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Chapter 1

Introduction

It is well-known that first-order logic is able to express facts about how many
objects have a certain property. For example, the sentences

No professor supervises more than 3 graduate students

Every graduate student is supervised by at most 1 professor

may be formalized as

¬∃x(prof(x)∧

∃y1 . . . y4
(

∧

1≤i≤4

(grad(yi) ∧ sup(x, yi)) ∧
∧

1≤i<j≤4

yi 6≈ yj)
) (1.1)

∀x(grad(x) →

∀y1y2(
∧

1≤i≤2

(

prof(yi) ∧ sup(yi, x)) → y1 ≈ y2)
)

, (1.2)

respectively. A more succinct (and readable) formalization is possible if, in addi-
tion to the familiar quantifiers ∀ and ∃, we employ so-called counting quantifiers,
having the forms ∃≤C , ∃≥C or ∃=C , where C is a numerical subscript. We read
∃≤Cvφ as “there exist at most C v such that φ”, ∃≥Cvφ as “there exist at least
C v such that φ” and ∃=Cvφ as “there exist exactly C v such that φ”. With
this apparatus, the above sentences may be formalized as

¬∃x(prof(x) ∧ ∃≥4y(grad(y) ∧ sup(x, y))) (1.3)

∀x(grad(x) → ∃≤1y(prof(y) ∧ sup(y, x))). (1.4)

The formation rules governing formulas with counting quantifiers are completely
analogous to those for ∀ and ∃.

Formally, the semantics of counting quantifiers may be given in terms of
satisfaction in a structure relative to a variable assignment, in the standard way.
Specifically, for any structure A with domain A, and any variable assignment
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6 CHAPTER 1. INTRODUCTION

function s, we define

A |=s ∃≤Cvφ iff |{s′ | s′ =v s and A |=s′ φ}| ≤ C

A |=s ∃≥Cvφ iff |{s′ | s′ =v s and A |=s′ φ}| ≥ C

A |=s ∃=Cvφ iff |{s′ | s′ =v s and A |=s′ φ}| = C,

where, as usual, s′ =v s indicates that the functions s and s′ are identical
except possibly in the value they assign to v. It is easy to verify that, under
these semantics, ∃xφ is logically equivalent to ∃≥1xφ, ∀xφ is logically equivalent
to ∃≤0x¬φ, ∃=Cxφ is logically equivalent to ∃≤Cxφ∧∃≥Cxφ, ∃≤Cxφ is logically
equivalent to ¬∃≥C+1xφ, and ∃≥0xφ is logically true. Thus, we could if we
wished eliminate all the other quantifiers in favour of ∃≥C (C > 0). However,
we continue to employ the redundant quantifiers for ease of exposition.

At first blush, it might seem strange to consider counting quantifiers at all,
since they do not extend the expressive power of first-order logic: any formula
involving counting quantifiers can be translated into a logically equivalent for-
mula without counting quantifiers. Thus, for example, for any C > 0, we have
the logical equivalence

∃≥Cxφ(x) ≡ ∃x1, . . . , xC

(

∧

1≤i≤C

φ(xi) ∧
∧

1≤i<j≤C

xi 6≈ xj

)

,

where x1, . . . xC do not occur free in φ; and similarly, mutatis mutandis, for the
quantifiers ∃≤C and ∃=C . However, matters are different when we consider cer-
tain fragments of first-order logic, for which the addition of counting quantifiers
yields proper super-fragments with interesting computational properties. These
properties form the subject of these notes.

In general, by a logic, L, we understand any set of expressions, known as
formulas of L (or L-formulas), equipped with a truth-conditional semantics.
Specifically, we assume that L associates with any L-formula φ a signature of
non-logical primitives (constants, function-symbols and predicates of various
types) occurring in φ, and determines, for any structure A interpreting these
primitives, whether φ is satisfied in A. Under these assumptions, we say that
φ is satisfiable if it is satisfied in some structure, and finitely satisfiable if it
is satisfied in some finite structure. A set Φ of formulas is satisfiable if all its
members are simultaneously satisfied in some structure, and similarly for finite
satisfiability. Trivially, finite satisfiability implies satisfiability. If, for finite sets
of L-formulas, the converse implication holds, then L is said to have the finite
model property.

Definition 1. Let L be a logic. The satisfiability problem for L, Sat-L, is the
problem of determining whether a given finite set of L-formulas is satisfiable;
the finite satisfiability problem for L, Fin-Sat-L, is the problem of determining
whether a given finite set of L-formulas is finitely satisfiable.

Notice that Definition 1 does not assume that L is closed under Boolean con-
junction. We assume that L-formulas (and sets of such) may be coded, in some
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standard way, as strings over a finite alphabet. The size of a formula φ, denoted
‖φ‖, is simply the length of its encoding string. Thus, (finite sets of) formulas
may be regarded as inputs to Turing machines over the relevant alphabet, so
that the notion of decidability and the apparatus of computational complexity
theory can be applied to Sat-L and Fin-Sat-L.

A logic L has the finite model property if and only if the problems Sat-L
and Fin-Sat-L coincide. Moreover, if L is a subset of first-order logic having
the finite model property, then Sat-L (=Fin-Sat-L) is decidable. For, given
any finite set Φ of L-formulas, we may enumerate all finite structures (over the
signature of Φ) and all theorems of first-order logic, in parallel, stopping when
either a satisfying structure or the theorem ¬

∧

Φ is found. It is well-known
that first-order logic lacks the finite model property, and that its satisfiability
problem and finite satisfiability problem are both undecidable. However, many
decidable fragments are known, and we briefly consider some well-known cases
here.

The two-variable fragment (of first-order logic) with equality, denoted L2
≈,

is the set of first-order formulas involving only the two variables x and y. For
example, the sentences

Every graduate student is supervised by a professor who teaches some course

may be formalized as

∀x(grad(x) → ∃y(sup(y, x) ∧ prof(y) ∧ ∃x(teach(y, x) ∧ course(x)))). (1.5)

Notice, incidentally, that this formula has triply-nested quantifiers; nevertheless,
it is in the two-variable fragment, because the variable x bound by the outer-
most quantifier is re-used by the innermost quantifier. Despite its non-trivial
expressive power, the fragment L2

≈ can be shown to have the finite model prop-
erty. Thus Sat-L2

≈ (= Fin-Sat-L2
≈) is a decidable problem. In fact, this problem

is NEXPTIME-complete. By contrast, the three-variable fragment, L3
≈, defined

analogously, lacks the finite model property, and both Sat-L3
≈ and Fin-Sat-L3

≈

are undecidable.
But what happens if we add counting quantifiers to L2

≈? Define the two-
variable fragment with counting, denoted C2, to be the set of first-order formulas
involving only the two variables x and y, but with the counting quantifiers ∃≤C ,
∃≥C and ∃=C (for every C ≥ 0) allowed. Thus, for example, the formulas (1.3)
and (1.4) are in C2. It is not difficult to see that C2 is strictly more expressive
than L2

≈. In fact, C2 lacks the finite model property, so that the problems Sat-
C2 and Fin-Sat-C2 do not coincide. Nevertheless, it can be shown that these
problems are still both decidable. Indeed, as we shall see below, they both have
the same computational complexity as Sat-L2

≈.
A second well-known decidable fragment of first-order logic is the so-called

guarded fragment, denoted G. A formal treatment will be given below, but,
roughly, a guarded formula is one in which all quantification is restricted to the
patterns

∀v̄(γ → ψ) ∃v̄(γ ∧ ψ),
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where γ is an atomic formula featuring all the free variables in ψ together with v̄.
The formula (1.5) above is guarded. As an example of a non-guarded formula,
we need look no further than

Every graduate student admires every professor

∀x(grad(x) → ∀y(prof(y) → adm(x, y)));

for the sub-formula adm(x, y) has a free variable, namely, x, which is not an
argument of the atom prof(y). The guarded fragment was originally intro-
duced as a generalization of modal logic, and exhibits much of the latter’s
well-behavedness. In particular, it has the finite model property, so that G-
Sat (=G-Fin-Sat) is decidable. Just as with first-order logic, so too with the
guarded fragment, it makes sense to consider its finite-variable sub-fragments.
We denote by Gk the fragment of G involving at most k variables. It transpires
that bounding the number of variables reduces the computational complexity
of the satisfiability problem.

What happens if we add counting quantifiers to G? Define the k-variable
guarded fragment with counting, denoted GCk, to be the result of extending Gk

by allowing the counting quantifiers ∃≤C , ∃≥C and ∃=C , as long as they occur
in the pattern Qv(γ ∧ ψ), where γ is an atomic formula featuring all the free
variables of ψ together with v. Here, the results are mixed. Even for k ≥ 2,
GCk lacks the finite model property. Nevertheless, Sat-GC2 and Fin-Sat-GC2

are both decidable, again with the same computational complexity as Sat-G2.
However, for k ≥ 3, Sat-GCk and Fin-Sat-GCk are undecidable.

Since we have mentioned results on computational complexity, this is per-
haps an appropriate point at which to clarify two details regarding the sizes of
formulas: one unimportant, the other crucial. The first concerns the encoding
of non-logical primitives. For most interesting fragments, signature elements
cannot, strictly speaking, be coded as a single symbol, but rather as a string of
symbols whose length is logarithmic in the total number of symbols appearing in
the formula. However, doing so has no effect on the computational complexity
of the fragments considered here, and the issue may be safely disregarded. The
second detail concerns the encoding of numerical subscripts in counting quan-
tifiers. Such subscripts are, strictly speaking, numerals, rather than numbers:
strings of binary digits encoding numbers in the standard way. (It makes no es-
sential difference whether we use base 2 or some other base.) Thus, in treating,
as we shall, quantifier subscripts as if they were numbers, rather than numerals,
we are employing a notational and textual shortcut. In this connection, how-
ever, it is important to understand that size of a positive numerical subscript C
is not C, but rather blog2 Cc+1, where bxc denotes the largest integer less than
or equal to x. Put another way, the numbers featuring in numerical subscripts
are in general exponentially large compared with the formulas containing them.



Chapter 2

Finite-variable fragments of

first-order logic

We explained in Chapter 1 that the counting quantifiers are of interest pri-
marily in terms of their computational effect on certain decidable fragments of
first-order logic. The purpose of this chapter is to lay the groundwork for our
investigation of counting quantifiers by introducing some of these fragments.

For k > 1, the k-variable fragment of first-order logic with equality, denoted
Lk
≈, is the set of first-order formulas over a purely relational signature involving

no variables other than x1, . . . , xk. The k-variable fragment of first-order logic
(without equality), denoted Lk, is the set Lk

≈-formulas not involving the equality
predicate ≈. For ease of reading, we write x, y, z instead of x1, x2, x3.

2.1 Fragments with one variable

We begin with the 1-variable fragments L1 and L1
≈, whose treatment is nearly

trivial. Since we are working with a purely relational signature (no individual
constants of function-symbols), the only equality atom in L1

≈ is x ≈ x, which
may be equivalently replaced by >. Therefore, we consider only L1. In fact,
we may as well assume that all predicates have arity 0 or 1, since predicates of
higher arity evidently do not essentially increase expressive power in L1. For
the remainder this section, then, we assume a signature of nullary and unary
predicates only.

Lemma 1. Let φ be an L1-formula. We can construct, in time bounded by a
polynomial function of ‖φ‖, an L1-formula

ψ := ∀xα ∧
∧

1≤h≤m

∃xβh, (2.1)

where 1 ≤ m ≤ ‖φ‖, and α, β1, . . . , βm are quantifier-free L1-formulas, such
that φ and ψ are satisfiable over the same domains.

9
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Proof. By prefixing an existential quantifier if necessary, we may assume that
φ is a sentence. Set φ0 := ∀xφ.

If φ0 has a subformula θ = ∃xχ, with χ quantifier-free, let p be a new nullary
predicate, let φ1 = φ[p/θ], and let

ψ1 = ∃x(p → χ) ∧ ∀x(χ→ p).

It is easy to see that φ0 and φ1 ∧ψ1 are satisfiable over the same domains. For,
on the one hand, φ1 ∧ ψ1 entails φ0, and on the other, any model A of φ0 may
be expanded to a model of φ1 ∧ ψ1 by interpreting p to be true if and only if
A |= θ. Similarly, if φ0 has a proper subformula θ = ∀xχ, with χ quantifier-free,
define φ1 and ψ1 analogously, subject to the obvious adjustments. Now process
φ1 in the same way, and continue until some formula φm is reached having the
form ∀xχ, with χ quantifier-free. Thus, φ0 and

φm ∧ ψm ∧ ψm−1 ∧ · · · ∧ ψ1

are satisfied over the same domains. Re-arrangement of conjuncts yields the
desired formula ψ.

Lemma 2. Let φ be a formula in L1. If φ is satisfiable, then it is satisfiable
over a domain of size at most ‖φ‖.

Proof. By Lemma 1, we may assume φ to be of the form (2.1). If A |= φ, let
a1, . . . am ∈ A be witnesses for the respective conjuncts ∃xβh. Let B be the
restriction of A to {a1, . . . , am}. It is then obvious that B |= φ.

Theorem 1. The problem Sat-L1 is NPTime-complete.

Proof. Membership in NP follows from Lemma 2. NP-hardness is immediate,
since L1 includes propositional logic.

We remark that allowing individual constants to appear in the fragment has
no effect on the above results (though it clutters the exposition); the details are
routine and left to the reader.

Consider the sub-fragment S of L1 consisting of all formulas having the
following forms

∃x(p(x) ∧ q(x)) ∃x(p(x) ∧ ¬q(x))
∀x(p(x) → q(x)) ∀x(p(x) → ¬q(x)),

(2.2)

where p and q are unary predicates. This fragment is of some historical and
linguistic interest, because we can think of unary predicates as corresponding
to common nouns, and the formulas (2.2) to English sentences of the forms

Some p is a q Some p is not a q
Every p is a q No p is a q,

(2.3)

respectively. This is, in essence, the language of the syllogistic set out in Aris-
totle’s Prior analytics. Inspection of the above forms shows that, if φ is an
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S-formula, then there is an S-formula φ̄ logically equivalent to its negation.
Thus, validity and satisfiability are dual in S in the usual way: an argument
with premises Φ and conclusion φ is valid if and only if the set φ ∪ {φ̄} is not
satisfiable. Note, however that S is not closed under conjunction. (Thus, it is
generally only interesting to consider the satisfiability of sets of S-formulas.)

Theorem 2. The satisfiability problem for S is NLogSpace-complete.

Proof. The problem 2-SAT is the defined as follows. Given a set Γ of proposi-
tional clauses, none of which contains more than two literals, determine whether
Γ is satisfiable. It is well-known that 2-SAT is NLogSpace-complete (see,
e.g. Papadimitriou [27], pp. 398.) It is straightforward to show that the satis-
fiability problem for S and the problem 2-SAT can be reduced to each other.
The theorem then follows from the fact that NLogSpace is closed under re-
ductions.

Adding individual constants to S makes no difference to Theorem 2, a detail
we leave to the reader to verify. Adding counting quantifiers, by contrast, does
make a difference, and we consider this matter in Chapter 2.

2.2 Fragments with two variables

In this section, we show that the fragments L2 and L2
≈ have the finite model

property, and that their satisfiability (= finite satisfiability) problems are
NExpTime-complete. In dealing with these fragments, we may as well assume
that all predicates have arity at most 2, since predicates of higher arity evidently
do not essentially increase expressive power in L2. For the remainder of this
section, then, we assume a signature of nullary, unary and binary predicates
only.

Lemma 3 (Scott normal form). Let φ be a formula in L2
≈. We can construct,

in time bounded by a polynomial function of ‖φ‖, an L2
≈-formula

ψ := ∀x∀y(α ∨ x ≈ y) ∧
∧

1≤h≤m

∀x∃y(βh(x, y) ∧ x 6≈ y), (2.4)

where 1 ≤ m ≤ ‖φ‖, and α, β1, . . . , βm are quantifier-free L2-formulas, such that
φ and ψ are satisfiable over the same domains containing at least 2 elements.

Proof. We proceed as for Lemma 1. By prefixing existential quantifiers if nec-
essary, we may assume that φ is a sentence. Set φ0 := ∀xφ. In the sequel, let
u, v be the variables x, y, in either order.

Suppose φ0 has a subformula θ(v) = ∃uχ, with χ quantifier-free. Let p be a
new unary predicate, let φ1 be φ[p(v)/θ(v)], and let

ψ1 := ∀v∃u(p(v) → χ) ∧ ∀v∀u(χ→ p(v)).

It is easy to see that φ0 and φ1 ∧ ψ1 are satisfiable over the same domains.
For, on the one hand, φ1 ∧ ψ1 entails φ0, and on the other, any model A of φ0
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may be expanded to a model of φ1 ∧ ψ1 by interpreting p to be satisfied by an
element a ∈ A if and only if A |= θ[a]. Similarly, if φ0 has a proper subformula
θ(v) = ∀xχ, with χ quantifier-free, define φ1 and ψ1 analogously, subject to
the obvious adjustments. Now process φ1 in the same way, and continue until
some formula φm is reached having the form ∀xp(x)—which we may re-write as
∀x∀yp(x). Thus, φ0 and

φm ∧ ψm ∧ ψm−1 ∧ · · · ∧ ψ1

are satisfied over the same domains. Re-arrangement of conjuncts yields a for-
mula

ψ′ := ∀x∀yα′(x, y) ∧
∧

1≤h≤m

∀x∃y(β′
h(x, y)),

where α′(x, y) and the β′
h(x, y) are quantifier-free L2

≈-formulas.
It remains only to reform the occurrences of ≈ in α′(x, y) and the β′

h(x, y).
Restricting attention to domains containing at least 2 elements, we have the
following logical equivalences:

∀x∀yα′(x, y) ≡ ∀x∀y((α′(x, x) ∧ α′(x, y)) ∨ x ≈ y)

∀x∃yβ′
h(x, y) ≡ ∀x∃y((β′

h(x, x) ∨ β′
h(x, y)) ∧ x 6≈ y).

Now, if θ is any L2
≈-formula, denote by θ∗ the result of replacing all atoms of

the forms x ≈ x and y ≈ y in θ by >, and all atoms of the forms x ≈ y and
y ≈ x by ⊥. Thus, we have the logical equivalences

θ ∨ x ≈ y ≡ θ∗ ∨ x ≈ y θ ∧ x 6≈ y ≡ θ∗ ∧ x 6≈ y.

Setting

α :=
(

α′(x, y) ∧ α′(x, x)
)∗

βh :=
(

β′
h(x, y) ∨ β′

h(x, x)
)∗
,

for all h (1 ≤ h ≤ m), and then

ψ := ∀x∀y(α(x, y) ∨ x ≈ y) ∧
∧

1≤h≤m

∀x∃y(βh(x, y) ∧ x 6≈ y),

we see that ψ and ψ′ are logically equivalent over domains containing at least 2
elements. Thus, ψ has the properties required for the lemma.

At this point, we introduce some familiar concepts which will feature promi-
nently in the sequel. Fix some purely relational signature Σ. A literal (over
Σ) is an atomic formula or the negation of an atomic formula. A 1-type (over
Σ) is a maximal consistent set of equality-free literals over Σ involving only the
variable x. A 2-type (over Σ) is a maximal consistent set of equality-free literals
over Σ involving only the variables x and y. Reference to Σ is suppressed where
clear from context. If A is any structure interpreting Σ, and a ∈ A, then there
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exists a unique 1-type π(x) over Σ such that A |= π[a]; we denote π by tpA[a].
If, in addition, b ∈ A is distinct from a, then there exists a unique 2-type τ(x, y)
over Σ such that A |= τ [a, b]; we denote τ by tpA[a, b]. We do not define tpA[a, b]
if a = b. If π is a 1-type, we say that π is realized in A if there exists a ∈ A with
tpA[a] = π. If τ is a 2-type, we say that τ is realized in A if there exist distinct
a, b ∈ A with tpA[a, b] = τ .

Notation 1. Let τ be a 2-type over a purely relational signature Σ. The result
of transposing the variables x and y in τ is also a 2-type, denoted τ−1; and the
set of literals in τ not featuring the variable y is a 1-type, denoted tp1(τ). We
write tp2(τ) for the 1-type tp1(τ

−1).

Note that tp2(τ) is the result of taking the set of literals in τ not featuring
the variable x, and then replacing y throughout by x.

Remark 1. If τ is any 2-type over a purely relational signature Σ, A is a
structure interpreting Σ, and a, b are distinct elements of A such that tpA[a, b] =
τ , then tpA[b, a] = τ−1, tpA[a] = tp1(τ) and tpA[b] = tp2(τ).

A terminological note: in books on model theory, the word “type” is stan-
dardly used to refer to a maximal consistent set of formulas (over some sig-
nature) featuring a fixed collection of variables—including formulas involving
quantifiers. What we are calling types here are known, in that nomenclature,
as “rank-0 types”. In the sequel, however, we only ever have occasion to refer
to rank-0 types, and so we continue to use the more abbreviated terminology.

Remark 2. If Σ features only unary and binary predicates, and |Σ| = s, then
there are exactly 2s 1-types over Σ and at most 24s 2-types.

Lemma 4. Let φ be a satisfiable L2
≈-formula, and let n = ‖φ‖. Then φ has a

model of size at most 3n.2n.

Proof. If φ is satisfiable over a 1-element domain, there is nothing to prove.
Moreover, we may assume without loss of generality that the signature of φ
features only unary and binary predicates, since any nullary predicates can be
replaced by > or ⊥ according to their truth-value in some model. Now let ψ
be the formula (2.4) constructed in Lemma 3, and suppose A |= ψ. Let the
signature of ψ be Σ∗; thus m ≤ n and |Σ∗| ≤ n. It suffices to construct a model
B of ψ with |B| ≤ 3n.2n. In the rest of the proof, we employ the symbols α, m
β1, . . . , βm as they appear in (2.4).

If a ∈ A, we say that a is a king if a is the only element a′ ∈ A such that
tpA[a′] = tpA[a]. Let K be the set of kings. Evidently, |K| ≤ 2n. We now
define a set of elements C ⊆ A, called the court, as follows: every king is a
member of court; and, for each king a, and every h (1 ≤ h ≤ m), we select one
element b ∈ A \ {a} such that A |= βh[a, b], and let b be a member of court.
(These elements need not be distinct, and may themselves be kings.) Evidently,
|C| ≤ (m + 1)|K|. Let C be the structure on C induced by A. Notice that, for
any element a ∈ A, and any h (1 ≤ h ≤ m), there exists an element b ∈ A \ {a}
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Figure 2.1: The small model property for L2
≈, showing the absence of clashes in

Stage 3 of the proof of Lemma 4

(depending on a and h) such that A |= βh[a, b]. As we might say, b satisfies the
‘existential requirement’ ∃y(βh(x, y) ∧ x 6≈ y) of a.

Let π1, . . . , πL be the 1-types realized in A by more than one element (i.e.
realized in A, but not by kings). Evidently, L ≤ 2n − |K|. Let D be the set of
integer triples

{〈i, h, k〉|1 ≤ i ≤ L, 1 ≤ h ≤ m and 0 ≤ k ≤ 2},

and assume without loss of generality that C and D are disjoint. Now let
B = C ∪ D. Hence |B| ≤ (m + 1)|K| + 3m(2n − |K|) ≤ 3n2n. We define a
structure on B satisfying ψ. In defining this structure (Fig. 2.1), we ensure that
all the existential requirements of successive elements of B are satisfied. We
proceed in three stages.

Stage 1: Import the structure C onto the elements C ⊆ B (so that A and B

agree on the court). Consider any king a; and let 1 ≤ h ≤ m. By construction
of C, there exists b ∈ C \ {a} such that A |= βh[a, b], whence B |= βh[a, b].
Thus, all kings have their existential requirements satisfied.

Stage 2: First, fix the 1-type of any element 〈i, h, k〉 ∈ D by setting

tpB[〈i, h, k〉] = πi.
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Now consider any a ∈ C which is not a king, and any h such that 1 ≤ h ≤ m.
Choose some b ∈ A \ {a} such that A |= βh[a, b]. If b is a king, then tpB[a, b] =
tpA[a, b] from Stage 1, so that we already have B |= βh[a, b]. If b is not a king,
then its 1-type is πi for some i (1 ≤ i ≤ L), so let b′ = 〈i, h, 0〉 ∈ D, and
set tpB[a, b′] = tpA[a, b]. Since tpA[b] = πi = tpB[b′], there is no clash with
any of the 1-types already assigned to elements of B; hence this assignment is
legitimate. Proceeding in this way, we can satisfy the existential requirements
of all the elements in C.

Stage 3: Consider any a = 〈i, h′, k〉 ∈ D, and any h such that 1 ≤ h ≤ m. Let
a′ ∈ A be such that tpA[a′] = πi, and pick b′ ∈ A \ {a} such that A |= βh[a′, b′].
If b′ is a king, let b = b′; otherwise, let i′ be such that tpA[b′] = πi′ , and let
b = 〈i′, h, k + 1〉. Set tpB[a, b] = tpA[a′, b′] (we show presently that we are free
to do this). Proceeding in this way, we can satisfy the existential requirements
for all a ∈ D.

It is immediate that the 2-type assignments made in this stage cannot clash
with any previously assigned 1-types. However, we must show that the assign-
ment to tpB[a, b] described above made in this Stage cannot clash with any
previously-made assignment to tpB[b, a]. To see that this is so, suppose first
that b′ is a king. Then b = b′, and any previous assignment to tpB[b, a] must
have occurred in Stage 1. But that is impossible, because, in Stage 1 kings had
their 2-types fixed only only with respect to other members of court. Suppose,
on the other hand, that b′ is not a king, so that b ∈ D, and any previous assign-
ment to tpB[b, a] must have occurred in Stage 3. Writing a = 〈i1, h1, k1〉 and
b = 〈i2, h2, k2〉, we then have k2 = k1 +1 mod 3 and k1 = k2 +1 mod 3, which
is impossible (see Fig 2.1, where k1 = 0). Hence, none of the 2-type assignments
made in Stage 3 clashes with any other.

Stage 4: To complete the definition of B, suppose tpB[a, b] was not assigned
in any of the Stages 1–3. Certainly, then, a and b cannot both be kings; in
particular, if tpB[a] = tpB[b], it follows that this common 1-type is realized more
than once in A. Therefore, we can always find distinct elements a′, b′ of A such
that tpB[a] = tpA[a′] and tpB[b] = tpA[b′]. Now make the 2-type assignment
tpB[a, b] = tpA[a′, b′]. This obviously does not clash with any previously-made
1-type assignments, and completes the definition of B.

Since all existential requirements are satisfied following Stages 1–3, we have

B |=
∧

1≤h≤m

∀x∃y(βh(x, y) ∧ x 6≈ y).

And since all 2-types realized in B are also realized in A, we have

B |= ∀x∀y(α ∨ x ≈ y).

Corollary 1. The problem Sat-L2
≈ (=Fin-Sat-L2

≈) is in NEXPTIME.

There is in fact a matching lower bound to Corollary 1, namely
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Lemma 5. The problem Sat-L2 is NEXPTIME-hard.

The proof is omitted from these notes. Hence we have

Theorem 3. The problems Sat-L2 and Sat-L2
≈ are NEXPTIME-complete.

Proof. Corollary 1 and Lemma 5.

2.3 Fragments with three or more variables

This section is omitted from these notes.

2.4 Bibliographic notes

The locus classicus for the Syllogistic—the fragment here denoted S—is Aris-
totle [2]. The study of the syllogistic dominated logic until the end of the 19th
Century. For a comprehensive complexity-theoretic account of the syllogistic
and some of its extensions, see Pratt-Hartmann and Moss [29].

The fragment L2
≈ has an interesting history. Lemma 3, which is due to

Scott [34], reduces the problem Sat-L2
≈ to the satisfiability problem for the so-

called Gödel fragment with equality: the set of first-order formulas in prenex-
form having quantifier prefix matching ∃∗∀∀∃∗. Essentially the same argument
reduces Sat-L2 to the satisfiability problem for the Gödel fragment without
equality. Gödel [9] had earlier shown that the Gödel fragment (without equality)
has the finite model property, and is thus decidable. Unfortunately, Gödel also
claimed that adding equality would not affect this result, a claim which was
only later shown to be false by Goldfarb [10]. Relying on Gödel’s incorrect
assertion, Scott claimed to have a proof that L2

≈ is decidable. (What Scott
actually showed was the decidability for L2 only.) That the full two-variable
fragment does indeed have the finite model property was eventually established
by Mortimer [23]. The tight NEXPTIME complexity bound was first obtained
by Grädel, Kolaitis and Vardi [12], whose proof Lemma 4 repeats.



Chapter 3

The One Variable Fragment

with Counting

In this chapter, we consider the 1-variable fragment with counting quantifiers,
C1. The main result is that C1 has the finite model property, and Sat-C1 is NP-
complete. We also consider an NP-complete, proper fragment of C1, of historical
interest.

Recall that C1 involves a purely relational signature: i.e. there are no indi-
vidual constants of function symbols. Since, therefore, the only occurrences of
≈ in C1 are in the trivial atom x ≈ x, we may assume that ≈ does not occur in
C1. In fact, we may further assume that the signature contains no predicate of
arity greater than 1, since such predicates evidently do not essentially increase
expressive power in the presence of only one variable. In this chapter, then, we
assume a signature of nullary and unary predicates only.

3.1 The one-variable fragment with counting

Lemma 6. Let φ be a C1-formula. We can generate, in time bounded by a
polynomial function of ‖φ‖, a formula

ψ = pm ∧
∧

1≤h≤m

(

ph ↔ ∃./hCh
xβh

)

, (3.1)

satisfiable over the same domains as φ, where 1 ≤ m ≤ ‖φ‖, the ph are nullary
predicates, the βh are quantifier-free L1-formulas, the ./h are any of the symbols
≤, ≥ or =, and the Ch are either 0, 1 or occur as a quantifier subscript in φ.

Proof. Let φ0 = ∃≥1xφ. Thus, φ0 is satisfied in the same structures as φ.
Suppose φ0 has a subformula θ = ∃≤Duχ, with χ quantifier-free. Let p1 be

a new nullary predicate, let φ1 = φ[p1/θ], and let

ψ1 := p1 ↔ ∃≤Dvχ,

17
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so that φ1 ∧ ψ1 entails φ0. On the other hand, any model A of φ0 may be
expanded to a model of φ1 ∧ ψ1 by interpreting p1 to be true in A just in case
A |= θ. Similarly, if φ0 has a subformula Quχ, where Q is any of ∃≥D, ∃=D, ∀,
or ∃, and χ quantifier-free, define φ1 and ψ1 analogously, subject to the obvious
adjustments. Now process φ1 in the same way, and continue until some formula
φm is reached which is a single proposition letter pm. Thus, φ0 and

ψ := pm ∧ ψ1 ∧ · · · ∧ ψm

are satisfied over the same domains. But ψ has the form (3.1), as required.

It is easy to derive a small model property for C1 from the above normal
form. For convenience, we consider first a special case.

Lemma 7. Let φ be a C1-formula of the form

∧

1≤i≤m

∃≥Ci
xαi ∧

∧

1≤j≤m′

∃≤Dj
xβj , (3.2)

with the αi and βj quantifier-free. If φ has a model, then it has a model of size
at most C1 + · · · + Cm.

Proof. For all i (1 ≤ i ≤ m), select distinct elements ai,1, . . . , ai,Ci
satisfying αi

in A. (Note that the ai,j and ai′,j′ are not required to be distinct for i 6= i′.)
Let A′ = {ai,j | 1 ≤ i ≤ m, 1 ≤ j ≤ Ci}, and let A′ be the restriction of A to
A′. It is obvious that A′ |= φ and that A′ ≤ C1 + · · · + Cm.

Corollary 2. Any satisfiable C1-formula φ has a model over a domain of size
at most 2n where n = ‖φ‖.

Proof. From Lemmas 6 and 7.

The bound of Lemma 7 is, essentially, the best possible, as the following
example shows.

Example 1. Let φk be the formula ∃2k−1x>, k = 1, 2, . . .. Since quantifier
subscripts are coded as binary numerals, we have ‖φk‖ = k + 3; however, the
smallest model of φk has 2k − 1 elements.

Thus, although both L1 and C1 have a small model property, the size bound
is linear in the former case, but exponential in the latter. This is significant,
because, in Chapter 2, we used the linear size bounded to show that Sat-L1 is
in NP: showing that φ is satisfiable is simply a matter of guessing a structure
of size at most ‖φ‖ and verifying that it is a model of φ. Evidently, no such
simple-minded approach will work for Sat-C1: the smallest satisfying structures
are too big.

It turns out, however, that models of C1-formulas may admit of more com-
pact descriptions. Fix a signature Σ consisting only of the unary predicates
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p1, . . . , pl. Recalling the notion of 1-type introduced in Chapter 2, there are
evidently L = 2l 1-types over Σ, which we may list, in some arbitrary order as

π1, . . . , πL.

Henceforth, we keep this ordering fixed. Let A and B be structures interpreting
Σ. It is obvious that A and B are isomorphic if and only if, for every 1-type φ,
the sets {a ∈ A : A |= π[a]} and {b ∈ B : B |= π[b]} have the same cardinality.
(After all, what it means for two sets to have the same cardinality is that there
is a bijection between them.) That is to say, any structure A interpreting Σ can
be characterized, up to isomorphism, by the sequence

ν(A) = (ν1, . . . νL),

where, for all j (1 ≤ j ≤ L), νj is the cardinality of the set of elements whose
1-type in A is πj .

Might representing the structures in this way give us a nondeterministic
algorithm for Sat-C1 that runs in polynomial time? By Lemma 7, we may
confine our attention to structures A for which every entry in ν(A) is at most
2n, and hence can be written as a string of at most n + 1 bits. The problem,
however, is that the number L of 1-types we need to consider is exponentially
large.

Example 2. Consider the formulas

φk := ∃=2kx> ∧
∧

1≤i≤k

∃=2k−1xpi(x), (3.3)

for k > 0. Each φk has a model in which all the 2k 1-types over the signature
p1, . . . , pk are realized exactly once. However, φk also has a model in which only
two 1-types—namely, {p1(x), . . . , pk(x)} and {¬p1(x), . . . ,¬pk(x)}—are real-
ized exactly 2k−1 times.

Example 2 raises the following question. If a C1-formula φ has a model—and
hence a finite model—what is the smallest number N such that φ has a finite
model A with every component of ν(A) bounded by N?

3.2 Systems of linear equations and inequalities

Consider the C1-formula
φ :=

∧

1≤i≤m

∃./iC1
γi, (3.4)

where m > 0, each ./i is one of ≤, = or ≥, and each γi is a quantifier-free L1-
formula. (Such formulas turn out to be sufficiently general for our purposes.)
For all i (1 ≤ i ≤ m) and j (1 ≤ j ≤ L), define

ai,j =

{

1 if |= πj → γi

0 otherwise.
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Suppose A is a finite structure interpreting the signature of φ. It is obvious that
A |= φ if and only if ν(A) is simultaneous non-negative integer solution of the
system of linear equations and inequalities

a1,1x1+ . . .+ a1,LxL ./1 C1

...
...

...
...

am,1x1+ . . .+ am,LxL ./m Cm,

(3.5)

Conversely, given any solution ν1, . . . νL of (3.5) over N with at least one non-
zero value, we can easily construct a model A of φ such that ν(A) = (ν1, . . . νL).

In view of the correspondence between models of C1-formulas and solutions
of systems of linear equations, we need to study the latter. We begin by recalling
some classic results.

Definition 2. Let E be a system of linear inequalities of the form (3.5), where
the Ci and the ai,j are integers, and the symbols ./i are one of ≤, = or ≥. We
take the size of E , denoted ‖E‖, to be measured in the obvious way, assuming
binary encoding of integers. Integer programming feasibility is the problem of
determining, for a given E , whether E has a solution over N. Linear programming
feasibility is the problem of determining, for a given E , whether E has a solution
over Q.

Theorem 4. Let E be a system of linear equations and inequalities of the
form (3.5), where the Ci and the ai,j are integers. If E has a solution over
N, then it has a solution in which every value is bounded by a fixed exponential
function of ‖E‖.

Theorem 4 will be used in Chapter 4. We mention one striking corollary
here.

Corollary 3. Integer programming feasibility is NP complete, and remains so
even when all coefficients are required to be either 0 or 1.

Proof. Membership in NP follows from Theorem 4. For if E is feasible with
‖E‖ = n, then there is a solution in which all values are bounded by an expo-
nential function of n. Using binary encoding, such a solution can be written
down and checked in time bounded by a polynomial function of n. NP-hardness
follows by an easy encoding of SAT.

By contrast to Corollary 3, we have:

Theorem 5. Linear programming feasibility is in PTIME.

This result will be used in Chapter 5.
Example 2 directed our attention to models of C1-formulas in which as few

1-types as possible are realized; we now return to this topic. To set the scene,
we first recall the following textbook result. Denote the set of non-negative
rationals by Q+.
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Lemma 8. Let E be a system of m linear equations with rational coefficients.
If E has a solution over Q+, then E has a solution over Q+ with at most m
non-zero entries.

Proof. We can write E as Ax = c, where A is a rational matrix with m rows
and, say, L, columns, and c is a rational column vector of length m. If b
is any solution of E in Q+ with k > m non-zero entries, the k columns of A
corresponding to these non-zero entries must be linearly dependent. Thus, there
exists a non-zero rational vector b′ with zero-entries wherever b has zero-entries,
such that Ab′ = 0. But then it is easy to find a rational number ε such that
b + εb′ is a solution of E in Q+ with fewer than k non-zero entries.

The question naturally arises as to the whether this bound is available when
solutions are sought in N, rather than Q+. The following result shows that it is
not.

Lemma 9. Fix m ≥ 6. Let A be the m× (m+ 1)-matrix given by

A =































1 1 1 0 0 0 0 0 . . . 0
0 1 1 1 0 0 0 0 . . . 0
0 0 1 1 1 0 0 0 . . . 0
0 0 0 1 1 1 0 0 . . . 0
0 0 0 0 1 1 1 0 . . . 0
0 0 0 0 0 1 1 1 . . . 0
...

...
0 0 0 0 0 0 0 0 . . . 0 1 1 1
1 1 0 1 0 0 1 0 . . . 0































,

in which a pattern of three 1s is shifted right across the first (m− 1) rows, and
the last row contains the seven entries shown on the left followed by (m− 6) 0s.
Let c be the column vector of length m given by

c = (3, 3, . . . , 3, 4)T

consisting of (m−1) 3s and a single 4. Then the unique solution of the system of
equations Ax = c over N is the column vector (1, . . . , 1)T consisting of (m+ 1)
1s.

Proof. Evidently, A(1, . . . , 1)T = c. Conversely, suppose b = (b1, . . . , bm+1)
T is

any solution of Ax = c in N. From the first row of A, b1 + b2 + b3 = 3, whence
b1, b2, b3 are either (i) the integers 0, 0, 3 in some order, or (ii) the integers 0, 1, 2
in some order or (iii) the integers 1, 1, 1. By considering rows 2 to m− 1 of A,
it is then easy to see that, in every case, these three values must recur, in the
same order, to the end of the vector: that is, b must have the form

(b1, b2, b3, b1, b2, b3, b1, . . .)
T .

From the last row of A, then, 3b1 + b2 = 4. Thus, b1, b2, b3 are certainly not
3, 0, 0, in any order. Suppose, then, b1, b2, b3 are 0, 1, 2, in some order. If b1 = 0,
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then 3b1 + b2 is at most 2; if b1 = 1, then 3b1 + b2 equals either 3 or 5; and if
b1 = 2, then 3b1 + b2 is at least 6. Thus, b1, b2, b3 are not 0, 1, 2, in any order,
whence b = (1, . . . , 1)T as required.

It follows that the argument of Lemma 8 cannot work for solutions over N.
Fortunately, however, an alternative approach is available.

Definition 3. A Boolean equation is any equation of the form a1x1+· · · anxn =
C, where each ai (1 ≤ i ≤ n) is either 0 or 1, and C is a natural number.

Lemma 10. Let E be a system of m Boolean equations in L variables. If E
has a solution over N, then E has a solution over N with at most m log(L + 1)
non-zero entries.

Proof. We write E as Ax = c, where A is a matrix of 0s and 1s with m rows and
L columns, c is a column vector over N of length m, and x = (x1, . . . xL)T . If E
has a solution over N, let b = (b1, . . . , bL)T be such a solution with a minimal
number k of non-zero entries. We show that

k ≤ m log(L+ 1). (3.6)

This condition is trivially satisfied if k = 0, so assume k > 0. Furthermore, by
renumbering the variables if necessary, we may assume without loss of generality
that bj > 0 for all j (1 ≤ j ≤ k). Now, if I ⊆ {1, . . . , k}, define vI to be the
m-element column vector (v1, . . . , vm)T , where

vi =
∑

j∈I

Ai,j .

That is, vI is the sum of those columns of A indexed by elements of I. Since
each vi (1 ≤ i ≤ m) is a natural number satisfying

vi ≤ L, (3.7)

the number of vectors vI (as I varies over subsets of {1, . . . , k}) is certainly
bounded by (L + 1)m. So suppose, for contradiction, that k > m log(L + 1).
Then 2k > (L+1)m, whence there must exist distinct subsets I, I ′ of {1, . . . , k}
such that vI = vI′ . Setting J = I \ I ′ and J ′ = I ′ \ I, it is evident that J and
J ′ are distinct (and disjoint), again with vJ = vJ′ . By interchanging J and J ′

if necessary, we may assume that J 6= ∅. Now define, for all j (1 ≤ j ≤ L):

b′j =











bj − 1 if j ∈ J

bj + 1 if j ∈ J ′

bj otherwise,

and write b′ = (b′1, . . . , b
′
L)T . Since J and J ′ are disjoint, the cases do not

overlap; and since the bj are all positive (1 ≤ j ≤ k), the b′j all lie in N.
Moreover,

Ab′ = Ab − vJ + vJ′ = Ab.



3.2. SYSTEMS OF LINEAR EQUATIONS AND INEQUALITIES 23

Since J is nonempty, min{b′j|j ∈ J}, is strictly smaller than min{bj|j ∈ J}.
Generating b′′, b′′′, etc. in this way (using the same J and J ′) will thus even-
tually result in a vector—say, b∗—with strictly fewer non-zero entries than b,
but with Ab∗ = Ab—a contradiction.

We now strengthen Lemma 10 to obtain a bound which does not depend on
L.

Lemma 11. Let E be a system of m Boolean equations. If E has a solution over
N, then E has a solution over N with at most 5

2m logm+ 1 non-zero entries.

Proof. The case m = 1 is trivial: if E has a solution, then it has a solution with
at most one non-zero entry. So assume henceforth that m > 1.

In the proof of Lemma 10, the inequality (3.7) can evidently be strengthened
to

vi ≤ k.

Proceeding exactly as for Lemma 10, we obtain, in place of (3.6), the inequality

k ≤ m log(k + 1).

Hence, for k positive, we have

k

log(k + 1)
≤ m. (3.8)

Now the left-hand side of (3.8) is greater than or equal to unity, and since the
function x 7→ x log x is monotone increasing for x ≥ e−1, we can apply it to
both sides of (3.8) to obtain

kZ(k) ≤ m logm, (3.9)

where, for all k > 0,

Z(k) =
log k − log log(k + 1)

log(k + 1)
.

It is straightforward to check that Z is monotone increasing on the positive
integers, and that Z(k) → 1 as k → ∞. (Indeed, for x > 0, the function
x 7→ log x/ log(x+ 1) is monotone increasing with limit 1 as x tends to ∞; and
for x ≥ 2e−1, the function x 7→ log log(x+1)/ log(x+1) is monotone decreasing
with limit 0.)

We may now establish that k ≤ 5
2m logm + 1. Calculation shows that

1/Z(7) ≈ 2.4542 < 5
2 . Therefore, since Z is monotone increasing, (3.9) yields,

for k ≥ 7, the inequalities k ≤ m logm/Z(k) ≤ m logm/Z(7) < 5
2m logm.

Obviously, if k ≤ 6, we have k ≤ 5
2m logm+ 1, since m ≥ 2 by assumption.

The proof of Lemma 11 actually shows a little more than advertised: for any
real c > 1, there exists a d such that, if E is a system of m Boolean equations
with a solution over N, then E has a solution over N with at most cm logm+ d
non-zero entries. (As c approaches unity, the required value of d given by the
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above proof quickly becomes astronomical.) It follows that none of these bounds
is optimal, in the sense of being achieved infinitely often.

Returning to the main business of this chapter, we have:

Lemma 12. The satisfiability (= finite satisfiability) problem for C1 is in NP.

Proof. Let φ be a given C1-formula. Compute the formula ψ given in (3.1),
Lemma 6, and guess an assignment of the truth-values for any nullary predicates
occurring on ψ. Carrying out routine logical simplification, we obtain a formula
of the form

∧

1≤h≤m

∃./hCh
γh,

giving rise to a system E of linear inequalities such that E has a non-zero solution
over N if and only if ψ is satisfiable. By Lemma 11, E has a non-zero solution
over N if and only if it has a non-zero solution with k ≤ 5

2m logm non-zero
values. Now simply guess a k ≤ 5

2m logm and set of indices J = {j1, . . . , jk} in
the range between 1 and L, and let E ′ be the system of equations and inequalities
obtained from E by ignoring those terms ai,jxj for which j 6∈ J . The system E ′

can be computed in polynomial time; and φ is satisfiable if and only if E ′ has a
non-zero solution over N. The result then follows by Corollary 3.

3.3 The numerically definite syllogistic

Define the fragment N 1 to be the set of C1-formulas of the forms

∃≥Cx(p(x) ∧ q(x)) ∃≥Cx(p(x) ∧ ¬q(x))
∃≤Cx(p(x) ∧ q(x)) ∃≤Cx(p(x) ∧ ¬q(x)),

(3.10)

where p and q are unary predicates. This fragment is of some historical and
linguistic interest, because we can think of unary predicates as corresponding
to common nouns, and the formulas (3.10) to English sentences of the forms

At least C p are q At least C p are not q
At most C p are q At most C p are not q,

(3.11)

respectively. (We have simplified the presentation here by ignoring the issue of
singular/plural agreement, which has no logical or computational significance.)
We call the fragment of English defined by these sentence-forms the numerically
definite syllogistic, loosely following the terminology of de Morgan.

The sentence Some p are q may be equivalently written At least 1 p is a q,
and the sentence All p are q may be equivalently—if somewhat unidiomatically—
written At most 0 p are not q. Thus, the numerically definite syllogistic gen-
eralizes the ordinary syllogistic mentioned in Chapter 2. We remark that the
sentence There are at least C p may be equivalently written At least C p are p;
and similarly for There are at most C p. So these sentences too are expressible
in N 1.
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We now proceed to establish a lower complexity bounds for N 1. Recall that
a graph is a pair G = (V,E) where V is a finite set (the ‘nodes’ of G) and E
is a set of 2-element subsets of V (the ‘edges’ of G). Note that graphs, in this
sense, have no ‘loops’ or ‘multiple edges’. A 3-colouring of G is a function t
mapping the nodes of G to the set {0, 1, 2} such that no edge of G joins two
nodes mapped to the same value. We say that G is 3-colourable if a 3-colouring
of G exists. The problem of deciding whether a given graph G is 3-colourable
is well-known to be NP-hard. We reduce it to C1-satisfiability.

Lemma 13. The satisfiability problem for N 1 is NP-hard.

Proof. By reduction of graph 3-colourability. Let G = (V,E) be a graph, and
assume without loss of generality that V = {1, . . . , n}. For all i (1 ≤ i ≤ n) and
k (0 ≤ k < 3), let pk

i be a fresh unary predicate. Think of pk
i (x) as saying: “x is

a colouring of G in which node i has colour k”. Let ΦG be the set of C1-formulas
consisting of

∃≤3x(p(x) ∧ p(x)) (3.12)

{∃≤0x(p
j
i (x) ∧ p

k
i (x)) | 1 ≤ i ≤ n, 0 ≤ j < k < 3} (3.13)

{∃≥1x(p
k
i (x) ∧ p(x)) | 1 ≤ i ≤ n, 0 ≤ k < 3} (3.14)

{∃≤0x(p
k
i (x) ∧ pk

j (x)) | (i, j) is an edge of G, 0 ≤ k < 3} (3.15)

We prove that ΦG is satisfiable if and only if G is 3-colourable.
Suppose A |= ΦG. By (3.12), |pA| ≤ 3. Fix any i (1 ≤ i ≤ n). No a ∈ pA

satisfies any two of the predicates p0
i , p

1
i , p

2
i , by (3.13); on the other hand, each

of these predicates is satisfied by at least one element of pA, by (3.14); therefore,
|pA| = 3, and each element a of pA satisfies exactly one of the predicates p0

i ,
p1

i , p
2
i . Now fix any a ∈ pA, and, for all i (1 ≤ i ≤ n), define ta(i) to be

the unique k (1 ≤ k < 3) such that A |= pk
i [a], by the above argument. The

formulas (3.15) then ensure that ta defines a colouring ofG. Conversely, suppose
that t : {1, . . . , n} → {0, 1, 2} defines a colouring of G. Let A be a structure
with domain A = {0, 1, 2}; let all three elements satisfy p; and, for all k ∈ A,
let pk

i be satisfied by the single element k + t(i) (where the addition is modulo
3). It is routine to verify that A |= ΦG.

Theorem 6. The satisfiability problem for any fragment between the numeri-
cally definite syllogistic and the 1-variable fragment with counting is NP-complete.

Proof. Lemmas 12 and 13.

Notice that the only numerical subscripts mentioned in the encoding of graph
colourability in Lemma 13 are 0, 1 and 3. It follows that this lemma continues
to hold even if if the size of a positive numerical quantifier subscript C is taken
to be C, rather than blogCc + 1. As we say, the problem Sat-N 1 is strongly
NP-complete: it is NP-complete, and remains so under non-succinct coding of
numerical inputs.
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3.4 Bibliographic notes

The system N , which we have called the numerically definite syllogistic, corre-
sponds loosely to the logic investigated by de Morgan [6]. The semantic appara-
tus in terms of which satisfiability (or, dually, validity) is understood today was
of course not available to de Morgan, who presents a collection of numerically
definite syllogisms—in effect, 2-premise proof-rules for the fragment N . De Mor-
gan’s system is certainly incomplete with respect to the semantics given here.
Similar systems (likewise incomplete) have been proposed by Murphree [24] and
Hacker and Parry [14]. For impossibility results on complete systems of numer-
ical syllogisms, see Pratt-Hartmann [32], Sec. 5, and [33].

Theorem 4 was proved by Borosh and Treybig [4]. Theorem 5 was proved
by Khachiyan [17].

The problem PSAT was shown to be in NP by Georgakopoulos et al. [8]. (For
a good textbook treatment, see Paris [28], Chapter 10.) Theorem 6 was first
proved, independently, by Kuncak and Rinard [19] and Pratt-Hartmann [32];
however, the fundamental combinatorial idea behind the proof actually appears
in Eisenbrand and Shmonina [7].



Chapter 4

The Two-Variable Fragment

with Counting

4.1 Normal forms

In this chapter, we consider the 2-variable fragment with counting quantifiers,
over a signature of unary and binary predicates, C2. The main result of this
chapter is that the problems Sat-C2 and Fin-Sat-C2 are both NEXPTIME-
complete.

The theorems and lemmas in this chapter all continue to hold for signatures
also featuring individual constants, nullary predicates or predicates of arity 3
or more. However, the addition of these non-logical primitives to C2 would
complicate the exposition, and would not essentially increase expressive power.
Consequently, we ignore them in the sequel. By contrast, adding function-
symbols to the signature would invalidate the key results of this chapter. In the
presence of counting quantifiers, equality is definable by the formula ∀xe(x, x)∧
∀x∃≤1ye(x, y). Consequently, we shall assume that the equality predicate ≈ is
available in C2.

The Löwenheim-Skolem-Tarski theorem guarantees that, if a first-order for-
mula has a model, then it has a finite or countably infinite model. Since we are
concerned with the satisfiability and finite satisfiability of first-order formulas in
this chapter, we shall silently take all structures to be either finite or countably
infinite.

The fragment C2 presents us with much greater challenges than any of the
fragments considered so far. For a start, C2 lacks the finite model property:

Example 3. The C2-formula φ given by

∀x∃ys(x, y) ∧ ∀x∃≤1ys(y, x) ∧ ∃x∀y¬s(y, x)

is satisfiable, but not finitely satisfiable. For let A = N and sA = {〈i, i+1〉 | i ∈
N}. Then A |= φ. On the other hand, suppose B |= φ. Since B |= ∀x∃ys(x, y),

27
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Figure 4.1: The tree Tn.

let f : B → B be a function such that f ⊆ sB. Since B |= ∀x∃≤1ys(y, x), f is
1–1. Since B |= ∃x∀y¬s(y, x), f is not onto. Therefore B is infinite.

Actually, matters are even worse than Example 3 might lead one to expect.
It turns out that even finitely satisfiable C2 formulas can require huge models.

Example 4. For n ≥ 0, let Tn be the complete, binary tree of depth 2n − 1,
as depicted in Fig. 4.1. (Note: if a is a node in any tree T , we take the depth
of a, denoted d(a), to be the number of edges on the unique path from a to the
root of T ; and we take the depth of T to be the depth of the deepest node.)
Thus, Tn contains 22n

− 1 elements. Recalling the representation of a natural
number n ≤ 2n − 1 as a string of binary digits dn−1, . . . , d0 (where the zeroth
digit d0 is the least significant), we interpret unary predicates X0, . . . , Xn−1 and
X∗

0 , . . . , X
∗
n and binary predicate r over Tn to form a model Tn, as follows. Let

Xi be satisfied by a node a just in case the ith digit of d(a) is 1. Likewise,
for i < n, let X∗

i be satisfied by a just in case d(a) < 2n − 1 and the least
significant zero-digit in d(a) is the ith digit; and let X∗

n be satisfied by a just in
case d(a) = 2n − 1. Finally, let r be satisfied by the pair of nodes 〈a, b〉 just in
case b is a daughter of a.

Let φn,0 be the conjunction of all formulas

∀x
(

X∗
i (x) ↔ ¬Xi(x) ∧

∧

0≤j<i

Xj(x)
)

,

for 0 ≤ i < n, together with the formula

∀x
(

X∗
n(x) ↔

∧

0≤j<n

Xj(x)
)

.

Thus, φn,0 fixes the interpretations of the X∗
i in terms of the Xi in the required

way. Let φn,1 be the conjunction of the following formulas

∀x∀y
(

r(x, y) → (X∗
i (x) → (¬Xj(y) ∧Xi(y)))

)

for 0 ≤ j < i < n, and

∀x∀y
(

r(x, y) → (X∗
i (x) → (Xj(x) ↔ Xj(y)))

)
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for 0 ≤ i < j < n. Recalling the standard algorithm for incrementing binary
numerals, we see that φn,1 asserts that the depth of a daughter of a node in T
is one greater than the depth of that node. Finally, let φn,2 be the conjunction
of the formulas

∃x
∧

0≤i<n

¬Xi(x) ∀x(¬X∗
n(x) → ∃≥2yr(x, y)) ∀x∃≤1yr(y, x).

Thus, φn,2 asserts that there is a node of depth zero, that each node of depth
less than 2n−1 has at least two daughters, and that no node has more that one
mother. Let φn = φn,0 ∧ φn,1 ∧ φn,2. Thus, Tn |= φn. Conversely, it is evident
that every model of φn contains an isomorphic copy of Tn.

We have shown that each φn is finitely satisfiable, but not satisfiable over
any domain containing fewer than 22n

elements. On the other hand, inspection
of the above formulas shows that ‖φn‖ grows as a polynomial function of n.

Example 3 shows that the problems Sat-C2 and Fin-Sat-C2 do not coin-
cide. Obviously, then, we cannot hope to establish the decidability of Sat-C2

by describing a procedure for guessing models of bounded size. Example 4
shows that even finitely satisfiable C2-formulas in general require models of
doubly-exponential size. Again, it follows that we cannot hope to establish that
Fin-Sat-C2 is in NEXPTIME by describing a procedure for guessing models of
exponential size. We remark that, in the course of the chapter, a matching
upper bound is obtained to Example 4: any finitely satisfiable C2 formula φ is
shown to have a model whose size is bounded by a doubly exponential function
of ‖φ‖. (A priori, this is by no means obvious.)

One technique of previous chapters that does usefully apply to C2, however,
is the existence of equisatisfiable Scott-form formulas.

Lemma 14. Let φ be a C2-formula. We can generate, in time bounded by a
polynomial function of ‖φ‖, a quantifier-free L2-formula α, a list of positive inte-
gers C1, . . . , Cm and a list of binary predicates f1, . . . , fm such that the formulas
φ and

ψ = ∀x∀y(α ∨ x ≈ y) ∧
∧

1≤h≤m

∀x∃=Ch
y(fh(x, y) ∧ x 6≈ y) (4.1)

are satisfiable over the same domains containing at least C + 1 elements, where
C = maxh Ch.

Proof. We construct the formula ψ in stages.

Stage 1: Let φ0 = ∀x∃y∃xφ. (Thus, φ0 and φ are satisfied in exactly the same
structures.) In the sequel, we take u, v to denote the variables x, y, in either
order. Suppose φ0 possesses a subformula θ(u) = ∃≤Dvχ, with χ quantifier-
free. Let p be a new unary predicate, and r1, r2 new binary predicates. Define
φ1 := φ0[p(u)/θ(u)] and

ψ1 := ∀u∃=Dvr1(u, v) ∧ ∀u∃=D+1vr2(u, v)∧

∀u∀v(p(u) → (χ→ r1(u, v))) ∧ ∀u∀v(¬p(u) → (r2(u, v) → χ)).
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We claim that φ0 and φ1∧ψ1 are satisfiable over the same domains containing
at least D + 1 elements. On the one hand, we have |= φ1 ∧ ψ1 → φ0. On the
other, if A |= φ0 with |A| ≥ D + 1, expand A to a structure A′ as follows. Set
A′ |= p[a] if and only if A |= θ[a]. For all a ∈ A, if A |= θ[a], set A′ |= r1[a, b]
for exactly D objects b ∈ A including all those b such that A |= χ[a, b]; and set
A′ |= r2[a, b] for exactly D + 1 (randomly chosen) objects b ∈ A. Likewise, if
A 6|= θ[a], set A′ |= r1[a, b] for exactly D (randomly chosen) objects b ∈ A; and
set A′ |= r2[a, b] for exactly D + 1 objects b ∈ A such that A |= χ[a, b]. It is
routine to check that A′ |= φ1 ∧ ψ1. Hence, φ0 and φ1 ∧ ψ1 are satisfiable over
the same domains of size D + 1 or more, as claimed. Similarly, if φ0 contains
a subformula of the forms Quχ, with Q any of ∃≥D ∃=D, ∀v or ∃v, proceed
analogously, subject to the obvious adjustments. Now process φ1 in the same
way, and continue until some formula φk is reached having the form ∀xχ, with
χ quantifier-free. Set

ψ′ := φk ∧ (ψk ∧ ψk−1 ∧ · · · ∧ ψ1).

Thus, ψ′ and φ0 (and hence φ) are satisfiable over the same domains of size at
least C′, where C′ is the largest quantifier subscript occurring in any of the ψi.

Stage 2: By performing various trivial logical manipulations, we way take ψ′

to be a conjunction of formulas of the forms

∀x∀yπ ∀x∃=Dys(x, y),

where π is a quantifier-free L2
≈-formula, s is a binary predicate and D > 0.

Let ψ′′ be the result of replacing any conjuncts ∀x∃=Dys(x, y) of ψ′ by the
four corresponding conjuncts

∀x∃=D−1y(s
′(x, y) ∧ x 6≈ y) ∀x∀y(s(x, x) → (s(x, y) ↔ s′(x, y)))

∀x∃=Dy(s
′′(x, y) ∧ x 6≈ y) ∀x∀y(¬s(x, x) → (s(x, y) ↔ s′′(r, y))),

where s′ and s′′ are new binary predicates. By an argument similar to that
employed above, ψ′ and ψ′′ are satisfiable over the same domains containing at
least D+ 1 elements. And, modulo some further trivial logical re-arrangement,
we may write

ψ′′ = ∀x∀yα′(x, y) ∧
∧

1≤h≤m

∀x∃=Ch
y(fh(x, y) ∧ x 6≈ y),

where α′(x, y) is a quantifier-free L2
≈-formula. Thus, φ and ψ′′ are satisfiable

over the same domains containing at least C+1 elements, where C = maxh Ch.

Stage 3: It remains only to reform the occurrences of ≈ in α′(x, y). We
proceed exactly as in Lemma 3, obtaining a quantifier-free L2-formula α such
that, restricting attention to domains containing at least 2 elements,

∀x∀yα′(x, y) ≡ ∀x∀y(α(x, y) ∨ x ≈ y)

For such domains, then, ψ′′ is logically equivalent to the formula ψ given in (4.1).
Moreover, it is obvious that the above computation can be effected in time
bounded by a polynomial function of ‖φ‖.
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4.2 Classified signatures and featured predicates

Lemma 14 allows us to restrict attention C2-formulas of the form

ψ = ∀x∀y(α ∨ x ≈ y) ∧
∧

1≤h≤m

∀x∃=Ch
y(fh(x, y) ∧ x 6≈ y),

where α is a quantifier-free L2-formula and the f1, . . . , fm are binary predicates.
In the analysis of models of such formulas, the binary predicates f1, . . . , fm play
a special role. Accordingly, we adopt the following terminology.

Definition 4. Let Σ be signature of unary and binary predicates, and f1, . . . , fm

(m > 0) a list of pairwise distinct binary predicates in Σ. The pair
〈Σ, (f1, . . . , fm)〉 is called a classified signature, and f1, . . . , fm are referred to
as its featured predicates.

The following definitions illustrate how classified signatures will be used in
the ensuing argument.

Definition 5. Let A be a structure interpreting a classified signature 〈Σ, f̄〉,
and let a ∈ A. The degree of a in A is the maximum number of elements of A
to which a is non-reflexively related by any of the featured predicates:

deg(a,A) = max
f

|{b ∈ A \ {a} | A |= f [a, b]}|,

where f ranges over the featured predicates f̄ . If, for some finite C, deg(a,A) ≤
C for all a ∈ A, then we say A is of finite degree, and write deg(A) to denote
the smallest such C.

Definition 6. Let 〈Σ, f̄〉 be a classified signature, and let τ be a 2-type over
Σ. We say that τ is a message-type (over Σ) if f(x, y) ∈ τ for some featured
predicate f . If τ is a message-type such that τ−1 is also a message-type, we say
that τ is invertible. On the other hand, if τ is a 2-type such that neither τ nor
τ−1 is a message-type, we say that τ is a silent 2-type.

Thus, a 2-type τ is an invertible message-type if and only if there are featured
predicates f and f ′ such that f(x, y) ∈ τ and f ′(y, x) ∈ τ . The terminology is
meant to suggest the following imagery. Let A be a structure interpreting the
classified signature in question. If tpA[a, b] is a message-type µ, then we may
imagine that a sends a message (of type µ) to b. If µ is invertible, then b replies
by sending a message (of type µ−1) back to a. If tpA[a, b] is silent, then neither
element sends a message to the other.

At this point, we are ready for a technical lemma regarding structures inter-
preting classified signatures; this lemma will be useful in several places in the
ensuing argument.

Lemma 15. Let A be a structure of finite degree interpreting a classified signa-
ture 〈Σ, f̄〉 with m featured predicates, and let C = deg(A). Suppose that π and
π′ are 1-types over Σ (not necessarily distinct), both realized in A more than
(mC + 1)2 times. Then there exist distinct elements b, b′ with tpA[b] = π and
tpA[b′] = π′, such that tpA[b, b′] is a silent 2-type.
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Proof. Let B be a set of elements having 1-type π, with |B| = (mC)2 +mC+1,
and let B′ be a set of elements having 1-type π′, disjoint from B, with |B′| =
mC + 1. (Note that, since |B| + |B′| = (mC + 1)2 + 1, and since π and π′ are
realized in A at least (mC+1)2+1 times, such sets can be found even if π = π′.)
Let

B0 = {b ∈ B | for some b′ ∈ B′, b′ sends a message to b}.

Since deg(A) = C and |B′| = mC + 1, we have |B0| ≤ mC(mC + 1). So let
b ∈ B \ B0. But again, since b can send a message to at most mC elements of
B′, there exists b′ ∈ B′ such that b does not send a message to b′.

The greatest challenge when analysing the fragment C2 is the varied nature
of the models of its formulas. It is therefore important to be able to confine
attention to structures exhibiting certain characteristics which make them easier
to manipulate. The notions of chromaticity and differentiation are particularly
valuable in this regard.

Definition 7. Let A be a structure interpreting a classified signature 〈Σ, f̄〉.
We say that A is chromatic if distinct elements connected by a chain of 1 or 2
invertible message-types have distinct 1-types. That is, A is chromatic just in
case, for all a, a′, a′′ ∈ A:

1. if a 6= a′ and tpA[a, a′] is an invertible message-type, then tpA[a] 6= tpA[a′];
and

2. if a, a′, a′′ are pairwise distinct and both tpA[a, a′] and tpA[a′, a′′] are in-
vertible message-types, then tpA[a] 6= tpA[a′′].

Chromatic structures are easy to work with because they exhibit the follow-
ing properties:

Remark 3. Let A be a chromatic structure interpreting a classified signature
〈Σ, f̄〉, and let π′ be a 1-type over Σ. Let a be an element of A. Then there is
at most one element a′ ∈ A \ {a} with 1-type π′ such that a sends an invertible
message to a′. Furthermore, if tpA[a] = π′, then there is no such element a′.
(Fig. 4.2.)

Structures of finite degree interpreting a classified signature 〈Σ, f̄〉 can be
rendered chromatic by means of a modest expansion:

Lemma 16. Let 〈Σ, f̄〉 be a classified signature with m featured predicates, and
let A be a structure of finite degree interpreting Σ. Then A can be expanded to a
chromatic structure A′ by interpreting dlog((mC)2 + 1)e new unary predicates,
where C = deg(A).

Proof. Consider the (undirected) graph G on A whose edges are the pairs of
distinct elements connected by a chain of 1 or 2 invertible message-types. That
is, G = (A,E1 ∪E2), where
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Figure 4.2: Invertible messages sent by a in a chromatic structure A: neither a′

nor a′′ can have the same 1-type as a′.

E1 ={(a, a′) |a 6= a′ and tpA[a, a′] is an invertible message-type}
E2 ={(a, a′′) | a 6= a′′ and for some a′ ∈ A, (a, a′) and (a′, a′′) are

both in E1}.

Since A has degree C, the degree of G (in the normal graph-theoretic sense) is
at most (mC)2. Now use the standard (greedy) algorithm to colour the nodes
of G with (mC)2 + 1 colours in such a way that no edge joins two nodes of
the same colour. By interpreting the dlog((mC)2 + 1)e new unary predicates to
encode these colours, we obtain the desired chromatic expansion of A.

We turn now to the concept of differentiation:

Definition 8. Let A be a structure interpreting a signature Σ, and let K be a
positive integer. We say that A is K-differentiated if, for every 1-type π over Σ,
the number u of elements in A having 1-type π satisfies either u ≤ 1 or u > K.

Thus, in a K-differentiated structure, every 1-type is realized either at most
once or more than K times. Any structure can be made differentiated by means
of a modest expansion; moreover, such an expansion preserves chromaticity:

Lemma 17. Let A be a chromatic structure of finite degree interpreting a
classified signature 〈Σ, f̄〉, and let K be a positive integer. Then, by inter-
preting dlogKe new unary predicates, A can be expanded to a chromatic, K-
differentiated structure A′ with deg(A) = deg(A′).

Proof. For each 1-type π realized more than once but no more than K times,
colour the elements having 1-type π using K different colours. For each 1-type
π′ realized either once or more than K times, colour the elements having 1-
type π′ using a single colour. At most K colours are required for this process.
By interpreting the dlogKe new unary predicates to encode these colours, we
obtain the desired expansion A′. This process obviously preserves chromaticity
and degree.

4.3 Structures interpreting classified signatures

In this section, we fix an arbitrary classified signature 〈Σ, (f1, . . . , fm)〉. Let s
be the total number of predicates in Σ. As in Chapter 3, we assume a standard
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〈Σ, f̄〉 a classified signature
s the number of symbols in Σ
L the number of 1-types over Σ
M∗ the number of invertible message-types over Σ
M the number of message-types over Σ
π1, . . . , πL the 1-types over Σ
µ1, . . . , µM∗ the invertible message-types over Σ
µM∗+1, . . . , µM the non-invertible message-types over Σ

Table 4.1: Quick reference guide to symbols.

enumeration π1, . . . , πL of the 1-types over Σ, where L = 2s. We may like-
wise assume some standard enumeration µ1, . . . , µM of the message-types over
Σ. Again, the ordering of message-types in this enumeration is essentially ar-
bitrary: for notational convenience, however, we shall insist that the invertible
message-types always precede the non-invertible message-types in this enumera-
tion. Thus, we assume that the message-types over Σ are standardly enumerated
as

µ1, . . . , µM∗ , µM∗+1, . . . , µM ,

where µ1, . . . , µM∗ are the invertible message-types, and µM∗+1, . . . , µM the
non-invertible message-types. The above notation, which will be used through-
out this section, is summarized in Table 4.1.

Remark 4. The number M of message-types over Σ satisfies M ≤ m24s−1.

Our first task is to acquire the means to talk about ‘local configurations’ in
structures of finite degree interpreting Σ.

Definition 9. Let A be a structure of finite degree interpreting Σ, and let
a be an element of A. The profile of a in A, denoted prA[a], is the M -tuple
v̄ = (v1, . . . , vM ) of natural numbers where, for all j (1 ≤ j ≤M),

vj = |{b ∈ A \ {a} : tpA[a, b] = µj}|.

The tuple prA[a] records, for each message-type µj (1 ≤ j ≤ M), how
many elements a sends a message of type µj to. Since A is assumed to be of
finite degree, this number must be finite. For the next definition, recall that
(Notation 1), if τ is a 2-type (with variables x, y), then tp1(τ) is the 1-type
consisting of those literals in τ not featuring y.

Definition 10. A star-type over Σ is a pair σ = 〈π, v̄〉, where π is a 1-type
over Σ and v̄ = (v1, . . . , vM ) is an M -tuple of natural numbers satisfying the
condition that, for all j (1 ≤ j ≤M),

vj > 0 implies tp1(µj) = π.
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If A is a structure of finite degree interpreting Σ, and a ∈ A, then 〈tpA[a], prA[a]〉
is evidently a star-type, which we call the star-type of a in A, denoted stA[a].
We say that the star-type σ is realized in A if σ = stA[a] for some a ∈ A.

It helps to think of stA[a] as a description of a’s ‘local environment’ in A.
Thus, a star-type σ = 〈π, v̄〉 is a description of a possible such local environment.
Importantly, certain features of structures are expressed as features of these local
environments.

Definition 11. Let σ = 〈π, (v1, . . . , vM )〉 be a star-type over Σ. We call σ
C-bounded if, for all h (1 ≤ h ≤ m),

∑

{vj | 1 ≤ j ≤M and fh(x, y) ∈ µj} ≤ C.

Furthermore, we call σ chromatic if, for every 1-type π′, the sum

c =
∑

{vj | 1 ≤ j ≤M∗ and tp2(µj) = π′}

satisfies c ≤ 1, and satisfies c = 0 if π′ = π.

Remark 5. Let A be a structure of finite degree interpreting Σ and C a natural
number. Then deg(A) ≤ C if and only if every star-type realized in A is C-
bounded. Furthermore, A is chromatic if and only if every star-type realized in
A is chromatic.

The concept of C-bounded star-types is important, because (having fixed
〈Σ, f̄〉) there are only finitely many of them. For the next remark, recall that
m is the number of featured predicates, L the number of 1-types, and M the
number of message-types.

Notation 2. If σ = 〈π, (v1, . . . , vM )〉 is a star-type, we denote the number vj

(1 ≤ j ≤M) by σ[j].

Remark 6. Let σ be a C-bounded star-type over Σ. Then, for all j (1 ≤
j ≤ M), σ[j] ≤ C, and, in fact,

∑

1≤j≤M σ[j] ≤ mC. Further, if C is a
natural number, the number of C-bounded star-types over Σ is bounded above by
L(C + 1)M .

Since M can be as high as m24s−1, where s is the number of symbols in Σ,
the expression L(C + 1)M represents a doubly-exponential function of s, which
as we shall see, is too rapidly-growing for the complexity bounds we hope to
achieve. Obtaining a tighter bound on the the number of different star-types
realized in models of C2-formulas is thus one of the key issues to be addressed in
this chapter; however, for the present, we put this issue to one side. We mention
one further, obvious property of chromatic star-types.

Remark 7. Let σ be a chromatic star-type over Σ, and let j and j′ be integers
between 1 and M∗ (so that µj and µj′ are invertible message-types). If µ−1

j =

µj′ , then either σ[j] = 0 or σ[j′] = 0. In particular, if µ−1
j = µj, then σ[j] = 0.



36 CHAPTER 4. THE TWO-VARIABLE FRAGMENT WITH COUNTING

Having dealt with characterizations of local configurations in structures in-
terpreting Σ, we now turn to characterizations of entire structures. We begin
with an auxiliary notion.

Definition 12. Let A be a structure interpreting Σ, and let π, π′ be 1-types
(not necessarily distinct). We say that π and π′ form a quiet pair in A if there
exist distinct a, a′ ∈ A such that tpA[a] = π, tpA[a′] = π′, and tpA[a, a′] is a
silent 2-type.

Informally, π and π′ form a quiet pair just in case some element with 1-type
π neither sends a message to, nor receives a message from, some element (itself
excepted) with 1-type π′.

Definition 13. Let Ξ denote the set of silent 2-types over Σ, and let I be the
set of unordered pairs of (not necessarily distinct) integers between 1 and L:
that is, I = {{i, i′} | 1 ≤ i ≤ i′ ≤ L}. A frame (over Σ) is a tuple F = (σ̄,Q, θ),
satisfying:

1. σ̄ = (σ1, . . . , σN ) is an N -tuple of pairwise distinct star-types for some
N > 0;

2. Q ⊆ I; and

3. θ : Q → Ξ is a function such that, for all {i, i′} ∈ Q with i ≤ i′,
tp1(θ({i, i

′})) = πi and tp2(θ({i, i
′})) = πi′ .

The dimension of F is N .

Think of a frame F = (σ̄,Q, θ) as a (putative) schematic description of a
structure, where σ̄ tells us which star-types are realized, Q tells us which pairs
of 1-types are quiet, and θ selects, for each quiet pair of 1-types, a silent 2-type
joining them. More precisely:

Definition 14. Let A be a structure interpreting Σ, and let F = (σ̄,Q, θ) be a
frame over Σ. We say that F describes A if the following conditions hold:

1. σ̄ is a list of all and only those star-types realized in A;

2. if πi and πi′ form a quiet pair in A, then {i, i′} ∈ Q;

3. if πi and πi′ form a quiet pair in A, then there exist distinct a, a′ ∈ A such
that tpA[a, a′] = θ({i, i′}).

Any structure A interpreting Σ is evidently described by some (not neces-
sarily unique) frame.

Definition 15. Let F = (σ̄,Q, θ) be a frame over Σ. We call F C-bounded
if every star-type in σ̄ is C-bounded. Likewise, we call F chromatic if every
star-type in σ̄ is chromatic.

The following remark is just a re-statement of Remark 5.
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Remark 8. Let A be a structure of finite degree interpreting Σ, and let F
be a frame describing A. Then deg(A) ≤ C if and only if F is C-bounded.
Furthermore, A is chromatic if and only if F is chromatic.

Thus, certain interesting properties of A correspond to properties of the frames
which describe it.

However, while every structure interpreting Σ is described by some frame,
not every frame over Σ describes a structure; and it is important for us to define
a class of frames which do. To this end, we associate with a frame F a collection
of numerical parameters, as follows.

Notation 3. Let F = (σ̄,Q, θ) be a frame over Σ, where σ̄ = (σ1, . . . , σN ), for
some N > 0, and recall the notation established in Table 4.1. If F is clear from
context, for integers i, k in the ranges 1 ≤ i ≤ L, 1 ≤ k ≤ N write:

oik =

{

1 if tp(σk) = πi

0 otherwise;

pik =

{

1 if, for all j (1 ≤ j ≤M), tp2(µj) = πi implies σk[j] = 0

0 otherwise;

rik =
∑

j∈J

σk[j], where J = {j | M∗ + 1 ≤ j ≤M and tp2(µj) = πi};

sik =
∑

j∈J

σk[j], where J = {j | 1 ≤ j ≤M and tp2(µj) = πi}.

In addition, for integers i, j in the ranges 1 ≤ i ≤ L, 1 ≤ j ≤M∗, write:

qjk = σk[j].

These parameters have the following intuitive interpretations.

Remark 9. Let A be a structure of finite degree interpreting Σ, and let F be a
frame describing A. Then the symbols oik, pik, qjk, rik and sik in Notation 3
have the following interpretations with respect to A:

1. oik = 1 just in case every element with star-type σk has 1-type πi;

2. pik = 1 just in case no element with star-type σk sends a message to any
element having 1-type πi;

3. qjk counts how many messages of (invertible) type µj any element having
star-type σk sends;

4. rik is the total number of elements having 1-type πi to which any element
having star-type σk sends a non-invertible message; and

5. sik is the total number of elements having 1-type πi to which any element
having star-type σk sends a message.
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With this notation in hand we can characterize a class of frames whose
members are guaranteed to describe finite structures over Σ.

Definition 16. Let F = (σ̄,Q, θ) be a frame over Σ, where σ̄ = (σ1, . . . , σN ).
Let w̄ = (w1, . . . , wN ) be a tuple of positive integers. Using Notation 3, for all
i (1 ≤ i ≤ L), all i′ (1 ≤ i′ ≤ L) and all j (1 ≤ j ≤M∗), let:

ui =
∑

1≤k≤N

oikwk vj =
∑

1≤k≤N

qjkwk xii′ =
∑

1≤k≤N

oikpi′kwk.

Let Z be a positive integer. We say that w̄ is a finite Z-solution of F if the
following conditions are satisfied for all i (1 ≤ i ≤ L), all i′ (1 ≤ i′ ≤ L), all j
(1 ≤ j ≤M∗) and all k (1 ≤ k ≤ N):

(C1) vj = vj′ , where j′ is such that µ−1
j = µj′ ;

(C2) sik ≤ ui;

(C3) ui ≤ 1 or ui > Z;

(C4) if oik = 1, then either ui > 1 or ri′k ≤ xi′i;

(C5) if {i, i′} 6∈ Q, then either ui ≤ 1 or ui′ ≤ 1;

(C6) if {i, i′} 6∈ Q and oik = 1, then ri′k ≥ xi′i.

If a finite Z-solution exists, F is said to be finitely Z-solvable.

The conditions C1–C6 in Definition 16 form a system E of linear equations
and inequalities with integer coefficients; and F is finitely Z-solvable if and only
if E has an a solution over the natural numbers. Moreover, if F , Z and E are
encoded in the obvious way (in particular, with integers represented as binary
strings), we see that ‖E‖ is bounded by a polynomial function of ‖F‖+ blogZc.

Lemma 18. The problem of determining whether a frame F over a classified
signature is finitely Z-solvable is in NP, given standard encoding of the inputs
F and Z.

Proof. Immediate from Corollary 3

Remark 10. Let A be a structure of finite degree interpreting Σ, and let F =
(σ̄,Q, θ) be a frame describing A. For all k (1 ≤ k ≤ N), let wk be the number
of elements of A having star-type σk in A. In that case, the symbols ui, vj and
xii′ in Definition 16 have the following interpretations with respect to A:

1. ui is the number of elements a ∈ A such that tpA[a] = πi;

2. vj is the number of pairs 〈a, b〉 ∈ A2 such that a 6= b and tpA[a, b] = µj;

3. xii′ is the number of elements a ∈ A such that tpA[a] = πi and a does not
send a message to any element having 1-type πi′ .
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Recall the notion of differentiation introduced in Definition 8.

Lemma 19. Suppose A is a finite structure interpreting Σ (hence, of finite
degree), let C = deg(A), let K ≥ (mC + 1)2, and let F = (σ̄,Q, θ) be a frame
describing A. If A is K-differentiated, then F has a finite K-solution.

Proof. Let σ̄ = (σ1, . . . , σN ), and let wk = |{a ∈ A : stA[a] = σk}| for all k
(1 ≤ k ≤ N). We show that w̄ = (w1, . . . , wN ) is a solution of F . In doing
so, we make free use of Remarks 9 and 10. Note that, by construction, the
w1, . . . , wN are all positive.

C1: If µ−1
j = µj′ , then the sets {〈a, b〉 | a 6= b and tpA[a, b] = µj} and {〈a, b〉 |

a 6= b and tpA[a, b] = µj′} can obviously be put in 1–1 correspondence, namely:
〈a, b〉 7→ 〈b, a〉. But the cardinalities of these sets are vj and vj′ , respectively.

C2: Since F describes A, any element of A having star-type σk sends a message
to exactly sik elements having 1-type πi. But ui is the number of elements of
A having 1-type πi. Since σk is realized in A, sik ≤ ui.

C3: Immediate given that A is K-differentiated.

C4: If oik = 1 and ui ≤ 1, then ui = 1, so that A contains exactly one element
with 1-type πi; moreover, this element has star-type σk. Denote this element by
a. Thus, a sends a non-invertible message to exactly ri′k elements with 1-type
πi′ . Clearly, none of these elements sends a message back to a (since otherwise
a’s message to it would be invertible), so that there exist at least ri′k elements
with 1-type πi′ which do not send a message to a. But since a is the only element
with 1-type πi, there exist at least ri′k elements with 1-type πi′ which do not
send a message to any element having 1-type πi. In other words, ri′k ≤ xi′i.

C5: Suppose ui > 1 and ui′ > 1. Now, the structure A isK-differentiated; hence
ui > (mC + 1)2, and ui′ > (mC + 1)2. But deg(A) = C, so that Lemma 15
implies that πi and πi′ form a quiet pair in A, and hence, since F describes A,
that {i, i′} ∈ Q.

C6: Since F describes A, {i, i′} 6∈ Q implies that πi and πi′ do not form a quiet
pair in A. Now if oik = 1, there exists at least one element a having 1-type
πi and star-type σk. Moreover, there are xi′i elements having 1-type πi′ which
do not send a message to any element having 1-type πi, and hence at least xi′i

elements having 1-type πi′ which do not send a message to a. Therefore, a sends
a message (in fact, a non-invertible message) to all of these elements. But since
a has star-type σk, a sends a non-invertible message to exactly ri′k elements
having 1-type πi′ . Thus, ri′k ≥ xi′i.

We now prove a converse of Lemma 19, for the special case of chromatic
frames.

Lemma 20. Let F be a chromatic, C-bounded frame, and let K ≥ 3mC. If
F has a finite K-solution, then there exists a finite structure A such that F
describes A.
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Proof. Let F = (σ̄,Q, θ), let σ̄ = (σ1, . . . , σN ), and let w̄ = (w1, . . . , wN ) be
a finite K-solution of F . In the sequel, we use the symbols oik, pik, qjk, rik
and sik (with indices in the appropriate ranges), as specified in Notation 3, and
the symbols ui, vj and xii′ (again, with indices in the appropriate ranges), as
specified in Definition 16. Hence, the conditions C1–C6 of Definition 16 hold.

For every k (1 ≤ k ≤ N), let Ak be a set of cardinality wk, and let A be the
disjoint union of the Ak. Think of Ak as the set of elements which ‘want’ to
have star-type σk. In addition, we define for all i (1 ≤ i ≤ L), all i′ (1 ≤ i′ ≤ L)
and all j (1 ≤ j ≤M∗):

Ui =
⋃

{Ak | 1 ≤ k ≤ N and oik = 1}

Xii′ =
⋃

{Ak | 1 ≤ k ≤ N and oikpi′k = 1}

Vj =
⋃

{Ak | 1 ≤ k ≤ N and qjk = 1}.

Since F is chromatic, qjk ≤ 1 for all j (1 ≤ j ≤ M∗) and all k (1 ≤ k ≤ N).
Thus, for all i, i′ and j in the appropriate ranges:

|Ui| = ui; |Xii′ | = xii′ ; |Vj | = vj .

Think of Ui as the set of elements which ‘want’ to have 1-type πi, Xii′ as the
set of elements in Ui which do not ‘want’ to send a message to any element in
Ui′ , and Vj as the set of elements which ‘want’ to send an (invertible) message
of type µj to some other element. We remark that Ak ⊆ Ui if and only if
tp(σk) = πi. Moreover, for all j (1 ≤ j ≤M∗), if Vj 6= ∅, there exists a unique i
(1 ≤ i ≤ L) such that Vj ⊆ Ui—namely, that i such that tp1(µj) = πi. We now
convert the domain A into a structure A in four steps.

Step 1 (Interpreting the unary predicates and diagonals of binary predicates):
For every k (1 ≤ k ≤ N) and every a ∈ Ak, set tpA[a] = tp(σk). At the end of
this step, we have, for every i (1 ≤ i ≤ L) and every a ∈ Ui, tpA[a] = πi.

Step 2 (Fixing the invertible message-types): For every j (1 ≤ j ≤ M∗), let
j′ be such that µ−1

j = µj′ . By C1, Vj and Vj′ are equinumerous. If j′ > j,
pick some 1–1 correspondence between Vj and Vj′ ; and for every a ∈ Vj , set
tpA[a, a′] = µj , where a′ is the element of Vj′ corresponding to a ∈ Vj . This
completes Step 2. We must show that these assignments are meaningful, do
not clash with Step 1, and do not clash with each other. Suppose then that
the assignment tpA[a, a′] = µj is made, and that µ−1

j = µj′ . Thus, a ∈ Vj

and a′ ∈ Vj′ . To show that the assignment is meaningful, we must prove that
a 6= a′. For contradiction, suppose a = a′, and let k be such that a ∈ Ak.
But then σk[j] > 0 and σk[j′] > 0, which is impossible by Remark 7. To show
that the assignment does not clash with Step 1, suppose µ−1

j = µj′ , and let i,
i′ be such that Vj ⊆ Ui and Vj′ ⊆ Ui′ . As observed above, πi = tp1(µj) and
πi′ = tp1(µj′) = tp2(µj), which conforms to the assignments in Step 1. To show
that these assignments do not clash with each other, it suffices to prove that,
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Case 5: ui, ui′ > K ≥ 3mC

Figure 4.3: Dealing with non-invertible messages between Ui and Ui′ .

if a ∈ Vj ∩ Vh, a′ ∈ Vj′ ∩ Vh′ µ−1
j = µj′ and µ−1

h = µh′ , then j = h. Suppose
then that the antecedent of this conditional holds; let k and k′ be such that
a ∈ Ak and a′ ∈ Ak′ . Then σk′ [j′] > 0 and σk′ [h′] > 0. Since σk′ is a star-type,
tp1(µj′ ) = tp1(µh′), whence tp2(µj) = tp2(µh). But σk[j] > 0 and σk[h] > 0,
and since σk is a chromatic star-type, j = h. Note that, if µ−1

j = µj , then
Vj = ∅ by Remark 7. Thus, at the end of Step 2, for every element a ∈ A and
every j (1 ≤ j ≤ M∗), a sends a (unique) message of type µj to some other
element if and only if a ∈ Vj . That is: for all k (1 ≤ k ≤ N), all a ∈ Ak, and all
j (1 ≤ j ≤ M∗), there are exactly σk[j] elements a′ ∈ A such that a 6= a′ and
tpA[a, a′] = µj . We make one further observation before proceeding. Suppose
that tpA[a, a′] is assigned in this step and that a ∈ Ui; we claim that a′ 6∈ Xi′i

for any i′. To see this, suppose a ∈ Vj ⊆ Ui and a′ ∈ Ak′ ⊆ Vj′ , with µ−1
j = µj′ .

Then tp1(µj) = tp2(µj′) = πi. But then σk′ [j′] > 0, whence pik′ = 0, whence
a′ 6∈ Xi′i. This observation will be useful in Step 3.

Step 3 (Fixing the non-invertible message-types): Let i and i′ be such that
1 ≤ i ≤ i′ ≤ L. We fix all the non-invertible messages sent, in either direction,
between Ui and Ui′ . By C3, either ui ≤ 1 or ui > K; similarly, either ui′ ≤ 1
or ui′ > K. We consider five cases.

Case 1: ui = 0. In this case, there are no elements of Ui and hence no 2-type
assignments to be made between elements of Ui and elements of Ui′ . Note that,
by C2, sik = 0 for all k (1 ≤ k ≤ N), whence σk[j] = 0 for all k (1 ≤ k ≤ N)
and for all j (1 ≤ j ≤ M) such that tp2(µj) = πi. (Intuitively, no element
of A—and in particular of Ui′—‘wants’ to send a message to an element with
1-type πi anyway.)

Case 2: ui = 1. The situation is illustrated in the left-hand diagram of Fig. 4.3.
Let a be the sole element of Ui, and let k be such that a ∈ Ak. We deal first with
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the assignment of non-invertible messages sent from Ui′ to Ui = {a}. Consider
any a′ ∈ Ak′ ⊆ Ui′ . By C2, sik′ ≤ 1; hence there is at most one value of j in the
range 1 ≤ j ≤M such that tp2(µj) = πi and σk′ [j] > 0. Suppose then that such
a j exists. Again, since sik′ ≤ 1, σk′ [j] = 1. If j ≤ M∗, then this message has
already been dealt with in Step 2; so we may assumeM∗+1 ≤ j ≤M . It follows
from C4 that i 6= i′. Hence a 6= a′, so that we may set tpA[a′, a] = µj . Since
tp1(µj) = πi′ and tp2(µj) = πi, this assignment does not clash with Step 1.
Observe also that, just as in Step 2, if this assignment is made, we have, by
definition, pik′ = 0, so that a′ 6∈ Xi′i. By carrying out the same procedure for
all a′ ∈ Ui′ , we complete the assignment of non-invertible messages sent from Ui′

to Ui. It remains to deal with the non-invertible messages sent from Ui = {a} to
Ui′ . Remembering that a ∈ Ak, C4 ensures the existence of a subset R ⊆ Xi′i

such that |R| = ri′k. For each j (M∗ +1 ≤ j ≤M), if tp2(µj) = πi′ , select σk[j]
fresh elements a′ of R, and make the assignment tpA[a, a′] = µj . (There are
enough such elements by the definition of ri′k.) These assignments clearly do
not clash with those made in Step 1. Moreover, we have observed that tpA[a, a′]
has previously been assigned (either in this step or in Step 2) only if a′ 6∈ Xi′i.
Thus, these assignments do not clash with those made earlier in this step or
those made in Step 2.

Case 3: ui′ = 0 and ui > K. Symmetrical to Case 1.

Case 4: ui′ = 1 and ui > K. Symmetrical to Case 2.

Case 5: ui > K and ui′ > K. Since K ≥ 3mC, partition Ui into three sets Ui0,
Ui1, Ui2, each containing at least mC elements; and similarly for Ui′ . Suppose
a ∈ Ui. Then for some h (0 ≤ h < 3), a ∈ Uih. Let k be such that a ∈ Ak,
and let h′ = h + 1 (mod 3). For all j (M∗ + 1 ≤ j ≤ M), select σk[j] fresh
elements a′ of Ui′h′ such that tpA[a, a′] was not assigned in Step 2, and set
tpA[a, a′] = µj . By Since σk is C-bounded, by Remark 6,

∑

1≤j≤M σk[j] ≤ mC;
and since |Ui′h′ | ≥ mC, we never run out of fresh elements to select. In this way,
we deal with all messages sent from Ui to Ui′ ; the messages sent from Ui′ to Ui

are dealt with symmetrically. It is obvious that these assignments do not clash
with Step 1 or Step 2; and the fact that h′ = h+ 1 (mod 3), ensures that they
do not clash with each other (even if i = i′), as is evident from the right-hand
diagram of Fig. 4.3.

Performing these assignments for all pairs i, i′ such that 1 ≤ i ≤ i′ ≤ L completes
Step 3. At the end of Step 3, then, for all k (1 ≤ k ≤ N), all a ∈ Ak, and all
j (1 ≤ j ≤ M), there are exactly σk[j] elements a′ ∈ A such that a 6= a′ and
tpA[a, a′] = µj .

Step 4 (Fixing the silent 2-types): Finally, we use the components Q and θ of
F = (σ̄,Q, θ) to deal with all the remaining 2-types in A. Let a, a′ be distinct
elements of A such that tpA[a, a′] has not yet been assigned. Let i, i′, k, k′

be such that a ∈ Ak ⊆ Ui and a′ ∈ Ak′ ⊆ Ui′ , and assume, without loss of
generality, that i ≤ i′. We claim that {i, i′} ∈ Q. For suppose otherwise.
By C5, we have either ui = 1 or ui′ = 1. Assume the former. If pik′ = 0,



4.3. STRUCTURES INTERPRETING CLASSIFIED SIGNATURES 43

then there is some j′ (1 ≤ j′ ≤ M) such that σk′ [j′] > 0 and tp2(µj′) = πi,
whence—bearing in mind that a is the unique element of Ui—tpA[a, a′] will
certainly have been assigned in Step 2 (if µj′ is an invertible message-type)
or in Step 3 Case 2 (if µj′ is a non-invertible message-type), contradicting the
fact that tpA[a, a′] is unassigned. Thus, pik′ = 1, and hence oi′k′pik′ = 1.
That is: a′ ∈ Xi′i. But |Xi′i| = xi′i. And by C6, xi′i ≤ ri′k. Yet in Step 3
(Case 2), ri′k elements of Xi′i were chosen to receive messages from a. Hence
a′ must be among these elements, again contradicting the fact that tpA[a, a′]
is unassigned. The case where ui′ ≤ 1 proceeds symmetrically. Thus, we have
established that, if tpA[a, a′] has not yet been assigned, then {i, i′} ∈ Q, so that
we can make the assignment tpA[a, a′] = θ({i, i′}). Since tp1(θ({i, i

′})) = πi and
tp2(θ({i, i

′})) = πi′ , there is no clash with Step 1. Evidently, we can proceed in
this way until all remaining 2-types have been assigned. Moreover, since each
θ({i, i′}) is silent, this step does not spoil the work of Steps 2–3: we still have
that, for all k (1 ≤ k ≤ N), all a ∈ Ak, and all j (1 ≤ j ≤M), there are exactly
σk[j] elements a′ ∈ A such that a 6= a′ and tpA[a, a′] = µj .

This completes the construction of A. It is easy to see that F describes A.

We need to generalize the above results to allow us to deal with infinite
structures. In fact, there is little further work to do.

Notation 4. Let N∗ denote the set N∪{ℵ0}. We extend the ordering > and the
arithmetic operations + and · from N to N∗ in the obvious way. Specifically, we
define ℵ0 > n for all n ∈ N; we define ℵ0+ℵ0 = ℵ0 ·ℵ0 = ℵ0 and 0·ℵ0 = ℵ0·0 = 0;
we define n+ ℵ0 = ℵ0 +n = ℵ0 for all n ∈ N; and we define n · ℵ0 = ℵ0 ·n = ℵ0

for all n ∈ N such that n > 0. Under this extension, > remains a total order,
and +, · remain associative and commutative.

A system of linear equalities and inequalities defining an integer program-
ming problem can of course be re-interpreted so that solutions are sought not
over N but over N∗. (We always assume that the coefficients occurring in such
problems are in N.) As an example, the single inequality x1 ≥ x1 + 1 has no
solutions over N, but it does have a solution over N∗, namely, x1 = ℵ0.

Lemma 21. Let E be a finite set of linear inequalities of the form

a0 + a1x1 + · · · + anxn ≤ b0 + b1x1 + · · · + bnxn

in variables x1, . . . , xn. Here, all coefficients are assumed to be in N. If E has
a solution over N∗, then E has a solution over N∗ such that all finite values are
bounded by some fixed exponential function of ‖E‖.

Proof. Suppose that E has a solution over N∗. Re-order the variables if necessary
so that this solution has the form w̄ℵ̄0, with w̄ = w1, . . . , wk ∈ Nk for some k
(0 ≤ k ≤ n) and ℵ̄0 an (n − k)-tuple of ℵ0s. Say that an inequality in E does
not involve the variable xi if the corresponding coefficients ai and bi are both
zero. Let E ′ be the set of inequalities in E involving none of the xk+1, . . . , xn.
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Thus, E ′, considered as a problem in variables x1, . . . , xk, has a solution w̄ over
N, whence, by Theorem 4, it has a solution w̄′ with values bounded by some
fixed exponential function of ‖E ′‖ (and hence of ‖E‖). But it is easy to see that
w̄′ℵ̄0 is a solution of E .

Lemmas 15, 16 and 17 apply to both finite and infinite structures. Defini-
tion 16 requires modification, however.

Definition 17. Let F = (σ̄,Q, θ) and Z be as in Definition 16. Let w̄ =
(w1, . . . , wN ) be a tuple of non-zero elements of N∗. We say that w̄ is a Z-
solution of F if w̄ satisfies the conditions of Definition 16, but with the arithmetic
interpreted over N∗ as specified in Notation 4.

We then note that the reasoning of Lemmas 19 and 20 works unproblemat-
ically for countably infinite models.

Lemma 22. Suppose A is a structure of finite degree interpreting Σ, let C =
deg(A), let K ≥ (mC + 1)2, and let F = (σ̄,Q, θ) be a frame describing A. If
A is K-differentiated, then F has a K-solution.

Lemma 23. Let F be a chromatic, C-bounded frame, and let K ≥ 3mC. If F
has a K-solution, then there exists a structure A of finite degree interpreting Σ
such that F describes A.

The proofs are exactly the same as in the finite case. Note that the variables
ui, vj and xii′ as well as the wk may now take the value ℵ0; by contrast,
the coefficients oik, pik, qjk, rik and sik remain finite. Remark 10 generalizes
unproblematically to countably infinite structures, so that the quantities ui, vj

and xii′ (implicitly) mentioned in Definition 16 continue to have their familiar
interpretations. The proofs of Lemmas 22 and 23 then proceed exactly as for
Lemmas 19 and 20.

Finally, we note that Lemma 18 also generalizes to the infinite case.

Lemma 24. The problem of determining whether a frame F over a classified
signature is Z-solvable is in NP, given standard encoding of the inputs F and
Z.

Proof. Immediate from Lemma 21.

Lemmas 19 and 20 put us in a position to characterize exactly those frames
F which describe finite, chromatic, (mC + 1)2-differentiated structures over Σ.
Likewise, Lemmas 22 and 23 put us in a position to characterize exactly those
frames F which describe finite-degree (but not necessarily finite), chromatic,
(mC + 1)2-differentiated structures over Σ. The significance of these charac-
terizations lies in the facts that: (i) the number of C-bounded frames over Σ
is finite; and (ii) if a frame does describe a structure, then that frame alone
contains enough information to determine the truth of a suitable Scott-form C2

formula in that structure, as we shall presently see.
For the next definition, recall that a 1-type π is simply a finite collection of

formulas, so that
∧

π denotes the conjunction of those formulas; similarly for
2-types. Recall further that f1, . . . , fm are the featured predicates of Σ.
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Definition 18. Let ψ be any formula over the signature Σ having the form

ψ = ∀x∀y(α ∨ x ≈ y) ∧
∧

1≤h≤m

∀x∃=Ch
y(fh(x, y) ∧ x 6≈ y),

where α is a quantifier-free L2-formula, m is a positive integer, and the Ch are
positive integers. Let F = (σ̄,Q, θ) be a frame over Σ, where σ̄ = (σ1, . . . , σN ).
We write F |= ψ if the following conditions are satisfied:

1. for all k (1 ≤ k ≤ N) and all j (1 ≤ j ≤ M), if σk[j] > 0 then
|=

∧

µj → α(x, y) ∧ α(y, x);

2. for all {i, i′} ∈ Q, |=
∧

θ({i, i′}) → α(x, y) ∧ α(y, x);

3. for all k (1 ≤ k ≤ N) and all h (1 ≤ h ≤ m), the sum of all the σk[j]
(1 ≤ j ≤M) such that fh(x, y) ∈ µj equals Ch.

Lemma 25. Let A be a structure of finite degree interpreting Σ, and let ψ be
a formula of the form given in Definition 18. If F is a frame describing A,
and F |= ψ, then A |= ψ. Conversely, if A |= ψ, then there exists a frame F
describing A, such that F |= ψ.

Proof. The first statement of the lemma is almost immediate. For the second
statement, suppose A |= ψ. Let σ̄ be a list of exactly the star-types realized in
A, and let Q be the set of exactly those sets {i, i′} such that πi and πi′ form a
quiet pair in A. For all {i, i′} ∈ Q with i ≤ i′, pick a, a′ with tpA[a] = πi and
tpA[a′] = πi′ such that tpA[a, a′] is a silent 2-type; and set θ({i, i′}) = tpA[a, a′].
Then F = 〈σ̄,Q, θ〉 describes A. (Note that Q contains only those pairs {i, i′}
which it must contain in order for F to describe A.) It is then easy to see that
F |= ψ.

We now have all the essential ingredients for proving that Fin-Sat-C2 and
Sat-C2 are decidable. By Lemma 14 we can restrict attention to formulas ψ
in Scott normal form. Consider the case of Fin-Sat-C2. By the discussion of
Section 4.2 we can restrict attention to finding a finite, chromatic (mC + 1)2-
differentiated model of ψ. And by Lemmas 19 and 20, we can reduce the task
of determining the existence of such a model to that of finding a chromatic,
C-bounded, finitely (mC + 1)2-solvable frame F such that F |= ψ. But we may
enumerate all C-bounded frames F , and check for finite (mC + 1)2-solvability
by Lemma 18. The case of Sat-C2 proceeds analogously.

The above argument even provides us with an upper complexity bound: if
the size of the input formula is n, then we may work with a classified signature Σ
whose size is bounded by a polynomial function of n. Moreover, we may confine
attention to C-bounded frames, where C is bounded by an exponential function
of n. The size of any C-bounded frame F over Σ is therefore bounded by a
doubly exponential function of n. Such a frame may therefore be guessed and
checked for (finite) (mC+1)2-solvability in non-deterministic doubly exponential
time. Thus, Fin-Sat-C2 and Sat-C2 are both in 2-NEXPTIME. In the next
section, we see how to reduce this upper bound to NEXPTIME.
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4.4 Approximating structures

Throughout this section, we assume the classified signature 〈Σ, (f1, . . . , fm)〉.
Thus, “structure” means “structure interpreting Σ”, “1-type” means “1-type
over Σ, and so on. We also continue to employ the symbols s, L, M∗, M ,
π1, . . . , πL and µ1, . . . , µM as summarized in Table 4.1. The first step is to
manufacture some tools for manipulating structures.

Notation 5. Let A be a structure, π a 1-type, and Π a set of 1-types. When
A is clear from context, denote by Aπ the set {a ∈ A|tpA[a] = π}, and denote
by AΠ the set {a ∈ A|tpA[a] ∈ Π}. In addition, denote by Πc the set of all and
only those 1-types not contained in Π.

Remark 11. For any structure A and any set of 1-types Π, AΠc = A \AΠ.

We need to elaborate the notion of profiles, introduced in Definition 9. Re-
call, in this regard, that µ1, . . . , µM are the message-types (invertible and non-
invertible).

Definition 19. Let A be a structure of finite degree, let a be an element of A,
and let Π be any set of 1-types. The Π-profile of a in A, denoted prA

Π[a], is the
M -tuple v̄ = (v1, . . . , vM ) of natural numbers where, for all j (1 ≤ j ≤M),

vj = |{b ∈ AΠ : b 6= a and tpA[a, b] = µj}|.

From Definition 9, we see that prA[a] is the tuple prA

Π[a] in the case where
Π is the set of all 1-types.

Remark 12. For any set of 1-types Π, the tuple prA

Π[a] is obtained from the tuple
prA[a] by simply zeroing its jth coordinate whenever tp2(µj) is not a member of
Π. Hence, if Π′ ⊇ Π, then prA

Π′ [a] always determines prA

Π[a].

For the next definition, recall that f1, . . . , fm are the counting predicates.

Definition 20. Let A be a structure of finite degree, let a be an element of A,
and let Π be any set of 1-types. The Π-count of a in A, denoted ctA

Π[a], is the
m-tuple ū = (u1, . . . , um) of natural numbers where, for all h (1 ≤ h ≤ m),

uh = |{b ∈ AΠ : b 6= a and A |= fh[a, b]}|.

If Π is the set of all 1-types, we call ctA

Π[a] simply the count of a in A, and denote
it ctA[a].

The tuple ctA

Π[a] records, for each counting predicate fh (1 ≤ h ≤ m), the
number of elements with 1-type in Π to which a is non-reflexively related by
fh. In particular, ctA[a] records, for each counting predicate fh (1 ≤ h ≤ m),
the number of elements to which a is non-reflexively related by fh. Notice that
prA

Π[a] is an M -tuple, while ctA

Π[a] is an m-tuple.
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Remark 13. For any set of 1-types Π, prA

Π[a] determines ctA

Π[a]. Specifically, if
prA

Π[a] = (v1, . . . , vM ) and ctA

Π[a] = (u1, . . . , um) we have, for all h (1 ≤ h ≤ m)

uh =
∑

{vj | 1 ≤ j ≤M and fh(x, y) ∈ µj}.

Of course, ctA

Π[a] does not in general determine prA

Π[a], because it contains
strictly less information. Think of the tuple ctA

Π[a] as providing a ‘statistical
summary’ of the tuple prA

Π[a].

Definition 21. Let A and A′ be chromatic structures of finite degree over some
common domain A, let Π be a set of 1-types, and let B be a subset of A. We
call A′ a (Π, B)-approximation to A if every 2-type realized in A′ is also realized
in A, and, for all a ∈ A:

1. tpA
′

[a] = tpA[a];

2. prA
′

Πc [a] = prA

Πc [a];

3. a ∈ A \B implies prA
′

[a] = prA[a];

4. a ∈ B implies ctA
′

Π [a] = ctA

Π[a].

Very roughly, a (Π, B)-approximation to A is a surgically modified version
of A in which only the Π-profiles of elements of B have been interfered with. In
particular: all elements of A retain their old 1-types and their old Πc-profiles;
all elements of A \B retain their old profiles; and all elements of B retain their
old Π-counts. In addition, chromaticity is preserved, and no new 2-types (or
1-types) are introduced. We remark that, in Condition 4 of Definition 21, the
restriction that a ∈ B is in fact logically redundant, since if a 6∈ B, Condition 3
certainly entails ctA

′

Π [a] = ctA

Π[a].

Remark 14. Let A, A′ and A′′ be chromatic structures of finite degree over
some common domain A, let Π, Π′ be sets of 1-types and let B, B′ be subsets
of A. Then A is a (Π, B)-approximation to itself. Furthermore, if A′ is a
(Π, B)-approximation to A, Π ⊆ Π′, and B ⊆ B′, then A′ is also a (Π′, B′)-
approximation to A. Finally, if A′ is a (Π, B)-approximation to A, and A′′ is a
(Π, B)-approximation to A′, then A′′ is a (Π, B)-approximation to A.

A crucial fact about (Π, B)-approximations is that they maintain satisfaction
of certain Scott-form formulas.

Lemma 26. Let A be a chromatic structure of finite degree over some domain
A, let Π be a set of 1-types, let B be a subset of A, and let A′ be a (Π, B)-
approximation to A. Let α be a quantifier-free L2-formula and C1, . . . , Cm be
positive integers. Consider the formula

ψ = ∀x∀y(α ∨ x ≈ y) ∧
∧

1≤h≤m

∀x∃=Ch
y(fh(x, y) ∧ x 6≈ y).

If A |= ψ, then A′ |= ψ.
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Proof. By Remark 14, we may assume without loss of generality that Π is the
set of all 1-types and B = A. Since every 2-type realized in A′ is also realized
in A, A′ |= ∀x∀y(α ∨ x ≈ y). And since ctA

′

[a] = ctA[a] for every a ∈ A,
A′ |=

∧

1≤h≤m ∀x∃=Ch
y(fh(x, y) ∧ x 6≈ y).

Our strategy now is to show that, given a structure A of finite degree, a set
of 1-types Π and a subset B of A, we can find a (Π, B)-approximation to A in
which ‘few’ star-types are realized.

For the next definition, recall that µ1, . . . , µM∗ are the invertible message-
types. Thus, for any structure A of finite degree, and any 1-type π, the first M∗

coordinates of any {π}-profile prA

{π}[a] tell us, for each invertible message-type

µj (1 ≤ j ≤ M∗), how many elements in Aπ the element a sends a message
of type µj to. Notice that, if A is chromatic, then, by Remark 3, the first M∗

coordinates of prA

{π}[a] are either all zero, or else are all zero except for a single
occurrence of unity.

Definition 22. Let A be a chromatic structure of finite degree over domain A,
let Π be a set of 1-types, let π be a 1-type, and let B be a subset of A. We say
that B is a Π-group if every element of B has the same 1-type and every element
of B has the same Π-count. We say that B is a π-patch if B is a {π}-group and,
for all a, b ∈ B, the tuples prA

{π}[a] and prA

{π}[b] agree in each of their first M∗

coordinates.

We now demonstrate that, if B is a π-patch in a structure satisfying certain
conditions, then there exists a ({π}, B)-approximation to that structure in which
every element of B has the same {π}-profiles.

Lemma 27. Let A be a chromatic, (mC+1)2-differentiated structure, of degree
at most C, over a domain A; let π be a 1-type; and let B ⊆ A be a π-patch in
A. Then there exists a structure A′ such that A′ is a ({π}, B)-approximation to
A in which the elements of B all have the same {π}-profile.

Proof. Since a π-patch is by definition a {π}-group, there is some 1-type π∗

such that B ⊆ Aπ∗ . If |B| ≤ 1, then A′ = A satisfies the conditions of the
lemma. Hence, we may assume that |B| > 1. Similarly, if no element of B sends
a message to any element of Aπ, then prA

{π}[b] is the ‘zero-vector’ (i.e. the tuple

with all entries 0) for all b ∈ B, and A′ = A again satisfies the conditions of
the Lemma. Hence, we may assume that some element of B sends a message
to some element of Aπ, and, in particular, that Aπ is non-empty. Now suppose
for the moment that Aπ is a singleton {a}. Thus, π 6= π∗, so that B and Aπ

are disjoint (Fig. 4.4). We claim that no element of B can send an invertible
message to a. For, if any does, then all do (remember that B is a π-patch, so the
profiles of all elements agree in their first M∗ coordinates), in which case a sends
invertible messages to more than one element having type π∗, contradicting the
chromaticity of A. Thus, we may fix some element b0 ∈ B which sends a non-
invertible message to a. Since B is a {π}-group, it follows that every element
of B sends a message—and hence a non-invertible message—to a (though the
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Figure 4.4: A π-patch B with |Aπ | = 1 and |B| > 1.

messages sent by different elements of B need not all have the same type). In
particular, a does not send a message to any element of B. Now define the
structure A′ to be exactly like A except that, for every b ∈ B, we set

tpA
′

[b, a] = tpA[b0, a]. (4.2)

Clearly, A′ is chromatic and realizes no 2-types not realized in A. Clearly also,
tpA

′

[a] = tpA[a]; prA
′

Πc [a] = prA

Πc [a], and a ∈ A \ B implies prA
′

[a] = prA[a],
since no messages sent by any elements in A \ B have been interfered with.
Finally, by the construction in (4.2), and bearing in mind that Aπ = {a}, we
have ctA

′

{π}[a] = ctA

{π}[b]. But since B is a {π}-group, ctA

{π}[b] = ctA

{π}[a], whence

ctA
′

{π}[a] = ctA

{π}[a]. Thus, we have shown that A′ is a ({π}, B)-approximation to

A. Again, by the construction (4.2), every element of B has the same {π}-profile
in A′.

Thus, we may assume henceforth that B and Aπ both contain more than
one element. Since A is (mC+1)2-differentiated, Aπ and Aπ∗ ⊇ B both contain
more than (mC + 1)2 elements. By Lemma 15, then, let τ be a silent 2-type
such that, for some a ∈ Aπ∗ and some a′ ∈ Aπ , tpA[a, a′] = τ . We will use τ
below as a ‘filler’ 2-type, for specifying 2-types when we do not want to disturb
the profiles of elements in a structure we are manipulating.

For a ∈ B, let

Aa = {a′ ∈ Aπ |a 6= a′ and tpA[a, a′] is a non-invertible message-type};

and for a 6∈ B, let Aa = ∅. Notice, incidentally, that a′ ∈ Aa implies a 6∈ Aa′ .
Choose b ∈ B for which |Ab| is smallest, and fix b. Enumerate Ab as b1, b2, . . . .
For any a ∈ B not equal to b, let Âa be a subset of Aa having the same number
of elements as Ab, and enumerate Âa as a1, a2, . . . . The situation is depicted
schematically in Fig. 4.5.
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Figure 4.5: A π-patch B with |Aπ | and |B| both greater than 1. There is no
assumption that B and Aπ are disjoint.

We now define the structure A′ by assigning 2-types as follows. For all a ∈ B
such that a 6= b, set

tpA
′

[a, ai] = tpA[b, bi], (4.3)

where i ranges over the enumeration of Âa, and set

tpA
′

[a, a′] = τ, (4.4)

where a′ is any element of Aa \ Âa. (Remember: τ is our ‘filler’ 2-type.) In
addition, for all distinct a, a′ such that a′ 6∈ Aa and a 6∈ Aa′ , set

tpA
′

[a, a′] = tpA[a, a′]. (4.5)

Since a′ ∈ Aa implies a 6∈ Aa′ , none of these assignments overwrites any other.
And since B ⊆ Aπ∗ , the 1-type assignments implicit in (4.3)–(4.5) never clash:
indeed, we have tpA

′

[a] = tpA[a] for all a ∈ A. Furthermore, the transformation
from A to A′ does not affect invertible message-types. That is: for distinct a, a′,
tpA[a, a′] is an invertible message-type if and only if tpA

′

[a, a′] is an invertible
message-type; and moreover, if tpA[a, a′] is an invertible message-type, then
tpA

′

[a, a′] = tpA[a, a′].

We now verify that A′ is a ({π}, B)-approximation to A. From the remarks of
the previous paragraph and the fact that A is chromatic, we have that A′ is
also chromatic. In addition, it is immediate from (4.3)–(4.5) that every 2-type
realized in A′ is also realized in A. Now let a be any element of B. Since
B is a π-patch, the tuples prA

{π}[a] and prA

{π}[b] by definition agree in their
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first M∗ coordinates (corresponding to the invertible message-types). Hence,
since we have just shown that the transformation from A to A′ does not affect
invertible message-types, the tuples prA

′

{π}[a] and prA

{π}[b] also agree in their

first M∗ coordinates. Furthermore, the assignments (4.3)–(4.5) guarantee that
prA

′

{π}[a] and prA

{π}[b] also agree in the remaining coordinates M∗ + 1, . . . ,M

(corresponding to the non-invertible message-types). Hence,

prA
′

{π}[a] = prA

{π}[b] for all a ∈ B. (4.6)

It is now a simple matter to check the numbered conditions in Definition 21.
Let a be an arbitrary element of A.

1. We have already established that tpA
′

[a] = tpA[a].

2. Let a′ be any element of A{π}c with a 6= a′. Then certainly a′ 6∈ Aa ⊆ Aπ ,

so that tpA
′

[a, a′] can be different from tpA[a, a′] only if a ∈ Aa′ . But
if a ∈ Aa′ , then neither tpA[a, a′] nor tpA

′

[a, a′] can be a message-type.
Hence, prA

′

{π}c [a] = prA

{π}c [a].

3. Suppose a ∈ A \ B, and let a′ be any element of A with a 6= a′. The
argument now proceeds much as for the previous condition: certainly,
a′ 6∈ Aa = ∅, so tpA

′

[a, a′] can be different from tpA[a, a′] only if a ∈ Aa′ .
But if a ∈ Aa′ , then neither tpA[a, a′] nor tpA

′

[a, a′] can be a message-type.
Hence prA

′

[a] = prA[a].

4. Suppose a ∈ B. Equation (4.6) yields ctA
′

{π}[a] = ctA

{π}[b]. And since B is

a {π}-group, ctA

{π}[b] = ctA

{π}[a]. It follows that ctA
′

{π}[a] = ctA

{π}[a].

Finally, it is immediate from Equation (4.6) that all elements of B have the
same {π}-profile in A′.

We now demonstrate that, if B is a Π-group in a (mC + 1)2-differentiated,
chromatic structure A with deg(A) = C, then, by taking a (Π, B)-approximation
to that model, we can bound the number of Π-profiles realized by the elements
of B. This demonstration will occupy Lemmas 28–30. Our strategy is first to
partition Π into roughly equal sets Π′ and Π′′. We then recursively bound the
number of Π′- and Π′′-profiles realized by elements of B, and finally align these
Π′- and Π′′-profiles so as to bound the number of Π-profiles that result.

Lemma 28. Let A be a chromatic structure of finite degree over domain A, let
Π be a set of 1-types, let B ⊆ A be a Π-group, and let ω be a permutation of B.
Then there exists a structure A′ such that A′ is a (Π, B)-approximation to A,
and for all b ∈ B, prA

′

Π [ω(b)] = prA

Π[b].

Proof. First, extend ω to the whole of A by setting ω(a) = a for a ∈ A \ B.
Next, for all b ∈ A, define:

ωbΠ(a) =

{

ω(a) if b ∈ AΠ

a otherwise;
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Thus, ωbΠ is a permutation of A (which may be the identity). Since (ωbΠ)−1 and
(ω−1)bΠ are the same permutation, we may unambiguously write ω−1

bΠ . Clearly,
ω fixes B setwise and A \B pointwise; so, therefore, does ω−1

bΠ . Moreover, since
B is a Π-group, every element of B by definition has the same 1-type, and
this 1-type is either a member of Π or it is not. Hence, either B ⊆ AΠ or
B ⊆ AΠc = A \ AΠ. Thus, ω fixes both AΠ and AΠc setwise, and so therefore
does ω−1

bΠ .

Define the structure A′ over domain A by setting, for all distinct a, a′ ∈ A:

tpA
′

[a, a′] = tpA[ω−1
a′Π(a), ω−1

aΠ(a′)]. (4.7)

To show that A′ is well-defined, we must show first that the elements ω−1
a′Π(a)

and ω−1
aΠ(a′) in each instance of (4.7) are distinct, and second, that the 1-type

assignments implicit in the different instances of (4.7) do not clash. Suppose,
then that a 6= a′; we prove that ω−1

a′Π(a) 6= ω−1
aΠ(a′). Since the permutations ω−1

aΠ

and ω−1
a′Π fix B setwise and A \ B pointwise, we may assume that a, a′ ∈ B.

We have already noted that either B ⊆ AΠ or B ⊆ A \ AΠ. If B ⊆ AΠ, then
ω−1

a′Π(a) = ω−1(a) and ω−1
aΠ(a′) = ω−1(a′); if, on the other hand, B ⊆ A \ AΠ,

then ω−1
a′Π(a) = a and ω−1

aΠ(a′) = a′. Either way, ω−1
a′Π(a) 6= ω−1

aΠ(a′). Next, we
prove that the 1-type assignments in (4.7) never clash. Since all elements of B
have the same 1-type, and since ω is the identity outside B, we have, for all a, a′,
tpA[ω−1

a′Π(a)] = tpA[a]; thus, tpA[ω−1
a′Π(a)] does not depend on a′. Hence, the

1-type assignments implicit in (4.7) cannot clash, and A′ is indeed well-defined.
In fact, this argument establishes that tpA

′

[a] = tpA[a] for all a ∈ A.

We first check the numbered conditions of Definition 21 in turn. Let a be an
arbitrary element of A.

1. We have just established that tpA
′

[a] = tpA[a].

2. For all b ∈ AΠc , ω−1
bΠ (a) = a; in particular, if a ∈ AΠc , then ω−1

aΠ(a) = a.
Therefore, ω−1

aΠ is always a permutation of AΠc \ {a}, and moreover, for

all b ∈ AΠc \ {a}, tpA
′

[a, b] = tpA[a, ω−1
aΠ(b)]. Thus, the list of 2-types

tpA
′

[a, b] obtained as b ranges over AΠc \ {a} is (in some order) the list
of 2-types tpA[a, b′] obtained as b′ ranges over AΠc \ {a}. It follows that
prA

′

Πc [a] = prA

Πc [a].

3. Suppose a ∈ A \ B. Then, for all b ∈ A, ω−1
bΠ (a) = a; in particular,

ω−1
aΠ(a) = a. Therefore, ω−1

aΠ is a permutation of A \ {a}, and moreover,

for all b ∈ A \ {a}, tpA
′

[a, b] = tpA[a, ω−1
aΠ(b)]. Thus, the list of 2-types

tpA
′

[a, b] obtained as b ranges over A \ {a} is (in some order) the list
of 2-types tpA[a, b′] obtained as b′ ranges over A \ {a}. It follows that
prA

′

[a] = prA[a].

4. For all b ∈ AΠ, ω−1
bΠ (a) = ω−1(a); in particular, if a ∈ AΠ, then ω−1

aΠ(a) =
ω−1(a). Therefore, ω−1

aΠ is a bijection from the set AΠ \ {a} to the

set AΠ \ {ω−1(a)}, and moreover, for all b ∈ AΠ \ {a}, tpA
′

[a, b] =
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tpA[ω−1(a), ω−1
aΠ(b)]. Thus, the list of 2-types tpA

′

[a, b] obtained as b
ranges over AΠ \ {a} is (in some order) the list of 2-types tpA[ω−1(a), b′]
obtained as b′ ranges over AΠ \ {ω−1(a)}. It follows that

prA
′

Π [a] = prA

Π[ω−1(a)]. (4.8)

Certainly, then, we have ctA
′

Π [a] = ctA

Π[ω−1(a)]. But since B is a Π-group

in A, a ∈ B implies ctA

Π[ω−1(a)] = ctA

Π[a], whence ctA
′

Π [a] = ctA

Π[a].

We have thus established that, for all a ∈ A, prA
′

Π [a] = prA

Π[ω−1(a)] and

prA
′

Πc [a] = prA

Πc [a]. Since A is chromatic, it follows easily that A′ is chromatic.
Moreover, all 2-types realized in A′ are realized in A. Hence, A′ is a (Π, B)-
approximation to A. Finally, it follows from Equation (4.8) that, for all b ∈ B,
prA

′

Π [ω(b)] = prA

Π[b].

Suppose A, Π and B are as in Lemma 28. That lemma then assures us that,
as long as we are content to work with (Π, B)-approximations, we can permute
the Π-profiles of the elements in B at will! The following lemma exploits this
facility.

Lemma 29. Let A be a chromatic structure of finite degree over domain A; let
Π′, Π′′ be disjoint, non-empty sets of 1-types; and let Π = Π′ ∪ Π′′. Suppose
the non-empty set B ⊆ A is a Π′′-group. Let the number of different Π′-profiles
realized in A by the elements of B be J ′; and let the number of different Π′′-
profiles realized in A by the elements of B be J ′′. Then there exists a (Π, B)-
approximation A′ to A in which at most J ′ + J ′′ − 1 different Π-profiles are
realized by the elements of B.

Proof. For perspicuity, we assume first thatB is finite. EnumerateB as b1, . . . , bI .
Let the various Π′-profiles realized by at least one element of B be v′

1, . . . ,v
′
J′ ;

and let the various Π′′-profiles realized by at least one element ofB be v′′
1 , . . . ,v

′′
J′′ .

By re-numbering the b1, . . . , bI if necessary, we may assume without loss of
generality that the Π′-profiles of the b1, . . . , bI fall into consecutive blocks as
depicted in the middle column in Fig. 4.6. More precisely, we have integers
0 = I1 < I2 < · · · < IJ′+1 = I such that, for all j (1 ≤ j ≤ J ′), prA

′

Π′ [bi] = v′
j

for i in the range [Ij + 1, Ij+1]. Since B is a Π′′-group, by Lemma 28, we can
obtain a structure A′ such that A′ is a (Π′′, B)-approximation to A in which the
elements of B have Π′′-profiles likewise arranged in consecutive blocks. Since
A′ is a (Π′′, B)-approximation to A and the sets Π′ and Π′′ are disjoint, the
Π′-profiles of the elements of B will be unaffected by the transformation from
A to A′: a typical alignment of Π′-profiles and Π′′-profiles in A′ is shown in
Fig. 4.6. By inspection, at most J ′ + J ′′ − 1 Π-profiles are realized in A′ by the
elements of B.

The same argument applies in the case where B is infinite, with only minor
modifications. Of course, the number of different Π′- and Π′′-profiles realized
by the elements of B can still only be finite, but some of the resulting blocks
of B may contain infinitely many entries. The matching up of these blocks so
that at most J ′ + J ′′ − 1 Π-profiles result is routine.
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Element Π′-profile in A Π′′-profile in A′

of B (and also in A′)
b1

v′
1 v′′

1

v′′
2

v′
2

...
...

v′′
J′′

bI v′
J′

Figure 4.6: Arrangement of Π′-profiles and Π′′-profiles in B.

Recall that m is the number of featured predicates and M∗ the number of
invertible message-types.

Lemma 30. Fix an (mC + 1)2-differentiated, chromatic structure A, of finite
degree. Let C = deg(A), let l ≥ 0, let Π be a non-empty set of 1-types such that
|Π| ≤ 2l, and let B ⊆ A be a Π-group. Then there is a structure A′ such that A′

is a (Π, B)-approximation to A and the number of different Π-profiles realized
in A′ by the elements of B is at most 2l(M∗ + 1)(C + 1)lm.

Proof. By induction on l. To aid readability, let Kl stand for 2l(M∗ + 1)(C +
1)lm. If l = 0, Π is a singleton, so write Π = {π}. Decompose B into maximal
π-patches B1, . . . , BH . Since A is chromatic, Remark 3 guarantees that the first
M∗ coordinates of any tuple prA

{π}[a] are either all zero, or else are all zero except
for a single occurrence of unity. Therefore, H ≤M∗ + 1. Now let A0 = A, and
for all h (1 ≤ h ≤ H), apply Lemma 27 to obtain a structure Ah such that Ah

is a ({π}, Bh)-approximation to Ah−1 in which the elements of Bh all have the
same {π}-profile. By Remark 14, AH is a ({π}, B)-approximation to A. And
because the Bh are pairwise disjoint, 1 ≤ h < h′ ≤ H implies prAh′ [a] = prAh [a]
for all a ∈ Bh. Hence, the total number of {π}-profiles realized by elements of
B in AH is at most H ≤ M∗ + 1 = K0. Thus, setting A′ = AH establishes the
case l = 0.

Now suppose l > 0. We may assume Π is not a singleton, since otherwise,
we can employ the argument of the case l = 0; so let Π be partitioned into
non-empty sets Π′ and Π′′ each of cardinality at most 2l−1. Also, partition
B into maximal Π′-groups B1, . . . , BH (say). Since B is a Π-group, the B1,
. . . , BH will also be Π′′-groups. Moreover, since deg(A) = C, the Π-count of
any element in A is one of at most (C + 1)m different tuples; and since B is a
Π-group, all elements of B must have the same 1-type, whence H ≤ (C + 1)m.
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Again, let A0 = A, and consider the set B1. By inductive hypothesis, let
A′

1 be a (Π′, B1)-approximation to A0 in which at most Kl−1 Π′-profiles are
realized by the elements of B1. Again, by inductive hypothesis, let A′′

1 be a
(Π′′, B1)-approximation to A′

1 in which at most Kl−1 Π′′-profiles are realized
by the elements of B1. Thus, in the structure A′′

1 , B1 is a Π′-group realizing
at most Kl−1 different Π′-profiles, and also a Π′′-group realizing at most Kl−1

different Π′′-profiles. By Lemma 29, let A1 be a (Π, B1)-approximation to A′′
1

in which the elements of B1 realize at most 2Kl−1 − 1 < 2Kl−1 different Π-
profiles. By Remark 14, A1 is a (Π, B1)-approximation to A0. Treating the
sets B2, . . . , BH in the same way, we obtain structures Ah (1 ≤ h ≤ H)
such that, for each h in this range, Ah is a (Π, Bh)-approximation to Ah−1 in
which at most 2Kl−1 different Π-profiles are realized by the elements of Bh.
By Remark 14, AH is a (Π, B)-approximation to A. And because the Bh are
pairwise disjoint, 1 ≤ h < h′ ≤ H implies that prAh′ [a] = prAh [a] for all a ∈ Bh.
Hence, the total number of Π-profiles realized by elements of B in AH is at
most 2HKl−1 ≤ 2(C + 1)mKl−1 = Kl. Thus, setting A′ = AH completes the
induction.

4.5 Complexity of C2

Finally, we may bring all of the above results together.

Theorem 7. The problems Sat-C2 and Fin-Sat-C2 are both NEXPTIME-
complete.

Proof. The NEXPTIME-hardness of Fin-Sat-C2 and of Sat-C2 follows from
Lemma 5 and the fact that, by Lemma 4, L2 has the finite model property.
Hence we need only show that Sat-C2 and Fin-Sat-C2 are in NEXPTIME.

Let the C2-formula φ be given. By Lemma 14, we may produce, in polynomial
time, a Scott-form formula

ψ := ∀x∀y(α ∨ x ≈ y) ∧
∧

1≤h≤m

∀x∃=Ch
y(fh(x, y) ∧ x 6≈ y), (4.9)

such that ψ is satisfiable over any domain of size at least C + 1 if and only if
φ is, where C = max1≤h≤mCh. Since ψ certainly has no model of size C or
less, then, φ is (finitely) satisfiable if and only if either (i) φ has a model of size
C or less, or (ii) ψ is (finitely) satisfiable. Moreover, since C is bounded by a
singly exponential function of ‖φ‖, Case (i) can obviously be checked by a non-
deterministic Turing machine running in time bounded by a singly exponential
function of ‖φ‖. Therefore, we need only deal with Case (ii). Note that in the
formula (4.9), α is a quantifier-free L2 formula, 1 ≤ m ≤ ‖φ‖, the C1, . . . , Cm

are all positive and bounded by a singly exponential function of ‖φ‖, and the
f1, . . . , fm are pairwise distinct.

Let Σ be the signature of ψ together with d additional unary predicates,
where

d = dlog(mC + 1)2e + dlog((mC)2 + 1)e,
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and let Σ be treated as a classified signature, by taking the featured predicates
to be f1, . . . , fm. Thus, Σ satisfies the conditions set out at the beginning
of Sections 4.3 and 4.4, so we may employ all the results derived there. Let
n = max(‖ψ‖, |Σ|). Thus, n is bounded by a polynomial function of ‖φ‖. We
shall establish the following claim.

Claim. The formula ψ is (finitely) satisfiable if and only if there exists a chro-
matic, C-bounded, (finitely) 3mC-soluble frame F , with dimension at most

2n3+6n, such that F |= ψ.

Assuming the truth of this claim, we may establish the satisfiability of ψ
using the following nondeterministic procedure.

1. Guess a chromatic, C-bounded, frame F , with dimension N for some
N ≤ 2n3+6n.

2. Check that F |= ψ (Definition 18).

3. Determine whether F has a (finite) 3mC-solution (Definitions 16 and 17).

The number of symbols needed to encode F (under any sensible encoding) is
bounded by a singly exponential function of n. So, therefore, is the time required
to check that F is chromatic and that F |= ψ. That the existence of a (finite)
3mC-solution of F can be checked in nondeterministic time bounded by an
exponential function of n follows from Lemma 24 (or Lemma 18).

It remains only to establish the above claim. Suppose first that ψ has a
(finite) model A of finite degree interpreting Σ. Since Σ contains d unary pred-
icates not occurring in ψ, Lemmas 16 and 17 guarantee that, by re-interpreting
these predicates if necessary, we may take A to be chromatic and (mC + 1)2-
differentiated. Letting Π be the set of all 1-types over Σ, and B be any of
the sets Aπ (with π a 1-type), Lemma 30 yields a structure A′ such that A′

is a (Π, B)-approximation to A realizing at most 2n(M∗ + 1)(C + 1)nm dif-
ferent profiles. Repeating this process for all 1-types realized in A, we ob-
tain a structure A∗ such that A∗ is a (Π, A)-approximation to A realizing at
most 22n(M∗ + 1)(C + 1)nm different star-types. Simple calculation shows that
(C + 1) ≤ 2n and (M∗ + 1) ≤ 24n, so that the number of star-types realized in

A∗ is bounded by 2n3+6n. By Lemma 26, A∗ |= ψ. By Lemma 25, let F be a
frame describing A∗ such that F |= ψ. Thus, the dimension of F (= the number

of star-types realized in A∗) is at most 2n3+6n. By Remark 8, F is C-bounded
and chromatic. By Lemma 22 (Lemma 19), F is (finitely) (mC + 1)2-soluble
and hence (finitely) 3mC-soluble.

Conversely, suppose there exists a C-bounded, chromatic, (finitely) 3mC-
soluble frame F over Σ, such that F |= ψ. Then by Lemma 23 (Lemma 20),
there exists some (finite) structure A such that F describes A, and by Lemma 25,
A |= ψ. This establishes the above claim, and hence the theorem.

The proof of Theorem 7 actually yields a little more information. Recall the
sequence {φn} of finitely satisfiable C2-formulas presented in Example 4. We



4.6. BIBLIOGRAPHIC NOTES 57

showed there that, while ‖φn‖ grows as a polynomial function of n, the size of
the smallest satisfying models grows as a doubly exponential function of n. We
can now see that this is, essentially, as bad as it gets:

Corollary 4. Let φ be a formula of C2. If φ is finitely satisfiable, then it is
satisfiable in a structure of size bounded by a doubly exponential function of ‖φ‖.

Proof. The structure built in Lemma 20 from F and its solution w̄ has domain
of cardinality w1 + · · · + wN .

Notice that the complexity result of Theorem 7 is better than one might
näıvely expect on the basis of the small model property of Corollary 4. Thus,
while C2 is expressive enough to force very large models, it is not expressive
enough simultaneously to say a great deal about them: in particular, no C2-
formula can prevent the kind of structure manipulation discussed in Section 4.4.

4.6 Bibliographic notes

The decidability of Sat-C2 and Fin-Sat-C2 was proved, though with no complex-
ity bounds, in a very terse paper, by Grädel, Otto and Rosen [13] (who are also
responsible for Example 4). A complexity bound of (in effect) 2-NEXPTIME for
Sat-C2 was reported by Pacholski, Szwast and Tendera [25, 26]. This was finally
reduced to NEXPTIME (and extended to Fin-Sat-C2) by Pratt-Hartmann [30].
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Chapter 5

Modal and Guarded Logics

with Counting

5.1 Modal logic

Fix a countably infinite set Π. The language of modal logic is defined to be the
smallest set of expressions, M, satisfying the following conditions:

1. Π ⊆ M;

2. if φ and ψ are in M, then so are ¬φ, φ ∧ ψ, φ ∨ ψ, φ→ ψ and φ↔ ψ;

3. if φ is in M, then so are 3φ and 2φ.

We refer to expressions in this set as M-formulas (or simply formulas, if clear
from context).

Let Σ be the relational signature with unary predicates Π and single bi-
nary predicate r, and let A be a Σ-structure with domain W . We define the
satisfaction relation for M-formulas inductively as follows:

1. A |=w p if and only if w ∈ pA;

2. A |=w ¬φ if and only if A 6|=w φ, and similarly for ∧, ∨, →, ↔;

3. A |=w 3φ if and only if there exists v ∈ W such that 〈w, v〉 ∈ rA and
A |=v φ;

4. A |=w 2φ if and only if, for all v ∈ W such that 〈w, v〉 ∈ rA, A |=v φ.

The notion of satisfaction extends to sets of M-formulas Φ as expected: A |=w Φ
if A |=w φ for all φ ∈ Φ.

The study of modal logic was original motivated by philosophical investiga-
tions into the concepts of necessity and possibility. In this connection, we are
invited to think of the elements of W as worlds, the elements of Π as proposition

59
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reflexive frames ∀xr(x, x)
serial frames ∀x∃yr(x, y)
symmetric frames ∀x∀y(r(x, y) → r(y, x))
transitive frames ∀x∀y∀z(r(x, y) ∧ r(y, z) → r(x, z))
Euclidean frames ∀x∀y∀z(r(x, y) ∧ r(x, z) → r(y, z)).

Table 5.1: Frame classes considered in these notes.

letters, and the relation rA ⊆ W ×W as a relation of accessibility on possible
worlds. If A |=w φ, we say that φ is true at the world w. Thus, 3φ may be read:
“φ is true at some world accessible from the current world” (or: “Possibly, φ”).
Likewise, 2φ may be read: “φ is true at all worlds accessible from the current
world” (or: “Necessarily, φ”). The Boolean connectives are of course under-
stood as in propositional logic. In these notes, we shall not concern ourselves
with the philosophical value of this formal reconstruction.

By a frame, we mean an {r}-structure—in other words, a non-empty (possi-
bly infinite) digraph. If A is a Σ-structure, then its {r}-reduct is a frame F: we
say that A is a structure over F. Further, we call the mapping V : Π → P(W )
given by p 7→ pA the valuation of A (on W ). We write A = (W,R, V ) to indi-
cate that A is a Σ-structure over the frame (W,R) with valuation V . Obviously,
this determines A completely. Henceforth, when discussing modal logic (and
its variants), the term “structure”, with no signature qualification, will always
mean “Σ-structure”. Let φ be an M-formula. We say that φ is satisfiable over
a frame F if there exists a structure A over F and a world w of A such that
A |=w φ. Further, φ is satisfiable over a class of frames K if it is satisfiable over
some frame in K. We denote by MK-Sat the problem of determining whether
a given M-formula is satisfiable over K.

Any first-order sentence α over the signature {r} defines a class of frames
{F : F |= α}. The most common frame classes are those listed, together with
their respective defining first-order sentences, Table 5.1. We denote the class of
reflexive frames by Rfl, and, similarly, the classes of serial, symmetric, transitive
and Euclidean frames by Ser, Sym, Tr and Eucl, respectively. Note that, in the
presence of symmetry, transitivity is equivalent to the Euclidean property. A
structure over a reflexive frame will simply be called a reflexive structure, and
similarly for the other frame properties. The first question we ask is: what is the
complexity of the satisfiability problem for M over any frame-class characterized
by a conjunction of (zero or more of) these properties?

The following notation will be useful. Let F be a subset (possibly empty) of
the set of frame classes {Rfl, Ser, Sym,Tr,Eucl}. Then ∩F simply denotes the
class of frames having all the properties listed in F . For instance,

⋂

{Rfl,Tr}
denotes the class of reflexive, transitive frames,

⋂

{Ser,Tr,Eucl} denotes the
class of serial, transitive, Euclidean frames, and so on. As a limiting case,

⋂

∅
denotes the class of all frames.

The following two theorems are well-known, and may be proved using tech-
niques found in any modern text on modal logic (e.g. [3], Ch. 6).
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Theorem 8. Let F ⊆ {Rfl, Ser, Sym,Tr,Eucl}, with Eucl ∈ F or {Sym,Tr} ⊆
F . Then the satisfiability problem for modal logic over

⋂

F is NPT ime-complete.

Theorem 9. If F ⊆ {Rfl, Ser,Tr}, then the satisfiability problem for modal
logic over

⋂

F is PSpace-complete. Also, if F ⊆ {Rfl, Ser, Sym}, then the
satisfiability problem for modal logic over

⋂

F is PSpace-complete.

5.2 Graded modal logic

The language of graded modal logic is defined to be the smallest set of expres-
sions, GM, satisfying the following conditions:

1. Π ⊆ GM;

2. if φ and ψ are in GM, then so are ¬φ, φ ∧ ψ, φ ∨ ψ, φ→ ψ and φ↔ ψ;

3. if φ is in GM, then so are 3≤Cφ and 3≥Cφ, for any bit-string C.

We refer to expressions in this set as GM-formulas (or simply formulas, if clear
from context).

We define the satisfaction relation for GM-formulas inductively as follows:

1. A |=w p if and only if w ∈ pA;

2. A |=w ¬φ if and only if A 6|=w φ, and similarly for ∧, ∨, →, ↔;

3. A |=w 3≥Cφ if and only if there exist at least C worlds v ∈ W such that
〈w, v〉 ∈ rA and A |=v φ;

4. A |=w 3≤Cφ if and only if there exist at most C worlds v ∈ W such that
〈w, v〉 ∈ rA and A |=v φ.

The notion of satisfaction extends to sets of GM-formulas Φ as expected. Again,
for a given structure A = (W,R, V ), we think of the elements of Π as proposition
letters to which V assigns truth-values relative to the worlds inW . Thus, graded
modal logic is the formal language obtained by decorating the 3-operator of
ordinary modal logic with subscripts expressing cardinality constraints. Specif-
ically, for C ≥ 0, the formula 3≤Cφ may be glossed: “φ is true at no more
than C accessible worlds,” and the formula 3≥Cφ may be glossed: “φ is true
at no fewer than C accessible worlds.” From a philosophical point of view, one
could be forgiven for thinking this sort of modal accountancy poorly motivated.
However, if we consider M to be, in effect, a fragment of first-order logic, the
language GM is, in the context of the present enquiry, a very natural general-
ization. Furthermore, the results we obtain are non-trivial and not at all what
one might näıvely expect.

We denote by GMK-Sat the problem of determining whether a given GM-
formula is satisfiable over K. In this section, we ask the following. Let F be a
subset (possibly empty) of the set of frame classes {Rfl, Ser, Sym,Tr,Eucl}. We
ask: what is the complexity of GM∩F -Sat?

The results are encapsulated in the following three theorems.
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Theorem 10. Let F ⊆ {Rfl, Ser, Sym,Tr,Eucl}, with Eucl ∈ F or {Sym,Tr} ⊆
F . Then the satisfiability problem for graded modal logic over

⋂

F is NPT ime-
complete.

Theorem 11. Let F ⊆ {Rfl, Ser, Sym}. Then the satisfiability problem for
graded modal logic over

⋂

F is PSpace-complete.

Theorem 12. Let F ⊆ {Rfl, Ser,Tr}, with Tr ∈ F . Then the satisfiability
problem for graded modal logic over

⋂

F is NExpT ime-complete. It remains
NExpT ime-hard, even when all numerical subscripts in modal operators are at
most 1.

Thus, adding counting to the operators of modal logic produces a somewhat
more complicated complexity-theoretic landscape. The proofs of these theorems
are omitted from these notes.

5.3 The guarded fragment

The relational semantics for the language M means that we can regard it as a
fragment of first-order logic in which quantification is restricted to the patterns
∀v(r(u, v) → ψ(v)) and ∃v(r(u, v) ∧ ψ(v)). This idea can be generalized.

We again fix some purely relational signature Σ, but this time with predicates
of any arity, and we again denote by L the language of first-order logic over Σ.
The guarded fragment of first-order logic, G, is defined to be the smallest set of
L-formulas satisfying the following conditions:

1. every atomic formula is in G;

2. G is closed under Boolean connectives;

3. if ψ ∈ G with Vars(ψ) = x̄, ȳ, and p is a predicate of the same arity as
x̄, ȳ, then ∀x̄(p(x̄, ȳ) → ψ) ∈ G and ∃x̄(p(x̄, ȳ) ∧ ψ) ∈ G;

4. if ψ ∈ G, and ψ has at most one free variable, then ∀xψ ∈ G and ∃xψ ∈ G.

For k > 1, we denote by Gk
≈ the subset of G involving at most the variables

x1, . . . xk. Thus, Gk = G ∩ Lk
≈, for all k > 0. Lk

≈ not involving the equality
predicate. We call Gk the k-variable guarded fragment. Thus, M is a proper
subset of the 2-variable guarded fragment G2.

We have three important theorems concerning G:

Theorem 13. The problem G-Sat is 2-ExpTime-complete.

Theorem 14. For every k > 0, the problem Gk-Sat is ExpTime-complete.

Theorem 15. The guarded fragment has the finite model property.

It follows from Theorem 15 that the problems G-Sat and G-Fin-Sat coincide,
as do Gk-Sat and Gk-Fin-Sat, for all k > 0.

The proofs of Theorems 13–15 are omitted from these notes.
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5.4 The guarded fragment with counting

In this section, we consider the effect of adding counting quantifiers to the
guarded fragment.

In the sequel, we restrict consideration to a purely relational signature of 0-
ary, unary and binary predicates. If r is any binary predicate (including ≈), we
call an atomic formula having either of the forms r(x, y) or r(y, x) a guard-atom.
The two-variable guarded fragment with counting quantifiers, GC2, can then be
defined as the smallest set of formulas satisfying the following conditions:

1. GC2 contains all atomic formulas and is closed under Boolean combina-
tions;

2. if φ is a formula of GC2 with at most one free variable, and u is a variable
(i.e. either x or y), then the formulas ∀uφ and ∃uφ are in GC2;

3. if φ is a formula of GC2, γ a guard-atom, u a variable, and Q any of the
quantifiers ∃, ∃≤C , ∃≥C , ∃=C (for C > 0), then the formulas ∀u(γ → φ),
Qu(γ ∧ φ) and Quγ are in GC2.

According to the above syntax, the non-counting quantifiers ∃ and ∀ may
apply without restriction to formulas with at most one free variable; however,
they may apply to formulas with two free variables only in the presence of a
guard-atom. By contrast, the counting quantifiers ∃≤C , ∃≥C , ∃=C may only
ever apply in the presence of a guard atom (which by definition has two free
variables). Note in particular that the formula ∃=1xp(x) is not in GC2. In fact,
the next lemma shows that no formula of GC2 can force a predicate p to be
uniquely instantiated in its models.

Lemma 31. Let φ be a formula of GC2 with signature Σ (so that Σ has no
individual constants), A a structure interpreting Σ, and I a nonempty set. For
i ∈ I, let Ai be a copy of A, with the domains Ai pairwise disjoint. If φ is
satisfied in A, then it is satisfied in the structure A′ with domain A′ =

⋃

i∈I Ai

and interpretations σA
′

=
⋃

i∈I σ
Ai for every σ ∈ Σ.

Proof. If θ : {x, y} → A is any variable assignment, and i ∈ I, let θi be the
variable assignment which maps x and y to the corresponding elements in Ai ⊆
A′. A routine structural induction on φ shows that A |=θ φ if and only if, for
some (= for all) i ∈ I, A′ |=θi

φ.

It follows immediately that, if a formula of GC2 has a finite model, then it has
arbitrarily large finite models, and indeed infinite models.

Lemma 32. Let φ be a GC2-formula. We can compute, in time bounded by a
polynomial function of ‖φ‖, a formula

ψ = ∀xα ∧
∧

1≤h≤l

∀x∀y(eh(x, y) → (βh ∨ x ≈ y))∧

∧

1≤i≤m

∀x∃=Ci
y(fi(x, y) ∧ x 6≈ y)

(5.1)
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such that: (i) α is a quantifier-free formula not involving ≈ with x as its only
variable; (ii) l and m are positive integers; (iii) for all h (1 ≤ h ≤ l), eh is a
binary predicate other than ≈, and βh is a quantifier-free formula not involving
≈ with x and y as its only variables; (iv) for all i (1 ≤ i ≤ m), Ci is a positive
integer, and fi is a binary predicate other than ≈; (v) φ is satisfiable if and
only if ψ is satisfiable; (vi) φ is finitely satisfiable if and only if ψ is finitely
satisfiable.

Proof. We proceed exactly as for Lemma 14. Note that, if φ is finitely satisfiable,
then it has models over arbitrarily large finite domains. Therefore, we may
without loss of generality assume that the size of any model of φ of interest is
greater than any quantifier subscript mentioned in φ.

The only difficulty is to show that the conjuncts of the form ∀u∀vχ generated
in Stage 1 of the procedure described there can be made guarded. To see that
this is so, consider the treatment of a subformula θ(u) = ∃≤Dvχ of φ0. Since φ0

is guarded, χ must be of the form γ ∧ η, where γ is an atomic formula g(u, v) or
g(v, u). Again, we define φ1 := φ0[p(u)/θ(u)], where p is a new unary predicate,
and

ψ1 := ∀u∃=Dvr1(u, v) ∧ ∀u∃=D+1vr2(u, v)∧

∀u∀v(p(u) → (θ → r1(u, v)))∧

∀u∀v(¬p(u) → (r2(u, v) → θ)),

arguing, just as in Lemma 14 that ψ0 and φ1∧ψ1 are satisfiable over sufficiently
large domains. Now consider in more detail ψ1. Its latter two conjuncts are, as
they stand, not guarded. However, noting that θ is (γ ∧ η), we see that these
conjuncts are in fact logically equivalent to the guarded formula

∀u∀v(γ → ((p(u) ∧ η) → r1(u, v))) ∧ ∀u∀v(¬r2(u, v) → (p(u) → (γ ∧ η))).

The other cases are dealt with similarly, and we obtain the desired formula
ψ.

To show that the (finite) satisfiability problem for GC2 is in ExpTime, it
therefore suffices to consider only formulas φ of the form (5.1). Furthermore,
we may assume without loss of generality that no 0-ary predicates (proposition
letters) occur in φ, since we can consider each of the (at most 2‖φ‖) truth-value
assignments to the 0-ary predicates of φ in turn, replacing each 0-ary predicate
with > or ⊥ according to its truth-value in the considered assignment.

Accordingly, fix φ to be some formula of the form (5.1) over a signature of
unary and binary predicates. Set C = max1≤i≤m Ci, and let Σ be the signature
of φ together with log((mC)2 + 1) (rounded up) new unary predicates. Thus,
|Σ| is bounded by a polynomial (actually, linear) function of ‖φ‖. Since Σ is the
only signature we shall be concerned with in the sequel, we generally suppress
reference to it. Thus, ‘predicate’ henceforth means ‘predicate in Σ ∪ {≈}’,
‘structure’ henceforth means ‘structure interpreting Σ’, and so on. We keep the
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meanings of the symbols

Σ, φ, α, l, e1, . . . , el, β1, . . . , βl,m,C1, . . . , Cm, C, f1, . . . , fm

fixed throughout this paper. The predicates f1, . . . , fm will play a key role in
the ensuing argument; we refer to them as the counting predicates. There is no
restriction on these predicates’ occurring in other parts of φ.

Again, we can regard the signature Σ as a classified signature . . .
Let the 1-types (over Σ) be enumerated in some order as the sequence

Π = π0, . . . , πP−1.

Evidently, P is a power of 2, so p = logP is an integer. (Actually, p = |Σ|.)
Now let s be any bit string (0 ≤ |s| ≤ p), and denote the string of length 0 by ε.
We inductively define the sub-sequence Πs of Π by setting Πε to be the whole
of Π, and setting Πs0 and Πs1 to be the left and right halves of Πs, respectively.
Formally:

Πε = π0, . . . , πP−1,

and if Πs = πj , . . . , πk−1, with |s| < p,

Πs0 = πj , . . . , π k+j

2
−1

Πs1 = π k+j

2

, . . . , πk−1.

Thus, if |s| = p, then Πs is a one-element sequence πj , where j is the integer
(0 ≤ j < P ) encoded by the bit-string s in the usual way. To avoid clumsy
circumlocutions, we occasionally equivocate between bit-strings and the integers
they encode, thus, for instance, writing πs instead of πj in this case. But we
will only ever write πs if |s| = p. In addition, we occasionally for convenience
treat sequences as if they were sets, writing, for instance, π ∈ Πs.

We now use the sequences Πs to define sets of invertible message-types in-
dexed by bit-strings as follows. Let Λ be the set of all invertible message-types.
If π is any 1-type, and s is any bit-string such that |s| ≤ p, let

Λπ,s = {λ ∈ Λ | tp1(λ) = π and tp2(λ) ∈ Πs}.

Thus, the Λπ,s are sets of invertible message-types identified purely by their
terminal 1-types. Except in very special cases, these sets will contain more than
one member, even when |s| = p. However, for chromatic structures, we have
the following important fact.

Lemma 33. Let A be a chromatic structure, a ∈ A, π = tpA[a], and s a bit-
string with |s| = p. Then there can be at most one element b ∈ A \ {a} such
that tpA[a, b] ∈ Λπ,s.

Proof. Any two such elements would be connected by a chain of two invertible
message-types, and would both have 1-type πs.
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Finally, we use bit strings to index sequences of 2-types that are not invertible
message-types. Again, fix any 1-type π, and consider the set of non-invertible
message-types µ such that tp1(µ) = π. Let these be enumerated in some way
as a sequence

µπ,0, . . . , µπ,R−1.

Furthermore, consider the set of silent 2-types µ such that tp1(µ) = π. Let
these be enumerated in some way as a sequence

µπ,R, . . . , µπ,Q−1.

Thus, the sequence

Mπ = µπ,0, . . . , µπ,Q−1

is an enumeration of precisely those 2-types τ such that tp1(τ) = π and τ−1

is not a message-type. Evidently, R and Q are independent of the choice of π;
moreover, Q is a power of 2, so q = logQ is an integer. (We remark that R is
not a power of 2.) Let t be any bit string (0 ≤ |t| ≤ q). We inductively define
the sub-sequence Mπ,t of Mπ by setting Mπ,ε to be the whole of Mπ, and setting
Mπ,t0 and Mπ,t1 to be the left and right halves of Mπ,t, respectively. Formally:

Mπ,ε = µπ,0, . . . , µπ,Q−1,

and if Mπ,t = µπ,j, . . . , µπ,k−1, with |t| < q,

Mπ,t0 = µπ,j, . . . , µπ, k+j
2

−1

Mπ,t1 = µ
π, k+j

2

, . . . , µπ,k−1.

Thus, if |t| = q, then Mπ,t is a one-element sequence µπ,j, where j is the integer
(0 ≤ j < Q) encoded by the bit-string t in the usual way. Again we may for
convenience write µπ,t instead of µπ,j in this case, but here too we only ever
write µπ,t if |t| = q.

5.5 Spectra and tallies

The approach taken here involves identifying various configurational properties
of elements in finite structures. These we now proceed to define. We continue
to use the symbols introduced in Section 5.4 with their advertised meanings.
In particular, f1, . . . , fm are the counting predicates occurring in the formula
φ given in (5.1), and the integers C1, . . . , Cm are the corresponding numerical
quantifier subscripts.

Let A be a finite structure, a ∈ A, and π = tpA[a], and suppose A |= φ.
Evidently, for all i (1 ≤ i ≤ m), there are exactly Ci elements b ∈ A \ {a} such
that A |= fi[a, b]:

Ci = |{b ∈ A \ {a} : A |= fi[a, b] }|.
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Now, for any bit-string s (0 ≤ |s| ≤ p), define the s-spectrum of a in A, denoted
spA

s [a], to be the m-element vector whose ith component (1 ≤ i ≤ m) is the
number of elements b ∈ A \ {a} such that A |= fi[a, b] and tpA[a, b] ∈ Λπ,s:

(

spA

s [a]
)

i
= |{b ∈ A \ {a} : A |= fi[a, b] and tpA[a, b] ∈ Λπ,s}|.

Similarly, for any bit-string t (0 ≤ |t| ≤ q), define the t-tally of a in A, de-
noted tlAt [a], to be the m-element vector whose ith component is the number of
elements b ∈ A \ {a} such that A |= fi[a, b] and tpA[a, b] ∈Mπ,t:

(

tlAt [a]
)

i
= |{b ∈ A \ {a} : A |= fi[a, b] and tpA[a, b] ∈Mπ,t}|.

Henceforth, by vector, we shall always mean “m-dimensional vector over N”,
with indices running from 1 to m. We denote the vector (C1, . . . , Cm) by C
and the m-dimensional zero vector (0, . . . , 0) by 0. If u and v are vectors, we
write u ≤ v if every component of u is less than or equal to the corresponding
component of v; we write u < v if u ≤ v and u 6= v. Similarly for ≥ and >.
Recalling further that C = max1≤i≤m Ci, the number of vectors u such that
u ≤ C is evidently bounded by (C+1)m, and hence by an exponential function
of ‖φ‖. Moreover, the s-spectrum and t-tally of a is always a vector ≤ C. Lastly,
given any 2-type τ , we write Cτ for the vector whose ith component is given
by:

(

Cτ

)

i
=

{

1 if fi(x, y) ∈ τ ,

0 otherwise.
(5.2)

To better understand this apparatus, let A, a, π be as above, and consider
first the case where s and t are the empty string ε. Since Λπ,ε is the set of
invertible message-types λ such that tp1(λ) = π, spA

ε [a] is simply the vector
whose ith component records the number of elements b to which a sends a
message of invertible type containing the atom fi(x, y). Likewise, tlAε [a] is the
vector whose ith component records the number of elements b to which a sends
a message of non-invertible type containing the atom fi(x, y). If 0 < |s| ≤ p,
then spA

s [a] is obtained in the same way as spA
ε [a], except that we discount all

messages whose type is not a member of Λπ,s. Likewise, if 0 < |t| ≤ q, then

tlAt [a] is obtained in the same way as tlAε [a], except that we discount all messages
whose type is not a member of Mπ,t.

Lemma 34. Suppose A is a model of φ. Let a ∈ A, π = tpA[a], and s, t be
bit-strings such that |s| < p and |t| < q. Then

spA

ε [a] + tlAε [a] = C (5.3)

spA

s0[a] + spA

s1[a] = spA

s [a] (5.4)

tlAt0[a] + tlAt1[a] = tlAt [a]. (5.5)

Proof. Immediate.
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Thus, while Λπ,s is the union of the sets Λπ,s0 and Λπ,s1, spA
s [a] is the vector

sum of the spectra spA
s0[a] and spA

s1[a]; similarly for tallies.
As the strings s and t get longer, the sets Λπ,s and the sequences Mπ,t get

smaller, and so the vectors spA
s [a] and tlAt [a] become, as it were, more selective in

the information they record. It is therefore instructive to consider what happens
to s-spectra and t-tallies when s and t have maximal length. The latter case is
the easier to understand, and so we consider it first. If |t| = q, then Mπ,t by
construction contains just one 2-type, µ = µπ,t, which is either a non-invertible
message-type, or else a silent 2-type. If µ is a non-invertible message-type, then,
since A |= φ, there can be only finitely many elements b ∈ A \ {a} such that
tpA[a, b] = µ. Let this number be n. Evidently:

tlAt [a] = nCµ. (5.6)

On the other hand, if µ is a silent 2-type, then tlAt [a] = Cµ = 0.
Turning now to s-spectra with |s| = p, recall that Λπ,s in general has more

than one element. However, Lemma 33 tells us that, in a chromatic model, no
element may send more than one message whose type is in Λπ,s. This enables
us to establish the following simple result, which will be useful in the sequel:

Lemma 35. Suppose that A is a chromatic model of φ. Let a ∈ A, π be a
1-type, and s be a bit-string with |s| = p. If tpA[a] = π and spA

s [a] > 0, then
there exists λ ∈ Λπ,s with spA

s [a] = Cλ such that a sends a message of type λ
to some b ∈ A \ {a}. Conversely, if there exists λ ∈ Λπ,s such that a sends a
message of type λ to some b ∈ A \ {a}, then tpA[a] = π and spA

s [a] = Cλ.

Proof. Suppose tpA[a] = π and spA
s [a] > 0. Then there exists b ∈ A \ {a} such

that tpA[a, b] ∈ Λπ,s. By Lemma 33, this b is unique, so, letting λ = tpA[a, b],
we have spA

s [a] = Cλ as required. Conversely, suppose a sends a message of
type λ ∈ Λπ,s to some element b ∈ A \ {a}. Certainly, then, tpA[a] = π, and
again, by Lemma 33, this b is the only element in A \ {a} to which a sends a
message having any type in Λπ,s; it follows that spA

s [a] = Cλ as required.

5.6 Transformation into a constraint satisfaction

problem

In the sequel, we take π to vary over the set of 1-types, λ to vary over the set of
invertible message-types, s to vary over the set of bit-strings of length at most
p, t to vary over the set of bit-strings of length at most q, and u, v and w to
vary over the set of vectors ≤ C. (Similarly for their primed counterparts π′,
λ′, s′, t′, u′, v′ and w′.) We refer to these sets as the standard ranges of the
respective letters; they are summarized in Table 5.2. Occasionally, additional
restrictions will be imposed on these ranges.

Now let V be the set whose elements are the following (distinct) symbols,
where the indices λ, π, s, t, u, v, w vary over their standard ranges:

xλ, yπ,s,u, zπ,t,u,
ŷπ,s,v,w whenever |s| < p, ẑπ,t,v,w whenever |t| < q.
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Symbol Standard range

π, π′ all 1-types
λ, λ′ all invertible message-types
s, s′ all bit-strings of length at most p
t, t′ all bit-strings of length at most q
u, v, w, u′, v′, w′ all vectors ≤ C

Table 5.2: Standard ranges of symbols used as indices

The symbols ŷπ,s,v,w and ẑπ,t,v,w are not defined when |s| = p and |t| = q.
The cardinality of V is evidently bounded by an exponential function of ‖φ‖.
We impose some arbitrary order on V , and refer to its elements as variables.
If U is a non-empty set of variables, enumerated, in the imposed order, as
{u1, . . . , uk}, let

∑

U denote the term u1 + · · · + uk; if U is the empty set, let
∑

U denote the (constant) term 0. In the sequel, we take a constraint to be
an equation or inequality involving arithmetical terms over V , or a conditional
statement formed from two such inequalities. A solution of a set of constraints
over some numerical domain D is simply an assignment θ : V → D under which
all the constraints in question evaluate (in the obvious way) to true. Using this
apparatus, we proceed to construct, given the formula φ in (5.1), a set E of
constraints. We prove below that E has a solution over N if and only if φ is
finitely satisfiable.

To motivate this construction, suppose, for the moment, that A is a finite
model of φ. We may then define the assignment θ : V → N, which we may think
of as the ‘intended’ assignment relative to A, as follows. If π is a 1-type, write
Aπ to denote the set of elements of A having 1-type π in A:

Aπ = {a ∈ A | tpA[a] = π}.

Now, for any λ in its standard range, let θ(xλ) be the number of elements of
A sending any message of type λ to some other element. For any π, s, t, u
in their standard ranges, let θ(yπ,s,u) be the number of elements of Aπ having
s-spectrum u, and let θ(zπ,t,u) be the number of elements of of Aπ having t-
tally u. Finally, for any π, s, t, v, w in their standard ranges, with |s| < p and
|t| < q, let θ(ŷπ,s,v,w) be the number of elements of Aπ having s0-spectrum v
and s1-spectrum w, and let θ(ẑπ,t,v,w) be the number of elements of Aπ having
t0-tally v and t1-tally w. This assignment is summarized in Table 5.3.

We construct E in three stages. First, let E1 be the following set of constraints
involving the variables V , where π, u, v, w again vary over their standard
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Variable Value in N under θ

xλ |{a ∈ A : there exists b ∈ A \ {a} such that tpA[a, b] = λ}|
yπ,s,u |{a ∈ Aπ : spA

s [a] = u}|

zπ,t,u |{a ∈ Aπ : tlAt [a] = u}|
ŷπ,s,v,w |{a ∈ Aπ : spA

s0[a] = v and spA
s1[a] = w}|, whenever |s| < p

ẑπ,t,v,w |{a ∈ Aπ : tlAt0[a] = v and tlAt1[a] = w}|, whenever |t| < q

Table 5.3: The assignment θ : V → N, assuming that A is a finite model of φ.

ranges, and s, t vary over bit-strings such that |s| < p and |t| < q:

zπ,ε,u = yπ,ε,C−u (5.7)

yπ,s,u =
∑

{ŷπ,s,v′,w′ | v′ + w′ = u} (5.8)

zπ,t,u =
∑

{ẑπ,t,v′,w′ | v′ + w′ = u} (5.9)

yπ,s0,v =
∑

{ŷπ,s,v,w′ | v + w′ ≤ C} (5.10)

yπ,s1,w =
∑

{ŷπ,s,v′,w | v′ + w ≤ C} (5.11)

zπ,t0,v =
∑

{ẑπ,t,v,w′ | v + w′ ≤ C} (5.12)

zπ,t1,w =
∑

{ẑπ,t,v′,w | v′ + w ≤ C} (5.13)

1 ≤
∑

{yπ′,ε,u′ | π′ a 1-type, u′ ≤ C}. (5.14)

Lemma 36. Suppose A is a finite model of φ, and let the variables in V take
the values specified, relative to A, in Table 5.3. Then the constraints in E1 are
all satisfied.

Proof. The constraints (5.7)–(5.9) follow easily from the respective equations
in Lemma 34. The constraints (5.10)–(5.13) are immediate. In the (single)
constraint (5.14), the sum on the right-hand side evaluates to the cardinality of
A, since every a ∈ A has a unique 1-type and a unique ε-spectrum. But A is
nonempty by definition.

To define the next set of constraints, we require some additional terminology.
Let τ be any 2-type. Since τ is a finite set of formulas with free variables x
and y, we may write

∧

τ to denote their conjunction. Referring again to the
formula (5.1), we say that τ is forbidden, if the formula

α(x) ∧ α(y)∧
∧

1≤h≤l

(

(eh(x, y) → βh(x, y)) ∧ (eh(y, x) → βh(y, x))
)

∧
∧

τ (5.15)
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is unsatisfiable. Thus, if A |= φ and a, b are distinct elements of A, then tpA[a, b]
cannot be forbidden. Since (5.15) is purely Boolean, we can evidently identify
the forbidden 2-types in time bounded by an exponential function of ‖φ‖.

Now let E2 consist of the following constraints, where λ, π vary over their
standard ranges, s, t vary over bit-strings such that |s| = p, |t| = q, and u varies
over vectors such that 0 < u ≤ C:

yπ,s,u =
∑

{xλ′ | λ′ ∈ Λπ,s and Cλ′ = u} (5.16)

x(λ−1) = xλ (5.17)

xλ = 0 whenever tp1(λ) = tp2(λ) (5.18)

xλ = 0 whenever λ is forbidden (5.19)

zπ,t,u = 0 whenever µπ,t is forbidden. (5.20)

zπ,t,u = 0
whenever u is not a scalar multiple of
Cµ, for µ = µπ,t

(5.21)

Lemma 37. Suppose A is a finite, chromatic model of φ, and let the variables
in V take the values specified, relative to A, in Table 5.3. Then the constraints
in E2 are all satisfied.

Proof. To see that the constraints (5.16) hold, fix π, s, u (with |s| = p and
u > 0), and write

Aπ,s,u = {a ∈ A | tpA[a] = π and spA
s [a] = u}.

In addition, for any invertible message-type λ, write

Aλ = {a ∈ A | there exists b ∈ A \ {a} such that tpA[a, b] = λ}.

From Table 5.3, we have |Aπ,s,u| = θ(yπ,s,u) and |Aλ| = θ(xλ). Moreover, by
Lemma 33, the sets Aλ′ , for λ′ ranging over the elements of Λπ,s, are pairwise
disjoint. But Lemma 35 just states that

Aπ,s,u =
⋃

{Aλ′ | λ′ ∈ Λπ,s and Cλ′ = u},

whence the relevant instance of the constraints (5.16) follows. To see that the
constraints (5.17) hold, observe that, since A is chromatic, θ(xλ) is actually
the total number of messages of (invertible) type λ sent by elements of A, and
similarly for λ−1. But then θ(xλ) and θ(x(λ−1)) are obviously equal. The
constraints (5.18) are immediate given that A is chromatic. The constraints
(5.19) and (5.20) are immediate given that A |= φ. Lastly, Equation (5.6) states
that, for |t| = q, no element with 1-type π can have a t-tally which is not a scalar
multiple of Cµ, where µ is the sole element in Mπ,t. The constraints (5.21) then
follow.

Let E3 consist of the following constraints, where π varies over all 1-types,
t varies over bit-strings such that |t| = q, and u varies over vectors such that
0 < u ≤ C:

zπ,t,u > 0 ⇒
∑

{yπ′,ε,u′ | π′ = tp2(µπ,t) and u′ ≤ C} > 0. (5.22)
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Lemma 38. Suppose A is a finite model of φ, and let the variables in V take
the values specified, relative to A, in Table 5.3. Then the constraints in E3 are
all satisfied.

Proof. Fix π, t, u (with |t| = q and u > 0), so that µπ,t is the sole element
of Mπ,t. If θ(zπ,t,u) > 0, some element has t-tally u; and since u > 0, µπ,t

must be a non-invertible message-type (i.e. not a silent 2-type), and moreover
at least one message of that type must be sent in A. Therefore, A contains at
least one element whose 1-type is tp2(µπ,t). But the number of elements in A
whose 1-type is tp2(µπ,t) is

∑

{θ(yπ′,ε,u′) | π′ = tp2(µπ,t) and u′ ≤ C}.

Let E = E1 ∪ E2 ∪ E3. Measuring the size ‖E‖ of E in the usual way, it is
evident that ‖E‖ is bounded above by an exponential function of ‖φ‖. From the
preceding lemmas:

Lemma 39. Let φ and E be as above. If φ is finitely satisfiable, then E has a
solution over N.

Proof. Suppose φ is finitely satisfiable. By Lemma 16, let A be a finite, chro-
matic model of φ. Assign to the variables in V the values given in Table 5.3.
Then apply Lemmas 36–38.

When φ is finitely satisfiable, we may think of the variables V as correspond-
ing to configurational properties of elements in its finite, chromatic models. If
the values of these variables are taken to record how often these configurational
properties are realized in some such model, as prescribed in Table 5.3, then the
constraints E will be satisfied.

5.7 Main result

We proceed to establish a converse of Lemma 39: given a solution of E over
N, there exists a finite model A of φ such that that solution records how often
certain configurational properties are realized in A, as specified in Table 5.3.

To reduce notational clutter, we use the variable names xλ, yπ,s,u, zπ,t,u,
ŷπ,s,v,w, ẑπ,t,v,w to stand for the corresponding natural numbers in some solution
of E (and similarly for terms involving these variables). Fix some 1-type π, and
let Aπ be a set with exactly

∑

{yπ,ε,u′ | u′ ≤ C}

elements (possibly zero). Think of Aπ as a set of elements which ‘want’ to have
1-type π in some yet-to-be-built finite model A of φ.

Our first step will be to define, for any s, t in their standard ranges, vector-
valued functions fπ,s and gπ,t on Aπ. For a ∈ Aπ , think of fπ,s(a) as the s-
spectrum which a wants to have in A (when A is eventually built); and think of
gπ,t(a) as the the t-tally which a wants to have in A. Formally, the definitions of
these functions simply depend on our solution of E ; informally, however, it helps
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to keep in mind Table 5.3 when understanding the construction. In particular,
if we want yπ,s,u to represent the number of elements having 1-type π and s-
spectrum u in A, we will need to ensure that exactly this number of elements
a ∈ Aπ satisfy fπ,s(a) = u; and similarly for t-tallies. That is, we will need to
ensure that, for all u ≤ C,

|f−1
π,s(u)| = yπ,s,u (5.23)

|g−1
π,t(u)| = zπ,t,u. (5.24)

Furthermore, if |s| < p and |t| < q, then, recalling Lemma 34, we will also need
to ensure that, for all a ∈ Aπ,

fπ,ε(a) + gπ,ε(a) = C (5.25)

fπ,s0(a) + fπ,s1(a) = fπ,s(a) (5.26)

gπ,t0(a) + gπ,t1(a) = gπ,t(a). (5.27)

The following rather technical lemma simply guarantees that these requirements
can be satisfied.

Lemma 40. Suppose xλ, yπ,s,u, zπ,t,u, ŷπ,s,v,w, ẑπ,t,v,w (with indices having
the appropriate ranges) are natural numbers satisfying the constraints E given
above. Fix any 1-type π, and let Aπ be a set of cardinality

∑

{yπ,ε,u′ | u′ ≤ C}.
Then there exists a system of functions on Aπ

fπ,s : Aπ → {u | u ≤ C} gπ,t : Aπ → {u | u ≤ C},

where the indices s and t vary over their standard ranges, satisfying the following
conditions: (i) Equations (5.23) and (5.24) hold for all vectors u ≤ C; (ii) if
|s| < p and |t| < q, then Equations (5.25)–(5.27) hold for all a ∈ Aπ.

Proof. Decompose the set Aπ into pairwise disjoint (possibly empty) sets Au

such that |Au| = yπ,ε,u, where the index u varies over all vectors ≤ C. This is
possible by the cardinality of Aπ. For all u ≤ C, and all a ∈ Au, set

fπ,ε(a) = u gπ,ε(a) = C − u.

This assignment evidently satisfies (5.23) for s = ε; and by the constraints (5.7),
it also satisfies (5.24) for t = ε. Moreover, it is immediate that, for all a ∈ Aπ ,
Equation (5.25) holds as required.

We now construct the functions fπ,s, where 0 < |s| ≤ p, by induction on s.
Assume that, for some s (0 ≤ |s| < p), fπ,s has been defined and satisfies (5.23).
For every vector u ≤ C, decompose f−1

π,s(u) into pairwise disjoint (possibly
empty) sets Av,w such that |Av,w| = ŷπ,s,v,w, where the indices v, w vary
over all vectors satisfying v + w = u. This is possible by the constraints (5.8)
together with the assumption that fπ,s satisfies (5.23). Having thus decomposed
the sets f−1

π,s(u) (for all u ≤ C), we see that, for any a ∈ Aπ, there is precisely
one (ordered) pair of vectors v, w such that a ∈ Av,w; hence we may set

fπ,s0(a) = v fπ,s1(a) = w.
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This defines the functions fπ,s0 and fπ,s1. It is immediate that, for all a ∈ Aπ,
Equation (5.26) holds as required.

To see that fπ,s0 and fπ,s1 both satisfy Equation (5.23), note that fπ,s0(a) = v
if and only if, for some vector w′ such that v + w′ ≤ C, a ∈ Av,w′ . Similarly,
fπ,s1(a) = w if and only if, for some vector v′ such that v′ +w ≤ C, a ∈ Av′,w.
That is,

f−1
π,s0(v) =

⋃

{Av,w′ | v + w′ ≤ C}

f−1
π,s1(w) =

⋃

{Av′,w | v′ + w ≤ C},

with the collections of sets on the respective right-hand sides being pairwise
disjoint. By the constraints (5.10)–(5.11), together with the fact that |Av,w| =
ŷπ,s,v,w for all v,w, we have:

|f−1
π,s0(v)| = yπ,s0,v

|f−1
π,s1(w)| = yπ,s1,w,

which establishes (5.23) for the functions fπ,s0 and fπ,s1. This completes the
induction. The construction of the functions gπ,t proceeds completely analo-
gously, using the constraints (5.9), (5.12) and (5.13).

Lemma 41. Let the functions fπ,s and gπ,t be constructed as in Lemma 40.
Then, for all a ∈ Aπ, we have

∑

{fπ,s′(a) : |s′| = p} +
∑

{gπ,t′(a) : |t′| = q} = C.

Proof. We prove the stronger result that, for all a ∈ Aπ , j (0 ≤ j ≤ p) and k
(0 ≤ k ≤ q),

∑

{fπ,s′(a) : |s′| = j} +
∑

{gπ,t′(a) : |t′| = k} = C, (5.28)

using a double induction on j and k. If j = k = 0, then the left-hand side
of (5.28) is simply fπ,ε(a)+gπ,ε(a), which is equal to C by (5.25). Suppose now
that the result holds for the pair j, k, with j < p. Then

∑

{fπ,s′(a) : |s′| = (j + 1)} +
∑

{gπ,t′(a) : |t′| = k}

=
∑

{fπ,s′0(a) + fπ,s′1(a) : |s′| = j} +
∑

{gπ,t′(a) : |t′| = k}

=
∑

{fπ,s′(a) : |s′| = j} +
∑

{gπ,t′(a) : |t′| = k} by (5.26)

= C by inductive hypothesis.

This establishes the result for the pair j + 1, k. An analogous argument us-
ing (5.27) applies when k < m, completing the induction.
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Before we come to the promised converse of Lemma 39, we remark on the
(exponentially many) choices made during the construction of the various func-
tions fπ,s and gπ,t in the proof of Lemma 40—specifically, in the decomposition
of certain sets into collections of subsets. A given solution of E ensures that a
system of functions fπ,s and gπ,t exists, subject to the given conditions; but it
by no means determines them.

Lemma 42. Let E be as above and k a positive integer. If E has a solution over
N, then it has a solution over N in which all positive values are at least k.

Proof. Suppose E has a solution θ : V → N. Now define θ′ : V → N by
θ′(v) = kθ(v). By inspection, θ′ is a solution of E .

Model-theoretically, Lemma 42 is simply a reflection of Lemma 31.

Lemma 43. Let φ and E be as above. If E has a solution over N, then φ is
finitely satisfiable.

Proof. By Lemma 42, we may assume that E has a solution in which all positive
values are greater than or equal to 3mC. Again, we use the variable names xλ,
yπ,s,u, zπ,t,u, ŷπ,s,v,w, ẑπ,t,v,w to stand for the corresponding values in this
solution. Our task is to construct a model A of φ.

For each 1-type π, let Aπ be a set of cardinality
∑

{yπ,ε,u | u ≤ C}, with the
Aπ pairwise disjoint; and let A =

⋃

{Aπ | π a 1-type}. Think of Aπ as the set of
elements of A which ‘want’ to have 1-type π. By the constraint (5.14), A 6= ∅.
For every 1-type π, let the functions fπ,s and gπ,t on Aπ be constructed as in
Lemma 40; we are interested only in those fπ,s and gπ,t where |s| = p, and |t| = q.
Think of fπ,s(a) as the s-spectrum which a wants to have, and of gπ,t(a) as the t-
tally which a wants to have. Finally, consider any set f−1

π,s(u), where 0 < u ≤ C
and |s| = p. Using the constraints (5.16) and Equation (5.23), we can decompose
f−1
π,s(u) into pairwise disjoint (possibly empty) sets Aλ with |Aλ| = xλ, where λ

varies over the set of invertible message-types such that λ ∈ Λπ,s and Cλ = u.
It follows that, if a ∈ Aλ, with λ ∈ Λπ,s, then Cλ = fπ,s(a). Think of Aλ as the
set of elements of Aπ which want to send a single message of (invertible) type
λ.

Before proceeding, we pause to consider the construction just described in
respect of any of the sets Aπ . Fixing, for the moment, some bit-string s with
|s| = p, we see that Aπ is decomposed into the pairwise disjoint sets f−1

π,s(u) (as
u varies over vectors ≤ C), and that each of the sets f−1

π,s(u), where 0 < u ≤ C,
is further decomposed into the pairwise disjoint subsets Aλ (as λ varies over the
elements of Λπ,s such that Cλ = u). Note that the set f−1

π,s(0) is not subject
to this further stage of decomposition. This process is performed for every bit
string s with |s| = p, so that different values of s lead to independent—and
possibly overlapping—decompositions, as illustrated in Fig. 5.1. Likewise, for
every bit-string t with |t| = q, Aπ is decomposed into the pairwise disjoint sets
g−1

π,t(u) (as u varies over vectors ≤ C). Again, decompositions corresponding to
different values of t should be thought of as independent of each other.
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Aλ, where λ ∈ Λπ,s

and Cλ = u

Aλ′ , where λ′
∈ Λπ,s′

and Cλ′ = u
′

Aπ

f
−1

π,s′
(0)

f
−1

π,s′
(u′)

f
−1

π,s(u)

f
−1

π,s(0)

Figure 5.1: The decompositions of Aπ for the strings s and s′.

We now proceed to construct, for every a ∈ A, a ‘mosaic piece’; these pieces
will be assembled into the desired structure A. Formally, a mosaic piece is a finite
multiset of message-types (the reader is asked to excuse the mixed metaphor);
informally, we may think of a mosaic piece as a finite collection of ‘messages’
sent by a, each of which is labelled with some (invertible or non-invertible)
message-type (Fig. 5.2). Recall from Section 5.4 that, if π is any 1-type, then
µπ,0, . . . , µπ,R−1 is an enumeration of the non-invertible message-types µ such
that tp1(µ) = π. Fix a ∈ A, and let π be the unique 1-type such that a ∈ Aπ.
The messages in the mosaic piece corresponding to a shall be as follows. (i)
For every bit-string s such that |s| = p, if fπ,s(a) > 0, let λa,s be the invertible
message-type λ ∈ Λπ,s such that a ∈ Aλ (hence Cλ = fπ,s(a)), and let the
mosaic piece corresponding to a contain a single message labelled λa,s. Note
that, if fπ,s(a) > 0, then λa,s exists and is unique by the construction of the
sets Aλ. (ii) For every bit string t such that |t| = q, if µ = µπ,t is a non-
invertible message-type and Cµ > 0, let na,t be the unique natural number n
such that gπ,t(a) = nCµ, and let the mosaic piece corresponding to a contain
na,t distinct messages labelled µπ,t. Note that, if gπ,t(a) = 0, then na,t = 0;
on the other hand, if gπ,t(a) > 0, then na,t exists by the constraints (5.21) and
Equation (5.24). The resulting mosaic piece is depicted in Fig. 5.2, where, for
readability, we have replaced any bit-strings by the integers they conventionally
denote.

For all a ∈ A and all i (1 ≤ i ≤ m), let Ca,i (1 ≤ i ≤ m) be the number of
messages in the mosaic piece for a (as just constructed) having any label ν for
which fi(x, y) ∈ ν, and furthermore let Ca be the vector (Ca,1, . . . , Ca,m). By
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µπ,0

na,0

na,1

µπ,1

µπ,1

λa,0

λa,1

λa,P−1

µπ,0

na,R−1

µπ,R−1

µπ,R−1

Figure 5.2: The mosaic piece corresponding to a ∈ Aπ . For each j (0 ≤ j < P ),
a may or may not send a message labelled λa,j (hence the dotted lines); if it
does, then λa,j ∈ Λπ,j. For each k (0 ≤ k < R), a sends na,k messages labelled
µπ,k; but the numbers na,k can be zero.

inspection of Fig. 5.2,

Ca =
∑

{fπ,s′(a) : |s′| = p} +
∑

{gπ,t′(a) : |t′| = q},

and so, by Lemma 41,

Ca = C. (5.29)

If the mosaic piece corresponding to a contains a message labelled with some
message-type ν, we will say that a sends a message of type ν. Equation (5.29) is
evidently a necessary condition for mosaic pieces that are going to be assembled
into a model A of φ. We build A in four steps as follows.

Step 1 (Fixing the 1-types): For all 1-types π and all a ∈ Aπ , set tpA[a] = π.
Since the Aπ are pairwise disjoint, no clashes arise.

Step 2 (Fixing the invertible message-types): Let λ be any invertible message-
type. By construction, exactly |Aλ| = xλ elements of A send some message
labelled with λ, and each of those elements sends exactly one such message.
Hence, the number of messages labelled with λ (over all a ∈ A) is xλ; likewise,
the number of messages labelled with λ−1 is xλ−1 . By the constraints (5.17),
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we may put the λ-labelled messages and the λ−1-labelled messages in 1–1 cor-
respondence. If a ∈ A sends a λ-labelled message, let b ∈ A send the corre-
sponding λ−1-labelled message, and set tpA[a, b] = λ. For this assignment to
make sense, we need to check that a and b are distinct. But, by construction,
we must have xλ > 0, whence, by the constraints (5.18), tp1(λ) 6= tp2(λ), so
that Atp1(λ) and Atp2(λ) are disjoint sets containing a and b, respectively. Thus,

the assignment tpA[a, b] = λ makes sense, and does not clash with the 1-type
assignments in Step 1. We can think of the element b as ‘receiving’ the message
sent by a (and vice versa). Moreover, by construction, for every 1-type π′, a
sends at most one message labelled with an invertible message-type λ′ such that
tp2(λ

′) = π′. Therefore, there is no chance that these assignments clash with
each other. Note, incidentally, that this method of avoiding clashes means that
A will turn out to be chromatic.

Step 3 (Fixing the non-invertible message-types): As a preliminary, for every 1-
type π, we decompose Aπ into three pairwise disjoint (possibly empty) sets Aπ,0,
Aπ,1 and Aπ,2 satisfying the condition that, if |Aπ| ≥ 3mC, then |Aπ,j | ≥ mC for
all j (0 ≤ j ≤ 2). Now let µ be any non-invertible message-type, let π = tp1(µ),
and let ρ = tp2(µ). (Note that π and ρ may be identical.) Let t be the bit-string
of length q such that µ = µπ,t, and suppose some element a sends na,t > 0
messages labelled µ. It follows that a ∈ Aπ, and also that there is a vector
u > 0 such that gπ,t(a) = u, and hence such that g−1

π,t(u) is non-empty. By
Equation (5.24), zπ,t,u is positive, whence, by the constraints (5.22),

∑

{yρ,ε,u′ |
u′ ≤ C} is also positive, and therefore, by our choice of solution, greater than or
equal to 3mC. But recall that, since ρ is a 1-type, |Aρ| =

∑

{yρ,ε,u′ | u′ ≤ C},
so that each of the sets Aρ,0, Aρ,1 and Aρ,2 contains at least mC elements. Since
a ∈ Aπ, let j (0 ≤ j ≤ 2) be such that a ∈ Aπ,j , let k = j + 1 (mod 3), and
select na,t elements b from Aρ,k which have not yet been chosen to receive any
other messages (invertible or non-invertible) sent by a. Since the total number
of messages sent by a is certainly at most mC, we never run out of choices. For
each of these elements b, set tpA[a, b] = µ. Since π = tp1(µ) and ρ = tp2(µ),
these assignments cannot clash with those made in Step 1, and by construction,
they cannot clash with assignments corresponding to other messages sent by a.
We need only check that they cannot clash with assignments corresponding to
messages sent by b. Specifically, we must ensure that, if tpA[a, b] = µ is assigned
as just described, it is not possible for a to be chosen to receive a µ′-labelled
message sent by b, where µ′ is some non-invertible message-type. But any µ′-
labelled message sent by b ∈ Aρ,k, with tp2(µ

′) = π, could only be sent to an
element in Aπ,j′ , where j′ = k + 1 (mod 3); and by assumption, Aπ,j and Aπ,j′

are disjoint, (Fig. 5.3). Observe that this conclusion follows even if π = ρ.

Step 4 (Fixing the remaining 2-types): Recall that a guard-atom is any atom
p(x, y) or p(y, x), where p is a binary predicate. If tpA[a, b] has not been defined,
set it to be the 2-type

π ∪ ρ[y/x] ∪ {¬γ | γ is a guard-atom not involving ≈},
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Aπ,j′

Aρ,k

Figure 5.3: Fixing the non-invertible message-types.

where π = tpA[a], ρ = tpA[b], and ρ[y/x] is the result of replacing x by y in
ρ. Note that neither this 2-type nor its inverse is a message-type. Note also
that, since the integers C1, . . . , Cm and m are by assumption all positive, a and
b certainly send some messages, so that the constraints (5.19) and (5.20) ensure
that both α ∧

∧

π and α ∧
∧

ρ are satisfiable.
This completes the definition of A; it remains to show that A |= φ. Referring

to (5.1), we consider first the conjuncts:

∀xα ∧
∧

1≤h≤l

∀x∀y(eh(x, y) → (βh ∨ x ≈ y)).

We see from the constraints (5.19) and (5.20) that no 2-type assignment in
Steps 2 and 3 violates these conjuncts. And it is obvious that no assignment in
Step 4 does so. (This is where we use the guardedness of φ, of course.) Finally,
we consider the conjuncts

∧

1≤i≤m

∀x∃=Ci
y(fi(x, y) ∧ x 6≈ y).

To see that these conjuncts are all satisfied, it suffices to note Equation (5.29)
and the fact that none of the 2-types assigned in Step 4 is a message-type.

The constraints E all have the forms

x1 + · · · + xn = x
x1 + · · · + xn ≥ 1

x = 0
x > 0 ⇒ x1 + · · · + xn > 0,

(5.30)

where n > 0, x, x1, . . . , xn are variables. We now investigate the problem of
determining whether E has a solution. The following lemma essentially repeats
Lutz, Sattler and Tendera [22], Proposition 11. (Those authors in turn credit
Calvanese [5].) We give a proof for convenience. An integer programming prob-
lem is a system of linear equalities and inequalities interpreted over Z. A linear
programming problem is a system of linear equalities and inequalities interpreted
over Q.
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Lemma 44. Let φ and E be as above. An algorithm exists to determine whether
E has a solution over N in time bounded by a polynomial function of ‖E‖, and
hence by an exponential function of ‖φ‖.

Proof. Evidently, E can be regarded as a very large disjunction of integer pro-
gramming problems, each one of which has size bounded by ‖E‖. By a well-
known theorem (Borosh and Treybig [4]), there is a monotonic function h, com-
putable in polynomial time, such that, if an integer programming problem of
size n has a solution, then it has a solution in which every value is bounded by
h(n) > 0. Hence, E has a solution over N if and only if it has a solution over N

in which every value is bounded by H = h(‖E‖).
Now consider the integer programming problem EH defined by replacing

every constraint of the form x > 0 ⇒ x1+ · · ·+xn > 0 in E by the corresponding
inequalities

Hy ≥ x

x1 + · · · + xn ≥ y,

where y is a new variable. Every solution of EH over N is clearly a solution
of E . Conversely, suppose θ : V → N is a solution of E in which all values are
bounded by H . Let y be any of the new variables of EH , introduced to eliminate
the constraint x > 0 ⇒ x1 + · · · + xn > 0; and extend θ to give a value to y as
follows:

θ(y) =

{

0 if θ(x) = 0

1 otherwise.

It is routine to check that extending θ in this way for all the new variables y in
EH yields a solution of EH . Hence E can be transformed, in time bounded by
a polynomial function of ‖E‖, into a constraint set EH , in which all constraints
are of the forms

x1 + · · · + xn = x x = 0
x1 + · · · + xn ≥ 1 Hx1 ≥ x2

x1 + · · · + xn ≥ x,

such that E has a solution (over N) if and only if EH has. It is obvious that,
if EH has a solution over the non-negative rationals, then it has a solution over
N as well. (Simply multiply by the product of all the denominators.) Hence,
we can equivalently regard EH as a linear programming problem. But linear
programming is in PTIME, by Khachiyan’s theorem [17].

Theorem 16. The finite satisfiability problem for GC2 is in ExpTime.

Proof. Lemmas 32, 39, 43 and 44.

5.8 The satisfiability problem

In the previous section, we considered only the finite satisfiability problem for
GC2. However, the technique employed easily yields a corresponding result on
the satisfiability problem for GC2.
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Notation 6. Let N∗ denote the set N∪{ℵ0}. We extend the ordering > and the
arithmetic operations + and · from N to N∗ in the obvious way. Specifically, we
define ℵ0 > n for all n ∈ N; we define ℵ0+ℵ0 = ℵ0 ·ℵ0 = ℵ0 and 0·ℵ0 = ℵ0·0 = 0;
we define n+ ℵ0 = ℵ0 +n = ℵ0 for all n ∈ N; and we define n · ℵ0 = ℵ0 ·n = ℵ0

for all n ∈ N such that n > 0. Under this extension, > remains a total order,
and +, · remain associative and commutative.

Using the arithmetic in Notation 6, consider again the constraints E given
in (5.7)–(5.14), (5.16)–(5.21) and (5.22), but now with the variables ranging
over the whole of N∗.

Lemma 45. Let φ and E be as above. Then φ is satisfiable if and only if E has
a solution over N∗.

Proof. If φ is satisfiable, then it has a model A which is finite or countably
infinite. Now assign to the variables in V values in N∗ as directed by Table 5.3.
The reasoning of Lemmas 36–39 then goes through, with the obvious changes
of formulation, exactly as in the finite case. For the converse, proceed exactly
as for Lemmas 40–43.

Lemma 46. The set of constraints E has a solution over N∗ if and only if it
has a solution over {0,ℵ0}.

Proof. Suppose E has a solution θ : V → N∗. Now define θ′ : V → {0,ℵ0} by
θ′(v) = ℵ0θ(v). By inspection, θ′ is a solution of E .

Model-theoretically, Lemma 46 is simply a reflection of Lemma 31.
Since the domain {0,ℵ0} has only 2-elements, variables interpreted over it

are essentially Boolean. If x ∈ V , let us write X for the corresponding statement
x = 0, so that the constraints E are viewed as formulas of propositional logic.
For example, a constraint of the form

x1 + · · · + xn = x

becomes the set of propositional logic formulas

{X1 ∧ · · · ∧Xn → X} ∪ {X → Xi | 1 ≤ i ≤ n};

a constraint of the form
x1 + · · · + xn ≥ 1

becomes the propositional logic formula

X1 ∧ · · · ∧Xn → ⊥;

and a constraint of the form

x > 0 ⇒ x1 + · · · + xn > 0

becomes the propositional logic formula

X1 ∧ · · · ∧Xn → X.

A quick check reveals that all of the resulting formulas are Horn-clauses.
This immediately yields:
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Theorem 17. The satisfiability problem for GC2 is in ExpTime.

5.9 Bibliographic notes

The language M of modal logic can be found in Lewis and Langford [21], and
originally formed the basis of a collection of axiomatically characterized log-
ics; the alternative, semantic, characterization of these logics in terms of frame
classes—which forms the basis of the approach adopted in these notes—is due
to Kripke [18]. The complexity-theoretic analysis of these logics was carried out
relatively early. Theorem 8 may be regarded as folklore; Theorem 9 is due to
Ladner [20].

The special case of Theorem 11 where F = ∅ is due to Tobies [35]; the remain-
ing cases can be easily proved using the same technique. Theorems 10 and 12
use rather different methods, and are due to Kazakov and Pratt-Hartmann [16].

The guarded fragment G was originally introduced by Andréka et al. [1],
as a means of generalizing modal logic (under the relational semantics), and,
at the same time, exhibiting its connection to earlier work in algebraic logic.
Theorems 13, 14 and 15 are due to Grädel [11]. Theorem 16 is due to Pratt-
Hartmann [31]. Theorem 17 was first proved—using a very different technique—
in Kazakov [15]. Kazakov’s strategy is to show that satisfiability in GC2 can be
reduced in polynomial time to satisfiability in the 3-variable guarded fragment;
the result then follows from Theorem 14. We note in this regard that Kazakov’s
reduction is not conservative, and therefore yields no proof of Theorem 16.
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Monatshefte für Mathematik und Physik, 40:433–443, 1933.

[10] W. Goldfarb. The unsolvability of the gödel class with identity. Journal of
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