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Abstract. The change within the linguistic framework of transforma-
tional grammar from GB–theory to minimalism brought up a particular
type of formal grammar, as well. We show that this type of a minimalist
grammar (MG) constitutes a subclass of mildly context–sensitive gram-
mars in the sense that for each MG there is a weakly equivalent linear
context–free rewriting system (LCFRS). Moreover, an infinite hierarchy
of MGs is established in relation to a hierarchy of LCFRSs.

1 Introduction

The change within the linguistic framework of transformational grammar from
GB–theory to minimalism brought up a new formal grammar type, the type of
a minimalist grammar (MG) introduced by Stabler (see e.g. [6, 7]), which is an
attempt of a rigorous algebraic formalization of the new linguistic perspectives.
One of the questions that arise from such a definition concerns the weak gen-
erative power of the corresponding grammar class. Stabler [6] has shown that
MGs give rise to languages not derivable by any tree adjoining grammar (TAG).
But he leaves open the “. . . problem to specify how the MG–definable string sets
compare to previously studied supersets of the TAG language class.” We address
this issue here by showing that each MG as defined in [6] can be converted into
a linear context–free rewriting system (LCFRS) which derives the same (string)
language. In this sense MGs fall into the class of mildly context–sensitive gram-
mars (MCSGs) rather informally introduced in [2] and described in e.g. [3].

The paper is structured as follows. We start by briefly repeating the definition
of an LCFRS and the language it derives (Sect. 2). Turning to MGs, we then
introduce the concept of a relevant expression in order to reduce the closure of
an MG to such expressions (Sect. 3). Depending on this relevant closure, for
a given MG we construct an LCFRS in detail and prove both grammars to be
weakly equivalent (Sect. 4). Finally, an infinite hierarchy of MGs is introduced in
relation to a hierarchy of LCFRSs. The former is unboundedly increasing, which
is shown by presenting for each finite number an MG that derives a language
with counting dependencies in size of this number (Sect. 5).
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2 Linear Context–Free Rewriting Systems

In order to keep the paper self–contained, in this section we quickly go through
a number of definitions, which will be of interest in Sect. 4 again.

Definition 2.1 ([4]). A generalized context–free grammar (GCFG) is a five–
tuple G = (N, O,F, R, S) for which the conditions (G1)–(G5) hold.

(G1) N is a finite non–empty set of nonterminal symbols.

(G2) O ⊆
⋃

n∈IN(Σ∗)n+1 for some finite non–empty set Σ of terminal symbols
with Σ ∩N = ∅,1 hence O is a set of finite tuples of finite strings in Σ.

(G3) F is a finite subset of
⋃

n∈IN Fn, where Fn is the set of partial functions
from On to O, i.e. F0 is the set of constants in O.

(G4) R ⊆
⋃

n∈IN(F ∩ Fn)×Nn+1 is a finite set of (rewriting) rules.2

(G5) S ∈ N is the distinguished start symbol.

Let G = (N, O, F, R, S) be a GCFG. A rule r = (f, A0, A1, . . . , An) ∈ Fn×Nn+1

is generally written A0 → f(A1, . . . , An), and just A0 → f in case n = 0. If the
latter, i.e. if f ∈ O then r is terminating, otherwise r is nonterminating. For
A ∈ N and k ∈ IN the set Lk

G(A) ⊆ O is given recursively in the following sense:

(L1) θ ∈ L0
G(A) for each terminating rule A → θ ∈ R.

(L2) θ ∈ Lk+1
G (A), if θ ∈ Lk

G(A) or if there is A → f(A1, . . . , An) ∈ R and there
are θi ∈ Lk

G(Ai) for 1 ≤ i ≤ n such that θ = f(θ1, . . . , θn) is defined.

We say A derives θ (in G) if θ ∈ Lk
G(A) for some k ∈ IN. In this case θ is called

an A–phrase (in G). The language derivable from A (by G) is the set LG(A) of
all A–phrases (in G), i.e. LG(A) =

⋃
k∈IN Lk

G(A). The set L(G) = LG(S) is the
generalized context–free language (GCFL) (derivable by G).

Definition 2.2 ([5]). For every m ∈ IN with m 6= 0 an m–multiple context–free
grammar (m–MCFG) is a GCFG G = (N, O,F, R, S) which satisfies (M1)–(M4).

(M1) O =
⋃m

i=1(Σ
∗)i.

(M2) For f ∈ F let n(f) ∈ IN be the number of arguments of f , i.e. f ∈ Fn(f).
For each f ∈ F there are r(f) ∈ IN and di(f) ∈ IN for 1 ≤ i ≤ n(f) such
that f is a (total) function from (Σ∗)d1(f) × . . . × (Σ∗)dn(f)(f) to (Σ∗)r(f)

for which (f1) and, in addition, the anti–copying condition (f2) hold.
(f1) Let X = {xij | 1 ≤ i ≤ n(f), 1 ≤ j ≤ di(f)} be a set of pairwise distinct

variables, and let xi = (xi1, . . . , xidi(f)) for 1 ≤ i ≤ n(f). For 1 ≤ h ≤ r(f)
let fh be the h–th component of f , i.e. f(θ) = (f1(θ), . . . , fr(f)(θ)) for all
θ = (θ1, . . . , θn(f)) ∈ (Σ∗)d1(f)×. . .×(Σ∗)dn(f)(f). Then for each component
fh there is an lh(f) ∈ IN such that fh can be represented by

1 IN denotes the set of all non–negative integers. For any non–empty set M and n ∈ IN,
Mn+1 is the set of all n+ 1–tuples in M , i.e. the set of all finite strings in M with
length n+ 1. M∗ is the set of all finite strings in M including the empty string ε.

2 For any two sets M1 and M2, M1 ×M2 is the set of all pairs with 1st component in
M1 and 2nd component in M2.



(ch) fh(x1, . . . , xn(f)) = ζh0zh1ζh1 . . . zhlh(f)ζhlh(f)

with ζhl ∈ Σ∗ for 0 ≤ l ≤ lh(f) and zhl ∈ X for 1 ≤ l ≤ lh(f).

(f2) For each 1 ≤ i ≤ n(f) and 1 ≤ j ≤ di(f) there is at most one 1 ≤ h ≤ r(f)
and at most one 1 ≤ l ≤ lh(f) such that xij = zhl, i.e. zhl is the only
occurrence of xij ∈ X in all righthand sides of (c1)–(cr(f)).

(M3) There is a function d from N to IN such that, if A0 → f(A1, . . . , An(f)) ∈ R
then r(f) = d(A0) and di(f) = d(Ai) for 1 ≤ i ≤ n(f).

(M4) d(S) = 1 for the start symbol S.

The language L(G) is an m–multiple context–free language (m–MCFL).
In case that m = 1 and that each f ∈ F \ F0 is the concatenation function

from (Σ∗)n+1 to Σ∗ for some n ∈ IN, G is a context–free grammar (CFG) and
L(G) a context–free language (CFL) in the usual sense.

Definition 2.3 ([8]). For m ∈ IN with m 6= 0 an m–MCFG G = (N, O, F, R, S)
according to Definition 2.2 is an m–linear context–free linear rewriting system
(m–LCFRS) if for all f ∈ F the non–erasure condition (f3) holds in addition to
(f1) and (f2).

(f3) For each 1 ≤ i ≤ n(f) and 1 ≤ j ≤ di(f) there are 1 ≤ h ≤ r(f) and
1 ≤ l ≤ lh(f) such that xij = zhl, i.e. each xij ∈ X has to appear in one
of the righthand sides of (c1)–(cr(f)).

The language L(G) is an m–linear context–free rewriting language (m–LCFRL).

A grammar is also called an MCFG (LCFRS ) if it is an m–MCFG (m–LCFRS)
for some m ∈ IN \ {0}. A language is an MCFL (LCFRL) if it is derivable by
some MCFG (LCFRS). The class of MCFGs is essentially the same as the class of
LCFRSs. The latter was first described in [8] and has been studied in some detail
in [9]. The “non-erasing property” (f3), motivated by linguistic considerations,
is omitted in the general MCFG–definition. [5] shows that for each m ∈ IN \ {0}
the class of m–MCFLs and that of m–LCFRLs are equal. In Sect. 4 we in fact
construct an LCFRS that is weakly equivalent to a given minimalist grammar.

3 Minimalist Grammars

We first give the definition of a minimalist grammar along the lines of [6].3 Then,
we introduce a “concept of relevance” being of central importance later on.

Definition 3.1. A five–tuple τ = (Nτ , /∗τ ,≺τ , <τ , Labelτ ) fulfilling (E1)–(E3)
is called an expression (over a feature–set F ).

(E1) (Nτ ,/∗τ ,≺τ ) is a finite, binary ordered tree. Nτ denotes the non–empty set
of nodes. /∗τ and≺τ denote the usual relations of dominance and precedence
defined on a subset of Nτ ×Nτ , respectively. I.e. /∗τ is the reflexive and

3 Recall that we use ε to denote the empty string, whereas [6] uses λ.



transitive closure of /τ , the relation of immediate dominance.4

(E2) <τ⊆ Nτ ×Nτ denotes the asymmetric relation of (immediate) projection
which holds for any two siblings in (Nτ ,/∗τ ,≺τ ), i.e. each node different
from the root either (immediately) projects over its sibling or vice versa.

(E3) The function Labelτ assigns a string from F ∗ to every leaf of (Nτ ,/∗τ ,≺τ ),
i.e. a leaf–label is a finite sequence of features from F .

The set of all expressions over F is denoted by Exp(F ).

Let F be a set of features. Consider τ = (Nτ ,/∗τ ,≺τ ,<τ ,Labelτ ) ∈ Exp(F ).
A node x∈Nτ is a maximal projection, if it is the root of τ or if x’s sister

projects over x. Each x∈Nτ has a head h(x)∈Nτ , a leaf such that x /∗τ h(x),
and such that each y ∈Nτ on the path from x to h(x) with y 6= x projects over
its sister. The head of τ is the head of τ ’s root rτ .

τ has feature f ∈ F if τ ’s head–label starts with f . τ is simple (a head) if it
consists of exactly one node, otherwise τ is complex (a non–head).

Suppose υ and φ ∈ Exp(F ) to be subtrees of τ with roots rυ and rφ, respec-
tively, such that rτ /τ rυ, rφ. Then we take [<υ, φ ] ( [>φ, υ ] ) to denote τ in case
that rυ <τ rφ and rυ ≺τ rφ (rφ ≺τ rυ).

Definition 3.2 ([6]). A 4–tuple G = (V,Cat, Lex,F) that obeys (N1)–(N4) is
called a minimalist grammar (MG).

(N1) V = P ∪ I is a finite set of non–syntactic features, where P is a set of
phonetic features and I is a set of semantic features.

(N2) Cat is a finite set of syntactic features partitioned into the sets base, select,
licensees and licensors such that for each (basic) category x ∈ base the
existence of =x, =X and X= ∈ select is possible, and for each −x ∈ licensees
the existence of +x and +X ∈ licensors. Moreover, the set base contains
at least the category c.

(N3) Lex is a finite set of expressions over V ∪ Cat such that for each tree
τ = (Nτ , /∗τ ,≺τ , <τ , Labelτ ) ∈ Lex the function Labelτ assigns a string
from select∗(licensors∪{ε})select∗(base∪{ε})licensees∗P ∗I∗ to each leaf
in (Nτ , /∗τ ,≺τ ).

(N4) The set F consists of the structure building functions merge and move as
defined in (me) and (mo), respectively.

(me) The function merge is a partial mapping from Exp(V ∪Cat)×Exp(V ∪Cat)
to Exp(V ∪Cat). A pair of expressions (υ, φ) belongs to Dom(merge) if υ
has feature =x, =X or X= and φ has category x for some x ∈ base.5 Then,

(me.1) merge(υ, φ) = [<υ′, φ′ ] if υ is simple and has feature =x,

4 Up to an isomorphism Nτ is a unique prefix closed and left closed subset of IN∗, i.e.
χ ∈ Nτ if χχ′ ∈ Nτ , and χi ∈ Nτ if χj ∈ Nτ for χ, χ′ ∈ IN∗ and i, j ∈ IN with i < j,
such that for χ, ψ ∈ Nτ hold: χ/τψ iff ψ=χi for some i ∈ IN, and χ≺τψ iff χ=ωiχ′

and ψ=ωjψ′ for some ω, χ′, ψ′ ∈ IN∗ and i, j ∈ IN with i < j.
5 For each (partial) mapping f from a set M1 into a set M2 we take Dom(f) to denote

the domain of f , the subset of M1 for which f is defined.



where υ′ and φ′ are expressions resulting from υ and φ, respectively, by
deleting the feature the respective head–label starts with.

(me.2) merge(υ, φ) = [<υ′, φ′ ] if υ is simple and has feature =X,

where υ′ and φ′ are expressions resulting from υ and φ, respectively, by
deleting the feature the respective head label starts with. In addition the
phonetic features πφ of the head of φ are canceled in φ′, and the phonetic
features πυ of the head of υ are replaced by πυπφ in υ′.

(me.3) merge(υ, φ) = [<υ′, φ′ ] if υ is simple and has feature X=,

where υ′ and φ′ are expressions resulting from υ and φ, respectively, by
deleting the feature the respective head label starts with. In addition the
phonetic features πφ of the head of φ are canceled in φ′, and the phonetic
features πυ of the head of υ are replaced by πφπυ in υ′.

(me.4) merge(υ, φ) = [>φ′, υ′ ] if υ is complex and has feature =x,

where υ′ and φ′ are expressions as in case (me.1).

(mo) The function move is a partially defined mapping from Exp(V ∪ Cat) to
Exp(V ∪Cat). An expression υ belongs to Dom(move) in case that υ has
feature +x or +X ∈ licensors, and υ has exactly one subtree φ that is
rooted by a maximal projection and has feature −x ∈ licensees. Then,

(mo.1) move(υ) = [>φ′, υ′ ] if υ has feature +X

Here υ′ results from υ by deleting the feature +x from υ’s head–label, while
the subtree φ is replaced by a single node labeled ε. φ′ is the expression
resulting from φ just by deleting the licensee feature −x that φ’s head–label
starts with.

(mo.2) move(υ) = [>φ′, υ′ ] if υ has feature +x

Here υ′ results from υ by deleting the feature +x from υ’s head–label,
while within the subtree φ all non–phonetic features are deleted. φ′ is the
expression resulting from φ by deleting the licensee feature −x that φ’s
head–label starts with, and all phonetic features that appear in φ.

A feature of the form =X, X= or +X is called strong, one of the form =x or +x is
called weak. A strong selection feature =X or X= triggers (overt) head movement,
i.e. incorporation of the phonetic head–features of a possibly complex expression
into the selecting head (cf. (me.2), (me.3)). A strong licensor +X triggers overt
(phrasal) movement, also called pied–piping (cf. (mo.1)). A weak licensor +x
triggers covert (phrasal) movement (cf. (mo.2)).

Example 3.3. Assume G2 to be the MG for which I = ∅ and P = {/a1/, /a2/},
while base = {c} ∪ {b1, b2, c1, c2, d1, d2}, select = {=b1,

=b2,
=c1,

=c2,
=d1,

=d2},
licensees = {−l1,−l2} and licensors = {+L1, +L2}, and while Lex consists of



α0 = c γ1 = =b2+L1c1−l1/a2/ δ1 = =b2+L1d1 ζ0 = =d2c

β1 = b1−l1/a2/ γ′1 = =c2+L1c1−l1/a2/ δ′1 = =c2+L1d1

β2 = =b1b2−l2/a1/ γ2 = =c1+L2c2−l2/a1/ δ2 = =d1+L2d2

Then e.g. move(merge(γ2,move(merge(γ1,merge(β2, β1))))) ∈ Exp(V ∪ Cat).

Let G = (V,Cat, Lex,F) be an MG. Then CL(G) =
⋃

k∈IN CLk(G) is the closure
of Lex (under the functions in F). For k ∈ IN the sets CLk(G) ⊆ Exp(V ∪Cat)
are inductively defined by

(C1) CL0(G) = Lex

(C2) CLk+1(G) = CLk(G)

∪ {merge(υ, φ) | (υ, φ)∈Dom(merge)∩CLk(G)×CLk(G)}
∪ {move(υ) | υ ∈Dom(move)∩CLk(G)}

Each τ ∈ CL(G) is called an expression in G. Such a τ is complete (in G) if its
head–label is in {c}P ∗I∗ and each other of its leaf–labels is in P ∗I∗. Hence, a
complete expression has category c, and this instance of c is the only instance
of a syntactic feature within all leaf–labels.

The (phonetic) yield Y (τ) of an expression τ ∈ Exp(V ∪ Cat) is the string
created by concatenating τ ’s leaf–labels “from left to right” and stripping off
all non–phonetic features. L(G) = {Y (τ) | τ ∈ CL(G) with τ is complete} is the
(string) language (derivable by G) and is called a minimalist language (ML).

Example 3.4. Consider the MG G2 from Example 3.3. Let τ (1) = merge(β2, β1),
τ (2) = merge(γ1, τ

(1)) and υ(2) = merge(δ1, τ
(1)). For k ∈ IN with k 6= 0 define

τ (2k+1) = move(τ (2k)), τ (4k) = merge(γ2, τ
(4k−1)), τ (4k+2) = merge(γ′1, τ

(4k+1)),
υ(2k+1) = move(υ(2k)), υ(4k) = merge(δ2, υ

(4k−1)), υ(4k+2) = merge(δ′1, τ
(4k+1))

and φ(4k+2) = merge(ζ0, υ
(4k+1)). Then we have

CL1(G2) \ CL0(G2) = {τ (1)} and CL2(G2) \ CL1(G1) = {τ (2), υ(2)},
while for k ∈ IN \ {0} and −1 ≤ i ≤ 1 we have

CL4k+i(G2) \ CL4k+i−1(G2) = {τ (4k+i), υ(4k+i)} and

CL4k+2(G2) \ CL4k+1(G2) = {τ (4k+2), υ(4k+2), φ(4k+2)}.
The set of complete expressions in G2 is {α0} ∪ {φ(4k+2) | k ∈ IN, k 6= 0}, and
the language derivable by G2 is {/a1/

n/a2/
n | n ∈ IN}.

Definition 3.5. For each MG G = (V,Cat, Lex,F), an expression τ ∈ CL(G)
is called relevant (in G) if it has property (R).

(R) For any −x ∈ licensees there is at most one proper subtree τ−x of τ that
is rooted by a maximal projection and has feature −x.6

We take Rel(G) to denote the set of all relevant expressions τ ∈ CL(G).
6 In fact, this kind of structure is characteristic of each τ ∈ CL(G) involved in creating

a complete expression in G as will become clear immediately.



Let G = (V,Cat, Lex,F) be an MG and consider RCL(G) =
⋃

k∈IN RCLk(G),
a particularly restricted closure of G, the relevant closure (of G). For k ∈ IN the
sets RCLk(G) are inductively defined w.r.t. Rel(G) by

(R1) RCL0(G) = {τ ∈Rel(G) | τ ∈Lex}
(R2) RCLk+1(G)

= RCLk(G)

∪{merge(υ, φ)∈Rel(G) | (υ, φ)∈Dom(merge)∩RCLk(G)×RCLk(G)}
∪ {move(υ)∈Rel(G) | υ ∈Dom(move)∩RCLk(G)}

Lemma 3.6. If τ ∈ CLk(G) ∩Rel(G) for some k ∈ IN, then τ ∈ RCLk(G).

A proof of Lemma 3.6 can straightforwardly be obtained by an induction on
k ∈ IN.7 On the other hand, it is an immediate consequence of the respective
definitions that RCLk(G) ⊆ CLk(G) ∩Rel(G) for each k ∈ IN. Thus,

Proposition 3.7. Rel(G) = RCL(G).

Consequently, since each complete τ ∈ CL(G) has property (R), we can fix

Corollary 3.8. L(G) = {Y (τ)|τ ∈ RCL(G) with τ is complete}.

This points out, why it is reasonable to call RCL(G) the relevant closure (of G).

Remark 3.9. For G2 as in Example 3.4, RCLk(G2) = CLk(G2) for each k ∈ IN.

4 Weak Generative Power

Let GMG = (V,Cat, Lex,F) be an MG with {−li | 1 ≤ i ≤ m} an enu-
meration of licensees for some m ∈ IN. We will construct an m+2–MCFG
G = (N, O, F, R, S) that derives the same language as GMG (Corollary 4.5).

Thus, in G the start symbol S will derive exactly those strings of phonetic
features that are the yield of some complete τ ∈ CL(GMG). In order to achieve
this, G will operate w.r.t. equivalence classes of a finite partition of RCL(GMG)
rather than on single expressions. For each τ ∈ RCL(GMG) there will be some
nonterminal T ∈ N coding τ ’s structure as it matters to merge and move, but
ignoring non-syntactic features (cf. (D1),(D2)). τ ’s phonetic yield will be sepa-
rately coded by some pT ∈ O, a finite tuple of strings of phonetic features, that
takes into account the structural information stored in T (cf. (D3),(D4)). pT will
be derivable from T in G as a finite recursion on functions in F , since for each
particular application of merge or move in GMG there will be some nontermi-
nating rule in R simulating the corresponding structure building step in GMG

(Proposition 4.3).8 Vice versa, whenever some pT ∈ O will be derivable in G

7 Recall that move(τ) is defined for τ ∈ CL(G) only in case that there is exactly one
subtree of τ that is rooted by a maximal projection and has a particular licensee
feature allowing the subtree’s “movement into specifier position.”

8 Note that for each relevant τ ∈ Lex there will be two terminating rules T → pT ∈ R
with T ∈ N and pT ∈ O coding τ as just mentioned (cf. (r5)).



from some T ∈ N that is different from S, there will be some τ ∈ RCL(GMG)
to which T and pT correspond as outlined above (Proposition 4.4).

W.l.o.g. we may assume the head–label of each τ ∈ Lex to contain at least some
category feature x ∈ base.9 Moreover, w.l.o.g. we may assume each τ ∈ Lex to
be simple (a head). Thus, we can identify τ with its head–label. Doing so, for
technical reasons we define sets suf(Cat) and suf(−li) for 1 ≤ i ≤ m by

suf(Cat) := {κ ∈ Cat∗ | ex. κ′ ∈ Cat∗ and πι ∈ P ∗I∗ with κ′κπι ∈ Lex}
suf(−li) := {κ ∈ suf(Cat) | κ = ε or κ = −liλ for some λ ∈ Cat∗}

By (N3) each suf(−li) as well as suf(Cat) is finite, and suf(−li) ⊆ licensees∗.
Furthermore, we define

Rm := {i1. . . in |n ∈ IN, i1, . . . , in ∈ {1, . . . ,m} with ij 6= ik if j 6= k}

Note that Rm is finite, because in particular |α| ≤ m for each α ∈ Rm. Finally,
we take strong, weak, overt, covert, true, false, sim and com to be pairwise
distinct new symbols and now give the formal definitions of N and O, the set
of nonterminals and the set of tuples of terminal strings, respectively, while we
motivate these definitions in more detail, afterwards (cf. Definition 4.1).

• Each nonterminal T ∈ N is either the start symbol S or an m+2–tuple of the
form (µ̂0, µ̂1, . . . , µ̂m, t) with t ∈ {sim, com} and µ̂i a triple (µi, ai, αi), where

(n1) µ0 ∈ suf(Cat) with µ0 6= ε and a0 ∈ {strong, weak},
(n2) µi ∈ suf(−li) and ai ∈ {overt, covert, true, false} for 1 ≤ i ≤ m,

(n3) αi ∈ {1, . . . ,m}∗ for 0 ≤ i ≤ m with α0α1 . . . αm ∈ Rm

such that for 1 ≤ j ≤ m, in addition, (n4) and (n5) hold.

(n4) If αj 6= ε then αi = βjγ for some 0 ≤ i ≤ m, i 6= j, and β, γ ∈ {1, . . . ,m}∗.
(n5) µj 6= ε iff aj 6= false iff αi = βjγ for some 0 ≤ i ≤ m, β, γ ∈ {1, . . . ,m}∗.

Take /T to be the following binary relation on {0, 1, . . . ,m} induced by the αi’s:

(/T ) i /T j iff αi = βjγ for some β, γ ∈ {1, . . . ,m}∗.

Hence, if i/T j then i 6= j, µi 6= ε and ai 6= false by (n1), (n3)–(n5). Let /+
T and

/∗T denote the transitive and the reflexive, transitive closure of /T , respectively.
Then take ≺T to be the following binary relation on {0, 1, . . . ,m}:

(≺T ) j ≺T k iff αi = βj′γk′δ

for some 0 ≤ i, j′, k′ ≤ m and β, γ, δ ∈ {1, . . . ,m}∗ such that j′/∗T j, k′/∗T k.

It is easy to verify that the set N is in fact finite. Disregarding non–syntactic
features, we can use N to characterize the relevant expressions in GMG, which
9 Recall that we are actually interested in complete expressions in CL(GMG), created

from expressions in Lex by a finite number of applications of merge and move.



constitute the set RCL(GMG) by Proposition 3.7. This set is generally not finite,
itself. The phonetic yield of an expression from RCL(GMG) can be character-
ized then as a particular tuple from (P ∗)m+2 depending on a corresponding
nonterminal from N .

• We let O =
⋃m

i=0(P
∗)i+2, P the set of phonetic features in GMG.

Consider τ ∈ RCL(GMG). For 1 ≤ i ≤ m take, if existing, τi to be the unique
proper subtree of τ rooted by a maximal projection and having licensee −li.10

Otherwise, take τi to be a single node labeled ε. Set τ0 = τ and for 0 ≤ i ≤ m
let ri denote the root of τi.

Now, let T = (µ̂0, µ̂1, . . . , µ̂m, t) ∈ N with t ∈ {sim, com} and µ̂i = (µi, ai, αi)
for 0 ≤ i ≤ m according to (n1)–(n5), let pT = (πH , π0, π1, . . . , πm) ∈ (P ∗)m+2.

Definition 4.1. The pair (T, pT ) corresponds to τ if (D1)–(D4) are true.

(D1) For 0 ≤ i ≤ m, µi is the prefix of τi’s head-label consisting of just the
syntactic features, and t = sim iff τ is simple.

(D2) For 0 ≤ i, j ≤ m with µi, µj 6= ε, i /+
T j iff ri /+

τ rj , and i ≺T j iff ri ≺τ rj .

(D3) If a0 = weak then πH = ε and π0 is the phonetic yield of τ0 = τ except for
each substring that is the phonetic yield of some τi with 1 ≤ i ≤ m and
0 /+

T i such that there is 1 ≤ j ≤ m with 0 /+
T j /∗T i and aj = overt.

If a0 = strong then πH consists of the (ordered) phonetic features π
of the head–label of τ0 = τ , while π0 is as in case a0 = weak but lacking
the substring π.

(D4) For 1 ≤ i ≤ m, if ai ∈ {covert, true, false} then πi = ε. If ai = overt
then πi is the phonetic yield of τi except for each substring that is the
phonetic yield of some τj with 1 ≤ j ≤ m and i /+

T j such that there is
1 ≤ k ≤ m with i /+

T k /∗T j and ak = overt.

Note that (D1) provides a method to install a finite partition P on RCL(GMG):
In the given manner, to each τ ∈ RCL(GMG) exactly one element belonging to
the product suf(Cat)×suf(−l1)×. . .×suf(−lm)×{sim, com} can be assigned.11

(D2) can be seen then as introducing a refinement Pref of P: Expressions τ
from one equivalence class are distinguished w.r.t. proper dominance, /+

τ , and
precedence, ≺τ , as it holds between each two distinct maximal projections ri and
rj whose head–labels start with some licensee −li and −lj , respectively. This
can be achieved by assigning to each τ ∈ RCL(GMG) a particular m + 1–tuple
(α0, α1, . . . , αm) with αi ∈ {1, . . . ,m}∗ for 0 ≤ i ≤ m according to (n3)–(n5).

Again let T = (µ̂0, . . . , µ̂m, t) ∈ N with t ∈ {sim, com} and µ̂i = (µi, ai, αi)
for 0 ≤ i ≤ m as in (n1)–(n5), let pT = (πH , π0, . . . , πm) ∈ (P ∗)m+2 such
that (T, pT ) corresponds to τ ∈ RCL(GMG) according to Definition 4.1. For
0 ≤ i ≤ m each µi and αi as well as t is unique, because (D1) and (D2) hold.

10 Recall fn. 6.
11 As a finite product of finite sets this product is also a finite set.



For each possible combination of ai’s, 0 ≤ i ≤ m, there is exactly one pT that
satisfies the requirements of (D3) and (D4).

The µi’s, the αi’s and t determine the equivalence class of τ w.r.t. the refined
partition Pref on RCL(GMG). Since either a0 = strong or a0 = weak, we have
added the possibility to respectively code whether the category x (of the head–
label) of τ has to be selected by strong =X or X= or by weak =x. For 1 ≤ i ≤ m we
have ai = false iff there is no subtree τi that has licensee −li. By ai = overt,
ai = covert or ai = true we are able to respectively code, whether we expect the
maximal subtree τi with licensee −li to move overtly, covertly or just to move in
a later derivation step. In this sense, according to (D3) and (D4), for 0 ≤ i ≤ m
the component πi of pT specifies the “non-extractable” part of the phonetic yield
of τi, i.e. no overt movement can apply such that a proper subconstituent of τi

is extracted pied piping some (proper) subpart of πi. Recall that τ0 = τ , here.

Example 4.2. Let the MG G2 be as in Example 3.4. Consider the partition P on
RCL(G2) induced by suf(Cat)×suf(−l1)×suf(−l2)×{sim, com}. In case of G2

the corresponding refinement Pref is identical with P. RCL(G2)\RCL0(G2), the
set of complex expressions belonging to RCL(G2), divides into ten equivalence
classes. One of which is finite, namely {τ (1)}, represented by (b2−l2,−l1, ε, com).
The other classes and their respective representatives are

{τ (4k+2) | k ∈ IN} and (+L1c1−l1 ,−l1 ,−l2 , com),
{υ(4k+2) | k ∈ IN} and ( +L1d1 ,−l1 ,−l2 , com),

{τ (4k−1) | k ∈ IN, k 6= 0} and (c1−l1 , ε ,−l2 , com),
{υ(4k−1) | k ∈ IN, k 6= 0} and ( d1 , ε ,−l2 , com),

{τ (4k) | k ∈ IN, k 6= 0} and (+L2c2−l2 ,−l1 ,−l2 , com),
{υ(4k) | k ∈ IN, k 6= 0} and ( +L2d2 , ε ,−l2 , com),

{τ (4k+1) | k ∈ IN, k 6= 0} and (c2−l2 ,−l1 , ε , com),
{υ(4k+1) | k ∈ IN, k 6= 0} and ( d2 , ε , ε , com),

and finally {φ(4k+2) | k ∈ IN, k 6= 0} and (c, ε, ε, com). Now, let N2 be the
nonterminal set according to (n1)–(n5) for G2 and consider e.g.

T = ((+L1c1−l1, weak, 2), (−l1, overt, ε), (−l2, overt, 1), com) ∈ N2,

U = ((+L1d1, weak, 2), (−l1, overt, ε), (−l2, overt, 1), com) ∈ N2

and pT = (ε, /a2/, /a2/
k+1, /a1/

k+1), pU = (ε, ε, /a2/
k+1, /a1/

k+1) with k ∈ IN.
Then (T, pT ) and (U, pU ) correspond to τ (4k+2) and υ(4k+2), respectively.

Turning back to the general case of the MG GMG, for the corresponding LCFRS
G we will now define the set F of functions, manipulating tuples of tuples of
terminal strings, and the set R of rewriting rules. In particular for all τ , υ and
φ ∈ RCL(GMG), if τ = merge(υ, φ) then rules of the form T → mergeU,V (U, V )
and sometimes T → MergeU,V (U, V ) will belong to R (cf. (r1),(r2)), where
mergeU,V and MergeU,V ∈ F will be applicable to the pair (pU , pV ) resulting
in pT . Similarly, if τ = move(υ) there will be rules T → moveU (U) and some-
times T → MoveU (U) ∈ R (cf. (r3),(r4)), where moveU and MoveU ∈ F will



be applicable to pU calculating pT as value. Here we have T , U and V ∈ N ,
while pT , pU and pV ∈ O such that (T, pT ), (U, pU ) and (V, pV ) respectively
correspond to τ , υ and φ in the way given with Definition 4.1.

• The set F of functions and the set R of rewriting rules are simultaneously
defined w.r.t. the occurrence of an f ∈ F within an r ∈ R.

Nonterminating rules: First of all we define two initial rules by

(r0) S → con(T ) ∈ R for T = (µ̂0, µ̂1, . . . , µ̂m, t) ∈ N

with µ̂0 = (c, weak, ε), µ̂i = (ε, false, ε) for 1 ≤ i ≤ m and t ∈ {sim, com}. The
concatenation function con : (P ∗)m+2 → P ∗ is given by x 7→ xHx0x1 . . . xm,
where x denotes the m+2–tuple (xH , x0, x1, . . . , xm) consisting of the variables
xH , x0, x1, . . . , xm.

For x ∈ base suppose that

xλ ∈ suf(Cat) with λ ∈ Cat∗, i.e. λ ∈ licensees∗,

sκ ∈ suf(Cat) with s ∈ {=x, =X, X=} and κ ∈ Cat∗,

νi, ξi ∈ suf(−li) for 1 ≤ i ≤ m with νi = ε or ξi = ε

such that for 1 ≤ j ≤ m,

νj = ξj = ε if λ = −ljλ
′ with λ′ ∈ Cat∗.

We choose b0, c0 ∈ {strong, weak}, bi, ci ∈ {overt, covert, true, false} for
1 ≤ i ≤ m, βi, γi ∈ {1, . . . ,m}∗ for 0 ≤ i ≤ m, and u, v ∈ {sim, com} such that

U = ((sκ, b0, β0), (ν1, b1, β1), . . . , (νm, bm, βm), u) ∈ N ,

V = ((xλ, c0, γ0), (ξ1, c1, γ1), . . . , (ξm, cm, γm), v) ∈ N ,

and such that, additionally,

if s ∈ {=x} then c0 = weak,

if s ∈ {=X, X=} then c0 = strong and u = sim.

Proceeding, if λ = ε we set j = 0 and take

T ′ = ((κ, b0, γ0β0), µ̂′1, . . . , µ̂
′
m, com) ∈ N ,

whereas, if λ = −ljλ
′ for some 1 ≤ j ≤ m and λ′ ∈ Cat∗ we take

T ′ = ((κ, b0, jβ0), µ̂′1, . . . , µ̂
′
m, com) ∈ N ,

T ′′ = ((κ, b0, jβ0), µ̂′′1 , . . . , µ̂′′m, com) ∈ N ,

where for 1 ≤ i ≤ m we have

µ̂′i = µ̂′′i =

{
(νi, bi, βi) if i 6= j and ξi = ε

(ξi, ci, γi) if i 6= j and ξi 6= ε



µ̂′i = (λ, covert, γ0)

µ̂′′i = (λ, overt, γ0)

}
if i = j for j 6= 0

Then, for mergeU,V and MergeU,V ∈ F as defined below, we finally let

(r1)

(r2)

T ′ → mergeU,V

(
U, V

)
∈ R , and

T ′′ → MergeU,V

(
U, V

)
∈ R if λ = −ljλ

′ for 1 ≤ j ≤ m and λ′ ∈ Cat∗.

Take x and y to be the m+2–tuples (xH , x0, x1, . . . , xm) and (yH , y0, y1, . . . , ym)
consisting of the variables xH , x0, x1, . . . , xm and yH , y0, y1, . . . , ym, respectively.

The function mergeU,V : (P ∗)m+2 × (P ∗)m+2 → (P ∗)m+2 is defined by

(x, y) 7→ (x̃H , x̃0, x1y1, . . . , xmym)

with



x̃H = xHyH , x̃0 = x0y0 in case s = =x , u = sim

x̃H = xHyH , x̃0 = y0x0 in case s = =x , u = com

x̃H = xHyH , x̃0 = x0y0 in case s = =X , b0 = strong

x̃H = xH , x̃0 = x0yHy0 in case s = =X , b0 = weak

x̃H = yHxH , x̃0 = x0y0 in case s = X= , b0 = strong

x̃H = xH , x̃0 = yHx0y0 in case s = X= , b0 = weak

The function MergeU,V : (P ∗)m+2 × (P ∗)m+2 → (P ∗)m+2 is defined by

(x, y) 7→ (x̃H , x̃0, x1y1, . . . , xj−1yj−1, xjyjy0, xj+1yj+1, . . . , xmym)

with



x̃H = xHyH , x̃0 = x0 in case s = =x

x̃H = xHyH , x̃0 = x0 in case s = =X , b0 = strong

x̃H = xH , x̃0 = x0yH in case s = =X , b0 = weak

x̃H = yHxH , x̃0 = x0 in case s = X= , b0 = strong

x̃H = xH , x̃0 = yHx0 in case s = X= , b0 = weak

In order to illustrate the way in which G “does its job” concerning the operation
merge, consider υ and φ ∈ RCL(GMG) with respective head–labels sκζ and xλη
for some x ∈ base, s ∈ {=x, =X, X=}, κ, λ ∈ Cat∗ and some ζ, η ∈ P ∗I∗ such that
τ = merge(υ, φ) ∈ RCL(GMG). Assume U , V ∈ N and pU = (ρH , ρ0, . . . , ρm),
pV = (σH , σ0, . . . , σm) ∈ (P ∗)m+2 to be such that (U, pU ) and (V, pV ) respec-
tively correspond to υ and φ in the sense of Definition 4.1. Then U and V are
as in (r1), and also as in (r2) in case λ 6= ε.12

For T ′ as in (r1) and pT ′ = mergeU,V (pU , pV ), (T ′, pT ′) corresponds to τ
in any case. For T ′′ as in (r2) and pT ′′ = MergeU,V (pU , pV ), also (T ′′, pT ′′)
corresponds to τ in case that λ = −ljλ

′ for some 1 ≤ j ≤ m and λ′ ∈ Cat∗.
In the latter case, in terms of the MG GMG, by canceling the category feature
x from φ’s head–label while merging υ and φ an expression τj that has licensee

12 In particular, ρjσj = ε in case that λ = −ljλ
′ for some 1 ≤ j ≤ m and λ′ ∈ Cat∗.



−lj becomes a proper subtree of τ . Up to the deletion of the instance of x, τj

is identical with φ. I.e. in particular the phonetic yield of both is identical. In
a derivation creating a complete expression, τj must move to check its licensee
at some later derivation step. In (r1) this later application of move is expected
to be covert, coded in T ′ by µ̂′j stating that the j + 2–th component of pT ′ is
empty. This chimes in with the definition of mergeU,V according to which σ0, the
“non-extractable” part of the yield of φ (i.e. of τj) specified by V , is “frozen”
within the 2nd component of pT ′ , the “non-extractable” part of the yield of τ
specified by T ′. In (r2) the later application of move is expected to be overt,
coded in T ′′ by µ̂′′j . Here, applying MergeU,V to (pU , pV ), σ0 remains a part on
its own as j + 2–th component of pT ′′ , since ρjσj = ε.

If s ∈ {=X, X=} then φ is selected strongly and υ is simple. In this case
c0 = strong, and therefore the (ordered) phonetic features σ of φ’s head coincide
with σH , the 1st component of pV . Applying MergeU,V or mergeU,V to the pair
(pU , pV ), σH will be incorporated into the selecting head υ, i.e. concatenated
with the phonetic features ρ of υ “in the right manner.” Note that in terms
of the LCFRS G depending on whether the category feature of υ is expected
to be selected strong or weak, i.e. whether b0 = strong or b0 = weak, ρ is
either ρH or ρ0 according to (D3).13 If s = =x then φ is selected weakly. Thus,
c0 = weak. Therefore, the phonetic features σ of φ’s head are a substring of σ0,
the “non–extractable” part of the yield of φ, and σH = ε.

Now, for some 1 ≤ j ≤ m, suppose that

νj ∈ suf(−lj) with νj = −ljλ for some λ ∈ licensees∗,

lκ ∈ suf(Cat) with l ∈ {+lj , +Lj} and κ ∈ Cat∗,

νi ∈ suf(−li) for 1 ≤ i ≤ m with i 6= j

such that for 1 ≤ k ≤ m with k 6= j,

νk = ε if λ = −lkλ′ with λ′ ∈ Cat∗.

Choose b0 ∈ {strong, weak}, bi ∈ {overt, covert, true, false} for 1 ≤ i ≤ m,
and βi ∈ {1, . . . ,m}∗ for 0 ≤ i ≤ m such that

U = ((lκ, b0, β0), (ν1, b1, β1) . . . , (νm, bm, βm), com) ∈ N ,

and such that, additionally,

if l = +Lj then bj ∈ {overt, true},
if l = +lj then bi ∈ {covert, true} for 1 ≤ i ≤ m with j /∗U i.

If λ = ε we set k = 0 and take

T ′ = ((κ, b0, βjβ), µ̂′1, . . . , . . . , µ̂
′
m, com) ∈ N ,

if λ = −lkλ′ for some 1 ≤ k ≤ m and λ′ ∈ Cat∗ we take
13 The existence of both possibilities is granted by the nonterminating rules (cf. (r5)).



T ′ = ((κ, b0, kβ), µ̂′1, . . . , µ̂
′
m, com) ∈ N in general, and

T ′′ = ((κ, b0, kβ), µ̂′′1 , . . . , µ̂′′m, com) ∈ N in case that bj = overt.

Here, β = ζ0η0 if 0 /U j, where ζ0, η0 ∈ {1, . . . ,m}∗ with β0 = ζ0jη0, and β = β0

otherwise. Further, if bj = overt then for 1 ≤ i ≤ m we have

µ̂′i = (λ, covert, βj)

µ̂′′i = (λ, overt, βj)

}
if i = k

µ̂′i = µ̂′′i =


(ε, false, ε) if i = j and j 6= k

(νi, bi, ζiηi) if i /U j, where ζi, ηi ∈ {1, . . . ,m}∗ with βi = ζijηi

(νi, bi, βi) otherwise

and, if bj ∈ {covert, true} then for 1 ≤ i ≤ m we have

µ̂′i =



(λ, true, βj) if i = k

(ε, false, ε) if i = j and j 6= k

(νi, true, βi) if j /+
U i

(νi, bi, ζiηi) if i /U j, where ζi, ηi ∈ {1, . . . ,m}∗ with βi = ζijηi

(νi, bi, βi) otherwise

Now, for the functions moveU , MoveU ∈ F as defined below we let

(r3)

(r4)

T ′ → moveU

(
U

)
∈ R in any case, and

T ′′ → MoveU

(
U

)
∈ R if bj = overt, λ = −lkλ′ for 1 ≤ k ≤ m, λ′ ∈ Cat∗.

Again let x denote the m+2–tuple (xH , x0, x1, . . . , xm) consisting of the variables
xH , x0, x1, . . . , xm.

The function moveU : (P ∗)m+2 → (P ∗)m+2 is defined by

x 7→ (xH , xjx0, x1, . . . , xj−1, ε , xj+1, . . . , xm)

The function MoveU : (P ∗)m+2 → (P ∗)m+2 is defined by

x 7→


(xH , x0, . . . , xj−1, xj , xj+1, . . . , xm) for k = j

(xH , x0, . . . , xk−1, xjxk, xk+1, . . . , xj−1, ε , xj+1, . . . , xm) for k < j

(xH , x0, . . . , xj−1, ε , xj+1, . . . , xk−1, xjxk, xk+1, . . . , xm) for k > j

Let us briefly discuss how the operation move is mimicked by G. Consider τ
and υ ∈ RCL(GMG) for which τ = move(υ). Hence υ has head–label lκζ and a
maximal subtree φ with head–label −ljλη for some 1 ≤ j ≤ m, l ∈ {+Lj , +lj},
κ, λ ∈ Cat∗ and ζ, η ∈ P ∗I∗. For 1 ≤ i ≤ m let, if existing, υi be the maximal
subtree of υ that has licensee −li, otherwise let υi be the simple expression
labeled ε. Thus, φ = υj . Take U ∈ N and pU = (ρH , ρ0, . . . , ρm) ∈ (P ∗)m+2 to
be such that (U, pU ) corresponds to υ according to Definition 4.1. Then U is as
in (r3), and also as in (r4) in case λ 6= ε and bj = overt.



In case that l = +lj covert movement applies in terms of the MG GMG.
Looking at (D4) we see that in terms of the LCFRS G, by the respective U ∈ N
we ensure that ρj = ε, but also that ρi = ε for each 1 ≤ i ≤ m with j /+

T i. I.e. for
each υi that is a subtree of υj we demand that ρi, the “non–extractable” part
of the yield of υi, is empty. As for the general MG–definition we must be aware
of the linguistically rather pathological case that υj in fact “hosts” some proper
subtree υi and at some later derivation step overt movement will apply to υi

but with empty phonetic yield. This becomes possible since υj is moved covertly
before υi has been extracted such that υi’s yield gets “frozen” within υj ’s yield
which is “left behind.”14 After having lost the phonetic features this way, in
terms of the LCFRS G the component bi gets the value true, which triggers
equal behavior w.r.t. a strong licensor and its weak counterpart. This reflects
the fact that in terms of the MG GMG overt movement of a constituent with
empty phonetic yield has the same effect as moving this constituent covertly (up
to leaving behind a “totally empty” structure in the latter case).

For T ′ as in (r3) and pT ′ = moveU (pU ), (T ′, pT ′) corresponds to τ in any case.
For T ′′ as in (r4) and pT ′′ = MoveU (pU ), also (T ′′, pT ′′) corresponds to τ in case
that bj = overt and λ = −lkλ′ for some 1 ≤ k ≤ m and λ′ ∈ Cat∗. Whenever
λ = −lkλ′ for some 1 ≤ k ≤ m and λ′ ∈ Cat∗, in terms of the MG GMG an
expression τk that has licensee −lk becomes a proper subtree of τ by canceling
the licensee −lj from φ’s head–label while moving φ to specifier position of υ.
In order to derive a complete expression, the licensee of τk has to be canceled
by moving τk at some later derivation step. Thus, we again can distinguish
two general possibilities:15 Of course, the corresponding instance of −lk can be
checked overtly or covertly. But, here we pay somewhat more attention than
in the analogous “merge–case,” since it might be that υk has already “lost” its
phonetic yield by a particular application of covert movement at some earlier
derivation step (see above). According to (D4), only in case that bj = overt
the corresponding component ρj of pU may include some non-empty phonetic
material, and only in this case we have to state explicitly two cases (r3) and (r4),
analogous to (r1) and (r2) in the “merge–case.” The later application of move
is “anticipated” as being covert in (r3), and as being overt in (r4).

Terminating rules: Let κπι ∈ Lex for some κ ∈ Cat∗, π ∈ P ∗ and ι ∈ I∗.
Then, consider a0 ∈ {strong, weak} and πH , π0 ∈ {π, ε} with πH 6= π0 such that
π0 = π iff a0 = weak. We define two terminating rules by

(r5) T → pT ∈ R

with T = ((κ, a0, ε), ν̂1, . . . , ν̂m, sim) ∈ N and pT = (πH , π0, ε, . . . , ε) ∈ (P ∗)m+2,
where ν̂i = (ε, false, ε) for 1 ≤ i ≤ m.

14 This case is exemplified by the MG Gcon, where P is {/e1/, /e2/, /e3/}, I is ∅,
base is {c, a1, a2, a3}, select is {=a1,

=a2,
=a3}, licensor is {+B1,+b2}, licensees is

{−b1,−b2}, Lex consists of a1−b1/e1/,
=a1a2−b2/e2/,

=a2+b2a3/e3/ and =a3+B1c.
The language L(Gcon) derivable by Gcon consists of the single string /e3//e2//e1/.

15 Like in the case when a subtree with licensee −lj is introduced applying merge.



We will continue by proving the weak equivalence of G and GMG. In order to
finally do so, we show two propositions in advance.

Proposition 4.3. Consider τ ∈ RCL(GMG). Let q0 ∈ {strong, weak}, and let
qi ∈ {overt, covert} for 1 ≤ i ≤ m. Then there is some T = (µ̂0, . . . , µ̂m, t) ∈ N
with t ∈ {sim, com} and µ̂i = (µi, ai, αi) for 0 ≤ i ≤ m as in (n1)–(n5), and
there is some pT ∈ (P ∗)m+2 with pT ∈ LG(T ) such that (a) and (b) hold.

(a) (T, pT ) corresponds to τ according to Definition 4.1.

(b) a0 = q0 and ai ∈ {qi, true} for 1 ≤ i ≤ m in case µi 6= ε.

Proof. We have RCL(GMG) =
⋃

k∈IN RCLk(GMG) and LG(T ) =
⋃

k∈IN Lk
G(T )

for T ∈ N . Showing (4.3k) by induction on k ∈ IN we will prove the proposition.

(4.3k) If q0 ∈ {strong, weak} and qi ∈ {overt, covert} for 1 ≤ i ≤ m then
τ ∈ RCLk(GMG) implies that there are T = (µ̂0, . . . , µ̂m, t) ∈ N and
pT ∈ (P ∗)m+2 with pT ∈ Lk

G(T ) fulfilling (a) and (b).

Since RCL0(GMG) = Lex, (4.30) holds according to (r5). Considering the induc-
tion step, let τ ∈ RCLk+1(GMG). There is nothing to show if τ ∈ RCLk(GMG).
Otherwise, one of two general cases arises.

Either, there are υ and φ ∈ RCLk(GMG) with respective head–labels sκζ and
xλη for some x ∈ base, s ∈ {=x, =X, X=}, κ, λ ∈ Cat∗ and ζ, η ∈ P ∗I∗ such that
τ = merge(υ, φ) holds. Let b0 = q0, let c0 = strong iff s ∈ {=X, X=}. Now choose

U = ((sκ, b0, β0), (ν1, b1, β1), . . . , (νm, bm, βm), u) ∈ N ,

V = ((xλ, c0, γ0), (ξ1, c1, γ1), . . . , (ξm, cm, γm), v) ∈ N

and pU , pV ∈ (P ∗)m+2 such that pU ∈ Lk
G(U), pV ∈ Lk

G(V ), and such that
(U, pU ) and (V, pV ) correspond to υ and φ, respectively. Here u, v ∈ {sim, com},
νi, ξi ∈ suf(−li), bi, ci ∈ {overt, covert, true, false} for 1 ≤ i ≤ m, and
βi, γi ∈ {1, . . . ,m} for 0 ≤ i ≤ m. In particular, each νi and ξi for 1 ≤ i ≤ m
is unique. By induction hypothesis U , V and pU , pV not only exist, but for
1 ≤ i ≤ m they can also be chosen such that bi ∈ {qi, true} for νi 6= ε, and
ci ∈ {qi, true} for ξi 6= ε.

Recalling that merge is defined for the pair (υ, φ), we conclude that u = sim if
s ∈ {=X, X=}. Because, merge(υ, φ) ∈ RCL(GMG) we also have νi, ξi ∈ suf(−li)
for 1 ≤ i ≤ m with νi = ε or ξi = ε such that νi = ξi = ε if λ = −liλ

′ with
λ′ ∈ Cat∗. Therefore, U and V are as in (r1) in any case, and also as in (r2) in
case that λ 6= ε. Hence (r1’) is true in any case, and (r2’) in case λ 6= ε.

(r1’)

(r2’)

T ′ → mergeU,V (U, V ) ∈ R and pT ′ = mergeU,V (pU , pV ) ∈ Lk+1
G (T ′),

T ′′→MergeU,V (U, V ) ∈ R and pT ′′ =MergeU,V (pU , pV ) ∈ Lk+1
G (T ′′)

with T ′ ∈ N and mergeU,V ∈ F as in (r1), T ′′ ∈ N and MergeU,V ∈ F as in (r2).
Let T = T ′′ and pT = pT ′′ in case that qj = overt and λ = −ljλ

′ for some
1 ≤ j ≤ m and λ′ ∈ Cat∗. Otherwise let T = T ′ and pT = pT ′′ . Comparing
the definition of merge ∈ F to the definitions of T and mergeU,V or MergeU,V ,



respectively, we see that (T, pT ) corresponds to τ = merge(υ, φ), and that T also
satisfies the conditions imposed by (b).

The second general case provides an υ ∈ RCLk(GMG) for which τ = move(υ).
Thus, υ has head–label lκζ and a maximal subtree φ with head–label −ljλη for
some 1 ≤ j ≤ m, l ∈ {+Lj , +lj}, κ, λ ∈ Cat∗ and ζ, η ∈ P ∗I∗. For b0 = q0, by
induction hypothesis we can fix existing

U = ((lκ, b0, β0), (ν1, b1, β1), . . . , (νm, bm, βm), com) ∈ N ,

and pU ∈ (P ∗)m+2 with pU ∈ Lk
G(U) such that (U, pU ) corresponds to υ. Again

we have νi ∈ suf(−li), bi ∈ {overt, covert, true, false} for 1 ≤ i ≤ m, and
βi ∈ {1, . . . ,m} for 0 ≤ i ≤ m.16 By induction hypothesis, for all 1 ≤ i ≤ m with
µi 6= ε we can choose U even such that bj ∈ {overt, true} and bi ∈ {qi, true} for
i 6= j in case l = +Lj , and such that bj ∈ {covert, true}, bi ∈ {covert, true}
for j/+

T i and bi ∈ {qi, true} in case l = +lj . Because move(υ) ∈ RCL(GMG), we
conclude that (r3’) holds in any case, and (r4’) in case that λ 6= ε and bj = overt.

(r3’)

(r4’)

T ′ → moveU (U) ∈ R and pT ′ = moveU (pU ) ∈ Lk+1
G (T ′)

T ′′→MoveU (U) ∈ R and pT ′′ =MoveU (pU ) ∈ Lk+1
G (T ′′)

with T ′ ∈ N and moveU ∈ F as in (r3), T ′′ ∈ N and MoveU ∈ F as in (r4).
Let T = T ′′ and pT = pT ′′ in case that bj = qk = overt and λ = −lkλ′ for

some 1 ≤ k ≤ m and λ′ ∈ Cat∗. Otherwise let T = T ′ and pT = pT ′ . Looking at
the definition of move ∈ F and the definitions of T and moveU,V or MoveU,V ,
respectively, we see that (T, pT ) corresponds to τ , and that also (b) is true. ¤

Let T ∈ N and pT ∈ (P ∗)m+2 be such that (a) and (b) of Proposition 4.3 are true
w.r.t. given τ ∈ RCL(GMG), q0 ∈ {strong, weak} and qi ∈ {overt, covert} for
1 ≤ i ≤ m. Note that this does not automatically imply that pT ∈ LG(T ).

Proposition 4.4. If pT is a T–phrase in G, i.e. if pT ∈ LG(T ) for some T ∈ N
with T 6= S and pT ∈ (P ∗)m+2, then there is some τ ∈ RCL(GMG) such that
(T, pT ) corresponds to τ according to Definition 4.1.

Proof. Recalling again that RCL(GMG) =
⋃

k∈IN RCLk(GMG) holds as well as
LG(T ) =

⋃
k∈IN Lk

G(T ), we also prove this proposition by induction on k ∈ IN.

(4.4k) If pT ∈ Lk
G(T ) then (T, pT ) corresponds to some τ ∈ RCLk(GMG).

Since Lex = RCL0(GMG), (4.40) holds according to (r5). Considering the in-
duction step, suppose that (4.4k) is true for k ∈ IN. The crucial case arises from
pT ∈ Lk+1

G (T ) \ Lk
G(T ) dividing into two general possibilities.

Either, U , V ∈ N and pU , pV ∈ (P ∗)m+2 exist with pU ∈ Lk
G(U), pV ∈ Lk

G(V ).
U and V fulfill the restrictions applying in (r1) such that (r1”) is true for T ′ ∈ N
and mergeU,V ∈ F as in (r1), or U and V even satisfy the restrictions applying
in (r2) such that (r2”) is true for T ′′ ∈ N and MergeU,V ∈ F as in (r2).

16 Recall that each νi for 0 ≤ i ≤ m and each βi for 0 ≤ i ≤ m is unique.



(r1”) T → mergeU,V (U, V ) ∈ R , pT = mergeU,V (pU , pV ) and T = T ′

(r2”) T → MergeU,V (U, V ) ∈ R , pT = MergeU,V (pU , pV ) and T = T ′′

Then, by induction hypothesis there are υ and φ ∈ RCLk(GMG) such that
(U, pU ) and (V, pV ) respectively correspond to υ and φ in the sense of Definition
4.1. Recall the restrictions that apply to U and V in (r1) or (r2), respectively.
Because of these restrictions we may conclude that τ = merge(υ, φ) is not only
defined according to (me), but also in RCLk+1(GMG) according to (R2). Since
(r1”) or (r2”) is true, we refer to the respective definitions of T ′ and mergeU,V

or T ′′ and MergeU,V to see that (T, pT ) corresponds to τ .

Secondly, U ∈ N and pU ∈ (P ∗)m+2 may exist with pU ∈ Lk
G(U). The restric-

tions given with (r3) apply to U and (r3”) holds for T ′ and moveU ∈ F as in
(r3), or even the restrictions given with (r4) apply to U and (r4”) holds for T ′′

and MoveU ∈ F as in (r4).

(r3”) T → moveU (U) ∈ R , pT = moveU (pU ) and T = T ′

(r4”) T → MoveU (U) ∈ R , pT = MoveU (pU ) and T = T ′′

Here, by hypothesis there is an υ ∈ RCLk(GMG) such that (U, pU ) corre-
sponds to υ in the sense of Definition 4.1. Similar as for (r1”) and (r2”), in cases
(r3”) and (r4”) it is straightforward to show that move ∈ F is defined for υ, and
that (T, pT ) corresponds to τ = move(υ) ∈ RCLk+1(GMG). ¤

Corollary 4.5. π ∈ L(G) iff π ∈ L(GMG) for each π ∈ P ∗.

Proof. As for the “if”–part consider complete τ ∈ CL(GMG) with phonetic yield
π ∈ P ∗. Let T = (µ̂0, . . . , µ̂m, t) ∈ N with t ∈ {sim, com} and µ̂i = (µi, ai, αi)
for 0 ≤ i ≤ m as in (n1)–(n5), let pT = (πH , π0, . . . , πm) ∈ (P ∗)m+2. Assume
that (T, pT ) corresponds to τ according to (D1)–(D4). By Proposition 4.3 these
T and pT exist even such that pT ∈ LG(T ) and a0 = weak. Since τ is complete,
µ̂0 = (c, weak, ε) and µ̂i = (ε, false, ε) for 1 ≤ i ≤ m by (D1), and therefore
π1 = . . . = πm = ε by (D4). Moreover, τ ’s phonetic head–features are “at the
right place,” i.e. πH = ε and π0 = π by (D3). Looking at (r0) and (L2), we
conclude that π ∈ LG(S) = L(G).

To prove the “only if”–part, we start with some π ∈ L(G) = LG(S). The
definition of R yields that each rule applying to S is of the form (r0). Thus,
according to (L2) there is some pT = (πH , π0, . . . , πm) ∈ (P ∗)m+2 such that
pT ∈ LG(T ) and π = con(pT ) for T ∈ N as in (r0). (T, pT ) corresponds to some
τ ∈ RCL(GMG) by Proposition 4.4. This τ is complete by (D1), π is the yield
of τ , since πH = π1 = . . . = πm = ε and π0 = π by (D3) and (D4). ¤

Consider the m+2–LCFRS G as constructed above for a given MG GMG whose
set of licensees has cardinality m ∈ IN.

If all licensors in GMG are strong, i.e. only overt movement is available, we
do not have to define productions of the form (r1) and (r3) in case λ 6= ε for
the corresponding λ ∈ licensees∗. More concretely, whenever in terms of the MG
GMG a subtree that has licensee −x arises from applying merge or move, in



terms of the LCFRS G we do not have to predict the case that this licensee will
be canceled by “covert movement.” Moreover, according to (D2), the structural
relation of any two subtrees with different licensees is of interest only in (r3) for
λ 6= ε. Since productions of this kind are of no use at all, assuming all licensors
in GMG are strong, each µ̂i = (µi, ai, αi) of some T = (µ̂0, . . . , µ̂m, t) ∈ N
according to (n1)–(n5) can be reduced to its 1st component µi without loosing
any “necessary information.” This means that expressions from RCL(GMG) in
terms of the LCFRS G have to be distinguished only w.r.t. the partition P
induced by suf(Cat)× suf(−l1)× . . .× suf(−lm)× {sim, com}.

In case that all selection features in GMG are weak, G is reducible even
to an m + 1–LCFRS. This is due to the fact that the 1st component of any
pT ∈ (P ∗)m+2 appearing in some complete derivation in GMG is necessarily
empty in this case. Therefore, if additionally m = 0, GMG is a CFG. Vice versa,
each CFG is weakly equivalent to some MG of this kind. This can be verified
rather straightforwardly e.g. by starting with a CFG in Chomsky normal form.

5 A Hierarchy of MGs

Several well–known grammar types constitute a subclass of MCSGs. There are
a.o. the two classes of head grammars (HGs) and TAGs as well as their general-
ized extensions, the classes of LCFRSs and multicomponent TAGs (MCTAGs),
respectively.17 Like HGs and TAGs, LCFRSs and MCTAGs are weakly equiva-
lent. LCFRSs and MCTAGs are the union of an infinite hierarchy of grammar
classes, the respective hierarchy of m–LCFRSs and m–TAGs (m ∈ IN \ {0}).
It is known that each m–LCFRL is an m–TAL, a language derivable by some
m–TAG, and that each m–TAL is an 2m–LCFRL (cf. [9]). We can introduce an
infinite hierarchy on the MG–class, as well.

Definition 5.1. For each m ∈ IN an MG G = (V,Cat, Lex,F) according to Def-
inition 3.2 is an m–minimalist grammar (m–MG) if the cardinality of licensees is
at most m. Then, the ML derivable by G is an m–minimalist language (m–ML).

Let m ∈ IN. It is clear that each m–ML is also an m + 1–ML.
In Sect. 4 we have shown that each m–ML is an m + 2–LCFRL. This result

can be strengthened for m = 0, since the inclusion of 1–TALs within 2–LCFRLs
is known to be proper (cf. [5]). Due to its “restricted type,” the 2–LCFRS that
we have constructed for a given 0–MG can be transformed to a weakly equivalent
1–TAG. Thus, each 0–ML, each language whose realization plainly relies on the
“extended” merging–type allowing for overt head movement, is even a 1–TAL, a
tree adjoining language. Indeed the class of 0–MLs is a proper extension of the
class of CFLs. Referring to the rather categorial type logical approach of [1], [6]
presents a 0–MG that derives the copy language {ww | w ∈ {1, 2}∗}.
17 We define an MCTAG as in [9] and call it anm–TAG if derived sequences of auxiliary

trees can be (simultaneously) adjoined to elementary tree–sequences of length at
most m ∈ IN \ {0}. Then, 1–TAGs are TAGs in the usual sense, and vice versa.



Generalizing Example 3.3, for m ∈ IN we consider the m–MG Gm with
I = ∅, P = {/ai/ | 1 ≤ i ≤ m} and base = {c} ∪ {bi, ci, di | 1 ≤ i ≤ m},
while select = {=bi,

=ci,
=di | 1 ≤ i ≤ m}, licensees = {−li | 1 ≤ i ≤ m}

and licensors = {+Li | 1 ≤ i ≤ m}. Lex consists of the simple expressions c
and b1−l1/am/, further =bibi+1−li+1/am−i/, =ci+Li+1ci+1−li+1/am−i/ and
=di+Li+1di+1 for 1 ≤ i < m, finally the 5 expressions =bm+L1c1−l1/am/,
=bm+L1d1, =cm+L1c1−l1/am/, =cm+L1d1 and =dmc. Gm derives the language
{/a1/

n . . . /am/n | n ∈ IN}. We omit a proof here, pointing to the rather “deter-
ministic manner” in which expressions in Gm can be derived.

Proposition 5.2. For each m ∈ IN, {an
1 . . . an

m | n ∈ IN} is an m–ML.

As shown in [5], for each m ∈ IN \ {0}, {an
1 . . . an

2m | n ∈ IN} is an m–LCFRL,
while {an

1 . . . an
2m+1 | n ∈ IN} is not. Because each m–ML is an m + 2–LCFRL,

we therefore conclude that the hierarchy of ML–classes is infinitely increasing,
i.e. there is no mb ∈ IN such that for all m ∈ IN each m–ML is also an mb–ML.

6 Conclusion

We have shown that MGs as defined in [6] constitute a weakly equivalent (sub)-
class of MCSGs as described in e.g. [3]. Thus, the result contributes to solve a
problem that has remained open in [6]. Further, we have established an infinite
hierarchy on the MG–class in relation to other hierarchies of MCSG-formalisms.
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