relates) to show how it works:

Crun : NP( S
Ckid : N
CJohn : NP
Cand : ((NP( S)( S)( ((NP( S)( S)( (NP( S)( S
crun : NP( S
ckid : N
cJohn : NP
cand : NP( NP( NP

Lamb =


Crun := crun
Ckid := ckid
CJohn := cJohn
Cand := λoPQR.P (λox.Q(λoy.R(cand x y)))

Lsem =


Crun := run
Ckid := kid
CJohn := j
Cand := λoPQ.λR.(PR) ∧ (QR)

Lsyntax =


crun := ran
ckid := kid
cJohn := John
cand := λoxy.x + and + y

Because cand has not a higher-order type, the parse structure of (2) is t3 = crun(candcJohn(ceveryckid)), Then,
since λoP.PCJohn : (NP ( S) ( S is derivable in our system, trying to find an antecedent to t3 by
Lamb we find t4 = Cand(λoP.PCJohn)(CeveryCkid)Crun. t4 has the usual structure of terms that represent the
conjunction of quantified noun phrases and not quantified noun phrases in type-logical approaches. Then,
with type raising of the non-quantified NP, we get the usual semantic representation from through Lsem:

Lsem(t4) = (run j) ∧ (∀x.kid x ⇒ run x)

In the next sections, we show how to model some other phenomena that occur in sentences:

(3) a. John saw a kid and so did Bill

b. John seeks a book

c. every kid didn’t run

4.4.1 Conjunction and Verbal Ellipsis

Whereas we make some simplification on the syntactic side, the following extensions enable the analysis
of (3a):

Cand so : (NP( S)( NP( NP( S
Csee : NP( NP( S
cand so : (NP( S)( NP( NP( S
csee : NP( NP( S
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Lamb =
{

Csee := csee
Cand so := cand so

Lsem =
{

Cand so := λP.λoxy.(Px) ∧ (Py)
Csee := see

Lsyntax =
{

csee := saw
cand so := λoRxy.(Rx) + and so did + y

With these lexicon there is a unique parse structure t5 = cand so(λox.cseex(cackid))cJohncBill for (3a). But with

t6 = Cand so(λox.CaCkid(λoy.Cseexy))CJohnCBill

and
t7 = CaCkid(λoy.Cand so(λx.Cseexy)CJohnCBill)

we have that Lamb(t6) = Lamb(t7) = t5, hence two semantic readings:

Lsem(t6) = (∃x.(kid x) ∧ (see j x)) ∧ (∃x.(kid x) ∧ (see b x))
Lsem(t7) = ∃x.(kid x) ∧ ((see j x) ∧ (see b x))

4.4.2 De re and De dicto Readings

This section shows how to model the de re and the de dicto readings of (3b).

Cseek : NP( ((NP( S)( S)( S
Cbook : N
csee : NP( NP( S
cbook : N

Lamb =
{

Cseek := λoxP.P (λoy.cseek x y)
Cbook := cbook

Lsem =
{

Cseek := λoxo.try x (λoz.o(λoy.find z y))
Cbook := book

Lsyntax =
{

cseek := λoxy.x + seeks + y
cbook := book

With these lexicon, (3b) has a unique parse structure t8 = cseekcJohn(cacbook). But with

t9 = CseekCJohn(CaCbook)

and
t10 = (CaCbook)(λoy.CseekCJohn (λoQ.Q y))

we have that Lamb(t9) = Lamb(t10) = t8, hence two semantic readings:

Lsem(t9) = try j (λox.∃y.(book y) ∧ (find x y))
Lsem(t10) = ∃y.(book y) ∧ (try j (λox.find x y))
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4.4.3 Quantification and Negation

Our last example shows how to parse (3c).

Cdidnt : (((NP( S)( S)( S)( ((NP( S)( S)( S
cdidnt : (NP( S)( NP( S

Lamb =
{

Cdidnt := λoPR.R(λox.P (λoQ.cdidnt Qx))
Lsem =

{
Cdidnt := λoPQ.¬(P Q)

Lsyntax =
{

cdidnt := λoRx.x + didn’t + (R ε)
cbook := book

With these lexicon, (3c) has a unique parse structure t11 = cdidnt crun(ceveryckid). But with

t12 = Cdidnt(λoQ.Q Crun)(CeveryCkid)

and
t13 = (CeveryCkid)(λoy.Cdidnt(λoQ.Q Crun)(λoP.P y))

we have that Lamb(t9) = Lamb(t10) = t8, hence two semantic readings:

Lsem(t12) = ¬(∀x.Ckid x ⇒ Crun x)
Lsem(t13) = ∀x.Cman x ⇒ ¬(Crun x)

4.4.4 Current Limitations

There are some cases where it is not possible to extract quantifiers out of the relative clauses. For instance,
(4) has no reading where the universal quantifier has scope over the existential one. As for now, we don’t
know how to express these constraints in the ACG formalism. Type-logical formalisms deal with these
phenomena in using substructural logics and structural control Morrill [1994].

(4) a man that every woman finds walks

The use of implicative linear logic, more precisely the first order fragment, has been proposed to model
some of these phenomena Moot and Piazza [2001]. Extensions of the ACG type system in the same spirit
have to be explored. In such a framework, we could also distinguish restrictions coming from syntax (with
the type of the constants of Σsyntax) and the restrictions coming from semantics (with the type of the constants
of Σsynt).

4.5 Comparison with Related Approaches

4.5.1 Scoping Constructor

Because the underlying type systems in the case of ACG and other type-logical formalisms may be quite
different (associative and commutative vs. not associative, not commutative with structural rules), direct
comparison between the expressive power of these approaches is not possible. However, we can compare
ACG with a commutative and associative type-logical formalism (then there is only one implication, the lin-
ear implication). In that case we can rephrase the inference rules for this system with the scoping constructor.
Types are augmented with this constructor:

TL (A) ::= A|TL (A)( TL (A)|TL (A) ⇑ TL (A)
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(ax.)
x : α `TL x : α

Γ, x : α `TL t : β
(abs.)

Γ `TL λox.t : α( β

Γ1 `TL t : α( β Γ2 `TL u : α
(app.)

Γ1,Γ2 `TL (t u) : β

Γ `TL t : β ⇑ α ∆, x : β `TL u : α (E⇑)
Γ,∆ `TL t(λx.u) : α

Γ `TL t : β (I⇑)
Γ `TL λx.(x t) : β ⇑ α

We define a translation from TL (A) to T (A) as follows:

• if a ∈ A then asyn = a and asem = a

• if a = α( β then asyn = αsyn ( βsyn and asem = αsem ( βsem. In the latter formula,( is called
a main connective

• if a = α ⇑ β then asyn = αsyn and asem = (αsem ( βsem)( βsem and there is no main connective

• if Γ = x1 : a1, . . . , xn : an then Γsyn = x1 : a1
syn, . . . , xn : an

syn and Γsem = x1 : a1
sem, . . . , xn :

an
sem

Theorem 4.1. Let Γ `TL t : A be a TL sequent. If Γ `TL t : A is provable then:

• Γsyn ` Asyn is provable;

• and Γsem ` u : Asem is provable;

• and if the last rule of the proof of Γsem ` u : Asem does not introduce a main connective, then
t = λox.x v;

• and t =α u.

We only sketch the proof here.

Proof. By induction on the proofs. Let Π the proof of Γ `TL t : A. We look at the last rule of Π.

• If Π is reduced to an axiom, then Γsyn ` Asyn and Γsem ` u : Asem are provable and reduced to an
axiom.

• If the last rule is (abs.) and Π ends with:

Γ, x : α `TL u : β
(abs.)

Γ `TL λox.u : α( β

Then Γ, x : α `TL u : β is provable, and by induction hypothesis, Γ, x : αsyn ` w : βsyn and
Γ, x : αsem ` v : βsem and v =α u. So

Γ, x : αsyn ` βsyn

Γsyn ` λox.w : α( βsyn

proves Γsyn ` λox.w : α( βsyn is provable, and
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Γ, x : αsem ` v : βsem

Γsem ` λox.v : α( βsem

with the latter( being a main connective. Moreover, since v =α u, we also have λox.v =α λox.u.

• If the last rule is (app.) and Π ends with:

Γ1 `TL t : α( β Γ2 `TL u : α
(app.)

Γ1,Γ2 `TL (t u) : β

• If the last rule is (E⇑) and Π ends with:

Γ `TL t : β ⇑ α ∆, x : β `TL u : α

Γ,∆ `TL t(λx.u) : α

by induction hypothesis, we have that Γsyn ` t : β ⇑ αsyn is provable, that is Γsyn ` t : βsyn is
provable and ∆syn, x : βsyn ` u : αsyn is provable. Hence, ∆syn ` λox.u : βsyn ( αsyn is provable
and Γsyn,∆syn ` (u t) : αsyn is provable.

Moreover, by induction hypothesis we have that Γsem ` t′ : β ⇑ αsem is provable, that is Γsem ` t′ :
(βsem ( αsem)( αsem is provable. Moreover, t′ = λox.x v′ since the( is not a main connective.
We also have ∆sem, x : βsem ` u′ : αsem is provable, hence ∆sem ` λox.u′ : βsem ( αsem provable.
Then, Γsem,∆sem ` (λox.x v′)(λox.u′) : αsem is provable, that is Γsem,∆sem ` (λox, u′)v′ : αsem, and
Γsem,∆sem ` u′[v′/x] : αsem

• If the last rule is (I⇑) and Π ends with:

Γ `TL t : β

Γ `TL λx.(x t) : β ⇑ α

by induction hypothesis, we have Γsyn ` t : βsyn provable, that is Γsyn ` t : β ⇑ αsyn provable.

On the semantic side, we have Γsem ` t′ : βsem provable. So we can build the following proof:

Γsem ` t′ : βsem x : βsem ( αsem ` x : βsem ( αsem

Γsem, x : βsem ( αsem ` (x t′) : αsem

Γsem ` λox.(x t′) : (βsem ( αsem)( αsem

Conjecture 4.2. The implication in Theorem 4.1 is actually an equivalence.

This basically means that the two proposals are able to model the same phenomena, albeit in different
ways. We don’t make explicit here the role of the lexicon (and how to define it) so that it ensures the relation
between the syntactic and the semantic proofs (namely that the image of the semantic proof is the syntactic
one).
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4.5.2 Glue Semantics

Glue Semantics (GS) Dalrymple [1999] was introduced to compute semantic representations from LFG
structures, but it has also been applied to other formalisms HPSG Asudeh and Crouch [2001] and TAG Frank
and van Genabith [2001]). The principle is to associate to a parse structure a logical formula (of intuitionistic
linear logic) which has to be proven. As in the our approach and in the type-logical approach, this yields
possibly many proofs which are then directly turned, via the Curry-Howard isomorphism, into possibly many
semantic interpretations. So GS clearly does not fit in the underspecification way to model ambiguities.

It also differ from the type-logical approach by the fact that the syntactic structure does not directly
translate into the semantic structure but rather by the way of stating a sequent to prove. This clearly relates
to the way the syntactic structure imposes conditions on the semantic structure in our proposal (let u be the
parse structure, prove t ∈ A(Gsem) and Lsem(t) = u). But a formal comparison on GS and ACG is beyond
the scope of this chapter.

4.6 Conclusion

This chapter shows how to encode the non-functional relation between syntactic structures and semantic
representations in a proof-theoretic setting. This differs from the standard type-logical approach, where
semantic ambiguity requires syntactic ambiguity, and from the underspecification framework, where am-
biguity is expressed by a specific language. The ACG framework in which it take place also provide a
modularity in the way constrains can be described either on the syntactic level or in the semantic level.
Moreover, this proposal gives hints on how to extend the type system to take such constraints into account.

Because ACG can model different grammatical formalisms, we think it can help to share insights from
different these formalisms and to mix with pragmatic models. It also gives a first base to a comparison
between GS and ACG.
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Chapter 5

On the Syntax-Semantics Interface: From
CVG to ACG

This chapter has been published as [de Groote, Pogodalla and Pollard, 2009], and, consequently, presents a
joint work. Cooper’s storage technique for scoping in situ operators has been employed in theoretical and
computational grammars of natural language (NL) for over thirty years, but has been widely viewed as ad
hoc and unprincipled. Recent work by Pollard within the framework of convergent grammar (CVG) took a
step in the direction of clarifying the logical status of Cooper storage by encoding its rules within an explicit
but nonstandard natural deduction (ND) format. Here we provide further clarification by showing how to
encode a CVG with storage within a logical grammar framework—abstract categorial grammar (ACG)—
that utilizes no logical resources beyond those of standard linear deduction.

Introduction

A long-standing challenge for designers of NL grammar frameworks is posed by in situ operators, expres-
sions such as quantified noun phrases (QNPs, e.g. every linguist), wh-expressions (e.g. which linguist), and
comparative phrases (e.g. more than five dollars), whose semantic scope is underdetermined by their syntac-
tic position. One family of approaches, employed by computational semanticists Blackburn and Bos [2005]
and some versions of categorial grammar Bach and Partee [1980] and phrase structure grammar Cooper
[1983]; Pollard and Sag [1994] employs the storage technique first proposed by Cooper Cooper [1975].
In these approaches, syntactic and semantic derivations proceed in parallel, much as in classical Montague
grammar (CMG Montague [1973]) except that sentences which differ only with respect to the scope of in-
situ operators have identical syntactic derivations.1 Where they differ is in the semantic derivations: the
meaning of an in-situ operator is stored together with a copy of the variable that occupies the hole in a
delimited semantic continuation over which the stored operator will scope when it is retrieved; ambiguity
arises from nondeterminism with respect to the retrieval site.

Although storage is easily grasped on an intuitive level, it has resisted a clear and convincing logical
characterization, and is routinely scorned by theoreticians as ‘ad hoc’, ‘baroque’, or ‘unprincipled’. Recent
work Pollard [n.d.b,n] within the CVG framework provided a partial clarification by encoding storage and
retrieval rules within a somewhat nonstandard ND semantic calculus (Section 5.1). The aim of this chapter
is to provide a logical characterization of storage/retrieval free of nonstandard features. To that end, we

1In CMG, syntactic derivations for different scopings of a sentence differ with respect to the point from which a QNP is ‘lowered’
into the position of a syntactic variable.
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provide an explicit transformation of CVG interface derivations (parallel syntax-semantic derivations) into
a framework (ACG de Groote [2001]) that employs no logical resources beyond those of standard (linear)
natural deduction. Section 5.2 provides a preliminary conversion of CVG by showing how to re-express
the storage and retrieval rules (respectively) by standard ND hypotheses and another rule already present in
CVG (analogous to Gazdar’s Gazdar [1981] rule for unbounded dependencies). Section 5.3 introduces the
target framework ACG. And Sect. 5.4 describes the transformation of a (pre-converted) CVG into an ACG.

5.1 Convergent Grammar

A CVG for an NL consists of three term calculi for syntax, semantics, and the interface. The syntactic
calculus is a kind of applicative multimodal categorial grammar, the semantic calculus is broadly similar to
a standard typed lambda calculus, and the interface calculus recursively specifies which syntax-semantics
term pairs belong to the NL.2 Formal presentation of these calculi are given in Appendix A.1.

In the syntactic calculus, types are syntactic categories, constants (nonlogical axioms) are words (broadly
construed to subsume phrasal affixes, including intonationally realized ones), and variables (assumptions)
are traces (axiom schema T), corresponding to ‘overt movement’ in generative grammar. Terms are (candi-
date syntactic analyses of) words and phrases.

For simplicity, we take as our basic syntactic types NP (noun phrase), S (nontopicalized sentence), and t
(topicalized sentence). Flavors of implication correspond not to directionality (as in Lambek calculus) but to
grammatical functions. Thus syntactic arguments are explicitly identitifed as subjects ((s), complements
((c), or hosts of phrasal affixes ((a). Additionally, there is a ternary (‘Gazdar’) type constructor AC

B for
the category of ‘overtly moved’ phrases that bind an A-trace in a B, resulting in a C.

Contexts (left of the `) in syntactic rules represent unbound traces. The elimination rules (flavors of
modus ponens) for the implications, also called merges (M), combine ‘heads’ with their syntactic argu-
ments. The elimination rule G for the Gazdar constructor implements Gazdar’s (Gazdar [1981]) rule for
discharging traces; thus G compiles in the effect of a hypothetical proof step (trace binding) immediately
and obligatorily followed by the consumption of the resulting abstract by the ‘overtly moved’ phrase. G
requires no introduction rule because it is only introduced by lexical items (‘overt movement triggers’ such
as wh-expressions, or the prosodically realized topicalizer).

In the CVG semantic calculus, as in familiar semantic λ-calculi, terms correspond to meanings, con-
stants to word meanings, and implication elimination to function application. But there is no λ-abstraction!
Instead, binding of semantic variables is effected by either (1) a semantic ‘twin’ of the Gazdar rule, which
binds the semantic variable corresponding to a trace by (the meaning of) the ‘overtly moved’ phrase; or (2)
by the Responsibility (retrieval) rule (R), which binds the semantic variable that marks the argument position
of a stored (‘covertly moved’) in situ operator. Correspondingly, there are two mechanisms for introducing
semantic variables into derivations: (1) ordinary hypotheses, which are the semantic counterparts of (‘overt
movement’) traces; and the Commitment (Cooper storage) rule (C), which replaces a semantic operator a
of type AC

B with a variable x : A while placing a (subscripted by x) in the store (also called the co-context),
written to the left of the a (called co-turnstile).

The CVG interface calculus recursively defines a relation between syntactic and semantic terms. Lex-
ical items pair syntactic words with their meanings. Hypotheses pair a trace with a semantic variable and
enter the pair into the context. The C rule leaves the syntax of an in situ operator unchanged while stor-
ing its meaning in the co-context. The implication elimination rules pair each (subject-, complement-, or

2To handle phonology, ignored here, a fourth calculus is needed; and then the interface specifies phonology/syntax/semantics
triples.
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affix-)flavored syntactic implication elimination rule with ordinary semantic implication elimination. The
G rule simultaneously binds a trace by an ‘overtly moved’ syntactic operator and a semantic variable by
the corresponding semantic operator. And the R rule leaves the syntax of the retrieval site unchanged while
binding a ‘committed’ semantic variable by the retrieved semantic operator.

5.2 About the Commitment and Retrieve Rules

In the CVG semantic calculus, C and R are the only rules that make use of the store (co-context), and their
logical status is not obvious. This section shows that they can actually be derived from the other rules, in
particular from the G rule. Indeed, the derivation on the left can be replaced by the one on the right3:

one:
... π1

Γ ` a : AC
B a ∆

C
Γ ` x : A a ax : AC

B,∆
... π2

Γ,Γ′ ` b : B a ax : AC
B,∆′,∆

R
Γ,Γ′ ` ax b : C a ∆′,∆

 
... π1

Γ ` a : AC
B a ∆

x : A ` x : A a
... π2

x : A, Γ′ ` b : B a ∆′
G

Γ,Γ′ ` ax b : C a ∆,∆′

This shows we can

eliminate the store, resulting in a more traditional presentation of the underlying logical calculus. On the
other hand, in the CVG interface calculus, this technique for elimiating C and R rules does not quite go
through because the G rule requires both the syntactic type and the semantic type to be of the form αγ

β . This
difficulty is overcome by adding the following Shift rule to the interface calculus:

Γ ` a, b : A,BD
C a ∆

ShiftE
Γ ` SE a, b : AE

E , BD
C a ∆

where SE is a functional term whose application to an A produces a AE
E . Then we can transform

... π1

Γ ` a, b : A,BD
C a ∆

C
Γ ` a, x : A,B a bx : BD

C ,∆
... π2

Γ,Γ′ ` e, c : E,C a bx : BD
C ,∆,∆′

R
Γ,Γ′ ` e, bx c : E,D a ∆′,∆

to:

... π1

Γ ` a, b : A,BD
C a ∆

ShiftE
Γ ` SE a, b : AE

E , BD
C a ∆

t, x : A,B ` t, x : A,B a
... π2

t, x : A,B; Γ′ ` e, c : E,C a ∆′
G

Γ,Γ′ ` (SEa)t e, bx c : E,D a ∆,∆′

3The fact that we can divide the context into Γ and Γ′ and the store into ∆ and ∆′, and that Γ and ∆ are preserved, is shown in
Proposition A.1 of Appendix A.2.
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provided (SEa)t e = (SE a) (λt.e) = e[t := a]. This follows from β-reduction as long as we take SE to be
λy P.P y. Indeed:

(SE a) (λt.e) = (λy P.P y) a (λt.e) =β (λP.P a) (λt.e) =β (λt.e) a =β e[t := a]

With this additional construct, we can get rid of the C and R rules in the CVG interface calculus. This
construct is used in Section 5.4 to encode CVG into ACG. It can be seen as a rational reconstruction of
Montague’s quantifier lowering technique as nothing more than β-reduction in the syntax (unavailable to
Montague since his syntactic calculus was purely applicative).

5.3 Abstract Categorial Grammar

Motivations. Abstract Categorial Grammars (ACGs) de Groote [2001], which derive from type-theoretic
grammars in the tradition of Lambek Lambek [1958], Curry Curry [1961], and Montague Montague [1973],
provide a framework in which several grammatical formalisms may be encoded de Groote and Pogodalla
[2004]. The definition of an ACG is based on a small set of mathematical primitives from type-theory,
λ-calculus, and linear logic. These primitives combine via simple composition rules, which offers ACGs a
good flexibility. In particular, ACGs generate languages of linear λ-terms, which generalizes both string and
tree languages. They also provide the user direct control over the parse structures of the grammar, which
allows several grammatical architectures to be defined in terms of ACG.

Mathematical preliminaries. Let A be a finite set of atomic types, and let TA be the set of linear func-
tional types types (in notation, α ( β) built upon A. A higher-order linear signature is then defined to
be a triple Σ = 〈A,C, τ〉, where: A is a finite set of atomic types; C is a finite set of constants; and τ is
a mapping from C to TA. A higher-order linear signature will also be called a vocabulary. In the sequel,
we will write AΣ, CΣ, and τΣ to designate the three components of a signature Σ, and we will write TΣ for
TAΣ

.
We take for granted the definition of a λ-term, and we let the relation of βη-conversion to be the notion of

equality between λ-terms. Given a higher-order signature Σ, we write ΛΣ for the set of linear simply-typed
λ-terms.

Let Σ and Ξ be two higher-order linear signatures. A lexicon L from Σ to Ξ (in notation, L : Σ −→ Ξ)
is defined to be a pair L = 〈η, θ〉 such that: η is a mapping from AΣ into TΞ; θ is a mapping from CΣ

into ΛΞ; and for every c ∈ CΣ, the following typing judgement is derivable: `Ξ θ(c) : η̂(τΣ(c)), where
η̂ : TΣ → TΞ is the unique homomorphic extension of η.4

Let θ̂ : ΛΣ → ΛΞ be the unique λ-term homomorphism that extends θ.5 We will use L to denote both
η̂ and θ̂, the intended meaning being clear from the context. When Γ denotes a typing environment ‘x1 :
α1, . . . , xn : αn’, we will write L (Γ) for ‘x1 : L (α1), . . . , xn : L (αn)’. Using these notations, we have
that the last condition for L induces the following property: if Γ `Σ t : α then L (Γ) `Ξ L (t) : L (α).

Definition 5.1. An abstract categorial grammar is a quadruple G = 〈Σ,Ξ,L , s〉 where:

1. Σ and Ξ are two higher-order linear signatures, which are called the abstract vocabulary and the
object vocabulary, respectively;

2. L : Σ −→ Ξ is a lexicon from the abstract vocabulary to the object vocabulary;
4That is η̂(a) = η(a) and η̂(α ( β) = η̂(α) ( η̂(β).
5That is θ̂(c) = θ(c), θ̂(x) = x, θ̂(λx. t) = λx. θ̂(t), and θ̂(t u) = θ̂(t) θ̂(u).
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3. s ∈ TΣ is a type of the abstract vocabulary, which is called the distinguished type of the grammar.

A possible intuition behind this definition is that the object vocabulary specifies the surface structures of
the grammars, the abstract vocabulary specifies its abstract parse structures, and the lexicon specifies how
to map abstract parse structures to surface structures. As for the distinguished type, it plays the same part as
the start symbol of the phrase structures grammars. This motivates the following definitions.

The abstract language of an ACG is the set of closed linear λ-terms that are built on the abstract vocab-
ulary, and whose type is the distinguished type:

A(G ) = {t ∈ ΛΣ | `Σ t : s is derivable}

On the other hand, the object language of the grammar is defined to be the image of its abstract language by
the lexicon:

O(G ) = {t ∈ ΛΞ | ∃u ∈ A(G ). t = L (u)}

It is important to note that, from a purely mathematical point of view, there is no structural difference
between the abstract and the object vocabulary: both are higher-order signatures. Consequently, the intuition
we have given above is only a possible interpretation of the definition, and one may conceive other possible
grammatical architectures. Such an architecture consists of two ACGs sharing the same abstract vocabulary,
the object vocabulary of the first ACG corresponding to the syntactic structures of the grammar, and the one
of the second ACG corresponding to the semantic structures of the grammar. Then, the common abstract
vocabulary corresponds to the transfer structures of the syntax/semantics interface. This is precisely the
architecture that the next section will exemplify.

5.4 ACG encoding of CVG

The Overall Architecture. As Section 5.1 shows, whether a pair of a syntactic term and a semantic term
belongs to the language depends on whether it is derivable from the lexicon in the CVG interface calculus.
Such a pair is indeed an (interface) proof term corresponding to the derivation. So the first step towards the
encoding of CVG into ACG is to provide an abstract language that generates the same proof terms as those
of the CVG interface. For a given CVG G, we shall call ΣI(G) the higher-order signature that will generate
the same proof terms as G. Then, any ACG whose abstract vocabulary is ΣI(G) will generate these proof
terms. And indeed we will use two ACG sharing this abstract vocabulary to map the (interface) proof terms
into syntactic terms and into semantic terms respectively. So we need two other signatures: one allowing us
to express the syntactic terms, which we call ΣSimpleSyn(G), and another allowing us to express the semantic
terms, which we call ΣLog(G).

Finally, we need to be able to recover the two components of the pair out of the proof term of the
interface calculus. This means having two ACG sharing the same abstract language (the closed terms of
Λ(ΣI(G)) of some distinguished type) and whose object vocabularies are respectively ΣSimpleSyn(G) and
ΣLog(G). Fig. 5.1 illustrates the architecture with GSyn = 〈ΣI(G),ΣSimpleSyn(G),LSyn, s〉 the first ACG that
encodes the mapping from interface proof terms to syntactic terms, and GSem = 〈ΣI(G),ΣLog(G),LLog, s〉
the second ACG that encodes the mapping from interface proof terms to semantic formulas. It should be
clear that this architecture can be extended so as to get phonological forms and conventional logical forms
(say, in TY2) using similar techniques. The latter requires non-linear λ-terms, an extension already available
to ACG de Groote and Maarek [2007] . So we focus here on the (simple) syntax-semantics interface only,
which requires only linear terms.
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Λ(ΣI(G))
LSyn

Λ(ΣSimpleSyn(G)) Λ(ΣLog(G))

LLog

GSyn G

for instance
strings or phonology

Figure 5.1: Overall architecture of the ACG encoding of a CVG
We begin by providing an example of a CVG lexicon (Table 5.1). Recall that the syntactic type t is for

overtly topicalized sentences, and( a is the flavor of implication for affixation. We recursively define the
translation · τ of CVG pairs of syntactic and semantics types to ΣI(G) as:

• α, β
τ = 〈α, β〉 if either α or β is atomic or of the form γε

δ. Note that this new type 〈a, β〉 is an atomic
type of ΣI(G);

• α( β, α′( β′ τ = α, α′ τ ( β, β′ τ 6.

When ranging over the set of types provided by the CVG lexicon7, we get all the atomic types of ΣI(G).
Then, for any w, f : α, β of the CVG lexicon of G, we add the constant w, f

c = W of type α, β
τ

to the
signature ΣI(G).

The application of · c and · τ to the lexicon of Table 5.1 yields the signature ΣI(G) of Table 5.2. Being
able to use the constants associated to the topicalization operators in building new terms requires additional
constants having e.g. 〈NP, eπ

π〉 as parameters. We delay this construct to Sect. 5.4.
Table 5.1: CVG lexicon for topicalization

Chris, Chris’ : NP, e top, top’ : NP(a NPt
S, e( eπ

π

liked, like’ : NP(c NP(s S, e( e( π topin-situ, top’ : NP(a NP, e( eπ
π

Table 5.2: ACG translation of the CVG lexicon for topicalization
CHRIS : 〈NP, e〉 TOP : 〈NP, e〉( 〈NPt

S, eπ
π〉

LIKED : 〈NP, e〉( 〈NP, e〉( 〈S, π〉 TOPIN-SITU : 〈NP, e〉( 〈NP, eπ
π〉

Constants and types in ΣSimpleSyn(G) and ΣLog(G) simply reflect that we want them to build terms in the
syntax and in the semantics respectively. First, note that a term of type αγ

β , according to the CVG rules, can
be applied to a term of type α( β to return a term of type γ. Moreover, the type αγ

β does not exist in any
of the ACG object vocabularies. Hence we recursively define the J · K function that turns CVG syntactic and
semantic types into linear types (as used in higher-order signatures) as:

• Ja K = a if a is atomic

• Jαγ
β K = (Jα K( Jβ K)( Jγ K

• Jα(x β K = Jα K( Jβ K

Then, for any CVG constant w, f : α, β we have w, f
c = W : α, β

τ
in ΣI(G):

LSyn(W) = w LLog(W) = f

LSyn(α, β
τ ) = Jα K LLog(α, β

τ ) = Jβ K
6This translation preserves the order of the types. Hence, in the ACG settings, it allows abstraction everywhere. This does

not fulfill one of the CVG requirements. However, since it is always possible from an ACG G to build a new ACG G ′ such that
O(G ′) = {t ∈ A(G )|t consists only in applications} (see the construct in Appendix A.3), we can assume without loss of generality
that we here deal only with second order terms.

7Actually, we should also consider additional types issuing from types of the form αγ
β when one of the α, β or γ is itself a type

of this form.
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So the lexicon of Table 5.1 gives8:

LSyn(CHRIS) = Chris LSyn(LIKED) = λxy.
[s

y
[
liked x c

] ]
LLog(CHRIS) = Chris’ LLog(LIKED) = λxy.like’ y x

And we get the trivial translations:

LSyn(LIKED SANDY CHRIS) =
[sChris

[
liked Sandy c

] ]
: S

LLog(LIKED SANDY CHRIS) = like’ Chris’ Sandy’ : π

On the Encoding of CVG Rules. There is a trivial one-to-one mapping between the CVG rules Lexicon,
Trace, and Subject and Complement Modus Ponens, and the standard typing rules of linear λ-calculus
of ACG: constant typing rule (non logical axiom), identity rule and application. So the ACG deriva-
tion that proves `ΣI(G)

LIKED SANDY CHRIS : 〈S, π〉 in Λ(ΣI(G)) is isomorphic to the CVG derivation
`

[sChris
[
liked Sandy c

] ]
, like’ Sandy’ Chris’ : S, π a. But the CVG G rule has no counterpart in the

ACG type system. So it needs to be introduced using constants in ΣI(G).
Let’s assume a CVG derivation using the following rule:

... π1

Γ ` a, d : AC
B, DF

E a ∆

... π2

t, x : A,D; Γ′ ` b, e : B,E a ∆′
G

Γ; Γ′ ` at b, dx e : C,F a ∆; ∆′

and that we are able to build two terms (or two ACG derivations) T1 : 〈AC
B, DF

E〉 and T2 : B,E
τ of

Λ(ΣI(G)) corresponding to the two CVG derivations π1 and π2. Then, adding a constant G〈AC
B ,DF

E〉 of type

〈AC
B, DF

E〉 ( (A,D
τ
( B,E

τ ) ( C,F
τ in ΣI(G), we can build a new term G〈AC

B ,DF
E〉 T1 (λy.T2) :

C,F
τ ∈ Λ(ΣI(G)). It is then up to the lexicons to provide the good realizations of G〈AC

B ,DF
E〉 so that if

LSyn(T1) = a, LLog(T1) = d, LSyn(T2) = b and LLog(T2) = e then LSyn(G〈AC
B ,DF

E〉 T1 (λy.T2)) =
a (λy.b) and LLog(G〈AC

B ,DF
E〉 T1 (λy.T2)) = d (λy.e). This is realized when the following equalities hold:

LSyn(G〈AC
B ,DF

E〉) = LLog(G〈AC
B ,DF

E〉) = λQ R.Q R. A CVG derivation using the (not in-situ) topicaliza-

tion lexical item and the G rule from `
[
Sandy top a

]
, top’ Sandy’ : NPt

S, eπ
π a and from t, x : NP, e `[sChris

[
liked t c

] ]
, like’ x Chris’ : S, π a would result (conclusion of a G rule) in a proof of the following

CVG sequent: `
[
Sandy top a

]
t

[sChris
[
liked t c

] ]
, (top’ Sandy’)x (like’ x Chris’) : t, π a, the latter be-

ing isomorphic to the derivation in Λ(ΣI(G)) proving:
`ΣI(G)

G
〈NPt

S,eπ
π〉

(TOP SANDY)(λx.LIKED x CHRIS) : 〈t, π〉. Let’s call this term T. Then with LSyn(TOP) =

λx.
[
top x a

]
: JNP (a NPt

S K = NP ( (NP ( S)( t, LLog(TOP) = top’ : Je( eπ
π K = e( (e(

π)( π, and LSyn(G
〈NPt

S,eπ
π〉

) = LLog(G
〈NPt

S,eπ
π〉

) = λP Q.P Q, we have the expected result:

LSyn(t) =
[
Sandy top a

]
(λx.

[sChris
[
liked x c

] ]
)

LLog(t) = (top’ Sandy’)(λx.like’ x Chris’)

8In order to help recognizing the CVG syntactic forms, we use additional operators of arity 2 in ΣSimpleSyn(G):
ˆs

s p
˜

instead
of writing (p s) when p is of type α (s β and

ˆ
p c x̃ instead of just (p c) when p is of type α (x β with x6=s. This syntactic

sugar is not sufficient to model the different flavors of the implication in CVG, the latter topic being beyond the scope of this paper.
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The C and R Rules. Section 5.2 shows how we can get rid of the C and R rules in CVG derivations. It
brings into play an additional Shift rule and an additional operator S. It should be clear from the previous
section that we could add an abstract constant corresponding to this Shift rule. The main point is that its
realization in the syntactic calculus by LSyn should be S = λe P.P e and its realization in the semantics by
LLog should be the identity.

Technically, it would amount to have a new constant S〈A,BD
C 〉 : 〈a,BD

C 〉 ( 〈AE
E , BD

C 〉 such that
LLog(S〈A,BD

C 〉) = λx.x : JBD
C K( JBD

C K (this rule does not change the semantics) and LSyn(S〈A,BD
C 〉) =

λx P.P x : JA K ( (JA K ( JE K) ( JE K (this rule shift the syntactic type). But since this Shift rule
is meant to occur together with a G rule to model C and R, the kind of term we will actually consider is:
t = G〈AE

E ,BD
C 〉(S〈A,BD

C 〉 x) Q for some x : 〈A,BD
C 〉 and Q : 〈AE

EE,BD
C 〉. And the interpretations of t in the

syntactic and in the semantic calculus are:
LLog(t) = (λP Q.P Q) LSyn(t) = (λP Q.P Q)

((λy.y)LLog(x))LLog(Q) ((λeP.P e)LSyn(x))LSyn(Q)
= LLog(x) LLog(Q) = LSyn(Q) LSyn(x)

So basically, LLog(λxQ.t) = LLog(G〈AE
EE,BD

C 〉), and this expresses that nothing new happens on the se-
mantic side, while LSyn(λx Q.t) = λx Q.Qx expresses that, somehow, the application is reversed on the
syntactic side.

Rather than adding these new constants S (for each type), we integrate their interpretation into the
associated G constant9. This amounts to compiling the composition of the two terms. So if we have a pair
of type A,BD

C occurring in a CVG G, we add to ΣI(G) a new constant GS
〈A,BD

C 〉 : 〈A,BD
C 〉( (〈A,B〉 τ

(

〈E,C〉 τ
)( 〈E,D〉 τ

(basically the above term t) whose interpretations are: LSyn(GS
〈A,BD

C 〉) = λP Q.Q P

and LSyn(GS
〈A,BD

C 〉) = λP Q.P Q.
For instance, if we now use the in-situ topicalizer of Table 5.1 (triggered by stress for instance), from

` SS
[
Sandy topin-situ

a
]
, top’ Sandy’ : NPS

S, eπ
π a and t, x : NP, e `

[sChris
[
liked t c

] ]
, like’ x Chris’ :

S, π a we can derive, using the G rule:

` (SS
[
Sandy topin-situ

a
]
)t

[sChris
[
liked t c

] ]
, (top’ Sandy’)x(like’ x Chris’) : S, π a

Note that:

(SS
[
Sandy topin-situ

a
]
)t(

[sChris
[
liked t c

] ]
) = ((λe P.P e)

[
Sandy topin-situ

a
]
)

(λt.
[sChris

[
liked t c

] ]
)

=β

[sChris
[
liked

[
Sandy topin-situ

a
]

c
] ]

In order to map this derivation to an ACG term, we use the constant TOPIN-SITU : 〈NP, e〉 ( 〈NP, eπ
π〉 and

the constant that will simulate the G rule and the Shift rule together GS

〈NP,eπ
π〉

: 〈NP, eπ
π〉 ( (〈NP, e〉 (

〈S, π〉)( 〈S, π〉 such that, according to what precedes: LSyn(GS

〈NP,eπ
π〉

) = λP Q.QP and LLog(GS

〈NP,eπ
π〉

) =

λP Q.P Q. Then the previous CVG derivation corresponds to the following term of Λ(ΣI(G)): t =
GS

〈NP,eπ
π〉

(TOPIN-SITU SANDY)(λx.LIKED x CHRIS) and its expected realizations as syntactic and semantic terms
are:

LSyn(t) = (λP Q.QP )(
[
Sandy topin-situ

a
]
) LLog(t) = (λP Q.P Q)(top’ Sandy’)

(λx.
[sChris

[
liked x c

] ]
) (λx, like’ x Chris’)

=
[sChris

[
liked

[
Sandy topin-situ

a
]

c
] ]

= (top’ Sandy’)(λx.like’ x Chris’)
9It correspond to the requirement that the Shift rule occurs just before the G rule in the modeling the interface C and R rule with

the the G rule.
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5. On the Syntax-Semantics Interface: From CVG to ACG 5.4. ACG encoding of CVG

Finally the G〈α,β〉 and GS
〈α,β〉 are the only constants of the abstract signature having higher-order types.

Hence, they are the only ones that will possibly trigger abstractions, fulfilling the CVG requirement.
When used in quantifier modeling, ambiguities are dealt with in CVG by the non determinism of the

order in which semantic operators are retrieved from the store. It corresponds to the (reverse) order in which
their ACG encoding are applied in the final term. However, by themselves, both accounts don’t provide
control on this order. Hence, when several quantifiers occur in the same sentence, all the relative orders of
the quantifiers are possible.

Conclusion

We have shown how to encode a linguistically motivated parallel formalism, CVG, into a framework, ACG,
that has mainly been used to encode syntactocentric formalisms until now. In addition to providing a logical
basis for the CVG store mechanism, this encoding also sheds light on the various components (such as
higher-order signatures) that are used in the interface calculus. It is noteworthy that the signature used to
generate the interface proof terms relate to what is usually called syntax in mainstream categorial grammar,
whereas the CVG simple syntax calculus is not expressed in such frameworks (while it can be using ACG,
see Pogodalla [2007b]).
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Appendix A

CVG Related Definitions and Properties

A.1 The CVG calculi

A.1.1 The CVG syntactic calculus

Lex` a : A
T (t fresh)

t : A ` t : A

Γ ` b : A(s B ∆ ` a : A
Ms

Γ,∆ `
[s

a b
]

: B

Γ ` b : A(c B ∆ ` a : A
Mc

Γ,∆ `
[
b a c

]
: B

Γ ` b : A(a B ∆ ` a : A
Ma

Γ,∆ `
[
b a a

]
: B

Γ ` a : AC
B t : A; Γ′ ` b : B

G
Γ; Γ′ ` at b : C

A.1.2 The CVG semantic calculus

Lex` a : A a
T (x fresh)

x : B ` x : B a

` f : A( B a ∆ ` a : A a ∆′
M

` (f a) : B a ∆; ∆′

Γ ` a : AC
B a ∆ x : A; Γ′ ` b : B a ∆′

G
Γ; Γ′ ` ax b : C a ∆; ∆′

` a : AC
B a ∆

C (x fresh)
` x : A a ax : AC

B;∆
` b : B a ax : AC

B;∆
R

Γ ` (ax b) : C a ∆
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A.2. On CVG derivations A. CVG Related Definitions and Properties

A.1.3 The CVG interface calculus
Lex` w, c : A,B a T

x, t : A,B ` x, t : A,B a

Γ ` f, v : A(s B,C ( D a ∆ Γ′ ` a, c : A,C a ∆′
Ms

Γ; Γ′ `
[s

a f
]
, (v c) : B,D a ∆; ∆′

Γ ` f, v : A(c B,C ( D a ∆ Γ′ ` a, c : A,C a ∆′
Mc

Γ; Γ′ `
[
f a c

]
, (v c) : B,C a ∆; ∆′

Γ ` f, v : A(a B,C ( D a ∆ Γ′ ` a, c : A,C a ∆′
Mc

Γ; Γ′ `
[
f a a

]
, (v c) : B,C a ∆; ∆′

Γ ` a, d : AC
B, DF

E a ∆ t, x : A,D; Γ′ ` b, e : B,E a ∆′
G

Γ; Γ′ ` at b, dx e : C,F a ∆; ∆′

Γ ` a, b : A,BD
C a ∆

C (x fresh)
Γ ` a, x : A,B a bx : BD

C ;∆
` e, c : E,C a bx : BD

C ;∆
R

Γ ` e, (bx c) : E,D a ∆

Example of a simple interface derivation:

... π
`

[
liked Sandy c

]
, like’ Sandy’ : NP(s S, e( π a

Lex
` Chris, Chris : NP, e a

Ms

`
[sChris

[
liked Sandy c

] ]
, like’ Sandy’ Chris’ : S, π a

π =
Lex

` liked, like’ : NP(c NP(s S, e( e( π a
Lex

` Sandy, Sandy’ : NP, e a
Mc

`
[
liked Sandy c

]
, like’ Sandy’ : NP(s S, e( π a

Example using the G rule
... π1

`
ˆ
Sandy top ã , top’ Sandy’ : NPt

S, eπ
π a

... π2

t, x : NP, e `
ˆsChris

ˆ
liked t c̃

˜
, like’ x Chris’ : S, π a

G
`

ˆ
Sandy top ã (λt.

ˆsChris
ˆ
liked t c̃

˜
), (top’ Sandy’)(λx.like’ x Chris’) : t, π a

with trivial derivations for π1 and π2.

A.2 On CVG derivations

Proposition A.1. Let π be a CVG semantic derivation. It can be turned into a CVG semantic derivation
where all C and R pairs of rule have been replaced by the above schema, and which derives the same term.

Proof. This is proved by induction on the derivations. If the derivation stops on a Lexicon, Trace, Modus
Ponens, G or C rule, this is trivial by application of the induction hypothesis.

If the derivation stops on a R rule, the C and R pair has the above schema. Note that nothing can be
erased from Γ in π2 because every variable in Γ occur (freely) only in a and ∆. So using a G rule (the only
one that can delete material from the left hand side of the sequent) would leave variables in the store that
could not be bound later. The same kind of argument shows that nothing can be retrieved from ∆ before ax

had been retrieved. This means that no R rule can occur in π2 whose corresponding C rule is in π1 (while
there can be a R rule with a corresponding C rule introduced in π2). Hence we can make the transform and
apply the induction hypothesis to the two premises of the new G rule.
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A. CVG Related Definitions and Properties A.3. How to build an applicative ACG

A.3 How to build an applicative ACG

Let ΣHO = 〈AHO, CHO, τHO〉. This section section shows how to build an ACG G = 〈Σ2nd,ΣHO,L, S′〉
such that O(G ) is the set of t : S ∈ ΛΣHO

such that there exists π a proof of `ΣHO
t : S and π does not use

the abstraction rule. This construction is very similar to the one given in [Hinderer, 2008, Chap. 7].

Definition A.1. Let α be a type. We inductively define the set Decompose(α) as:

• if α is atomic, Decompose(α) = {α};

• if α = α1 ( α2, Decompose(α) = {α} ∪ {α1} ∪ Decompose(α2).

Let T be a set of types. We then define:

• Base(T ) = ∪α∈T Decompose(T );

• At(T ) a set of fresh atomic types that is in a one to one correspondence with Base(T ). We note :=
one of the correspondence from At(T ) to Base(t) (we also note := its unique homomorphic extension
that is compatible with(. The later is not necessarily a bijection);

• let α ∈ Base(T ). The set AtPT (α) of its atomic profiles is inductively defined as:

– if α is atomic, AtPT (α) = {α′} such that α′ is the unique element of At(T ) and α′ := α;

– if α = α1 ( α2, AtPT (α) = {α′} ∪ {α′
1 ( α′

2 |α′
2 ∈ AtPT (α2)} where:

∗ α′ is uniquely defined in At(T ) and α′ := α;
∗ α′

1 is uniquely defined in At(T ) and α′
1 := α1. There exists such an α′

1 because α1 ∈
Decompose(α) and Decompose(α) ⊂ Base(T ) when α ∈ Base(T ).

Note that for the same reason, α′
2 is well defined.

Note that for any α ∈ Base(T ), The types in AtPT (α) are of order at most 2.

Proposition A.2. Let T be a set of types and α ∈ Base(T ) with α = α1 ( . . .( αk ( α0 such that α0

is atomic. Then |AtPT (α)| = k + 1.

Proof. By induction.

Proposition A.3. Let T be a set of types and α ∈ Base(T ). Then for all α′ ∈ AtPT (α) we have α′ := α.

Proof. By induction.

In the following, we always consider T = ∪c∈CHO
τHO(c). We then can define Σ2nd = 〈A2nd, C2nd, τ2nd〉

with:

• A2nd = At(T )

• S′ ∈ A2nd the unique term such that S′ := S

• C2nd = ∪c∈CHO
{〈c, α′〉|α′ ∈ AtPT (τHO(c))} (AtPT (τHO(c)) is well defined because τHO(c) ∈

Base(T ))

• for every c′ = 〈c, α′〉 ∈ C2nd, τ2nd(c′) = α′
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Note that according to Proposition A.2, for every constant c of CHO of arity k (i.e. τHO(c) = α1 ( . . .(
αk ( α0), there are k + 1 constants in C2nd.

Finally, in order to completely define G , we need to define L:

• for α′ ∈ A2nd, there exists a unique α ∈ Base(T ) such that α′ := α by construction of At(T ). We
set L(α′) = α.

• for c′ = 〈c, α′〉 ∈ C2nd, we set L(c′) = c

According to Proposition A.3, we have L(τ2nd(c′)) = α where α is the type of L(c′) so L is well defined.

Proposition A.4. There exists t : α ∈ ΛΣHO
build using only applications if and only if there exists t′ : α′ a

closed term of ΛΣ2nd
with α′ the unique element of At(T ) such that α′ := α and L(t′) = t.

Proof. ⇒ We prove it by induction on t. If t is a constant, we take t′ = 〈t, α′ with α′ the unique element
of At(T ) such that α′ := α. By definition, L(t′) = t.

If t = c u1 . . . uk, then c ∈ CHO is of type α1 ( . . .( αk ( α and for all i ∈ [1, k] uk is of type
αi. We know there exist c′ = 〈c, β′〉 ∈ Σ2nd such that β′ = α′

1 ( . . . α′
k ( α′ with for all i ∈ [1, k],

α′
i is the unique element of At(T ) such that α′

i := αi and α′ the unique element of At(T ) such that
α′ := α. By induction hypothesis, we also have for all i ∈ [1, k] a term u′i : α′

i with α′
i the unique

element of At(T ) such that α′
i := αi and L(u′i) = ui.

If we take t′ = 〈c, β′〉u′1 . . . u′k, we have L(t′) = L(〈c, β′〉u′1 . . . u′k) = L(〈c, β′〉) L(u′1) . . .L(u′k) =
c u1 . . . uk = t which completes the proof.

⇐ If α′ ∈ At(T ) and t′ is a closed term then because Σ2nd is of order 2, then t′ is build only using
applications. Hence its image by L is also only build using applications.
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