Reasoning in complex theories and applications

Advanced Lecture, ESSLLI 2009

Viorica Sofronie-Stokkermans
Max-Planck-Institut fiir Informatik, Campus E 1.4, D-66125 Saarbriicken, Germany

1 Introduction

One of the most important research objectives in mathematics and computer science is
reasoning in and about complex systems. Complex systems arise in a natural way in many
areas such as mathematics, logic, computation, design of digital circuits, communication,
language processing, databases, or artificial intelligence. They can be, for instance:

complex mathematical theories;

programs, or more general reactive or hybrid systems;

large (possibly distributed) databases;

multi-agent systems;

or very complex systems (e.g. multi-agent systems or reactive or hybrid systems with
embedded software, whose behavior is controlled by databases, reasoning about knowl-
edge and belief, planning mechanisms, or programs).

Proving properties of such systems is extremely important. In safety-critical systems (for
instance cars, trains, planes, or power-plants) even small mistakes can provoke disasters.
Since the amount of data which has to be handled in verification tasks is usually huge,
computer support is necessary. The dream of the scientists is to prove such correctness
properties automatically. This goal cannot be reached in its full generality - this follows
from undecidability results in first order logic which go back to the work of Godel, Church
and Turing. However, for concrete application domains (e.g. for proving specific properties
of certain classes of systems) automatic procedures exist. It is therefore very important to
identify situations in which automated verification of complex systems is possible. For this,
it is essential to identify theories which are decidable, preferably with low complexity. Very
often, classical theories do not occur alone in applications:

e In program verification, for instance, one may need to prove properties of lists, arrays,
or sets (with elements of a certain type), or of several such datatypes at the same time.

e In distributed ontologies one usually needs to consider various extensions of a common
kernel with new concepts and constructors.

It is therefore very important to obtain methods for efficiently combining decision proce-
dures. For a long time the state of the art in the research in combination of decision proce-
dures was represented by the Nelson-Oppen combination procedure (which can be applied
to combine decision procedures for certain theories over disjoint signatures). Only in recent
years, significant progress in the area of reasoning in extensions of theories and combinations
of possibly non-disjoint theories has been made; some of these results are presented here.

Aims of the course. The goal of this advanced course is to give a comprehensive, in-
depth perspective on recent advances in the field of reasoning in complex logical theories,
and to present the applications of these results in various areas such as mathematics, formal
verification, knowledge representation (data bases and multi-agent systems).

CONTENTS

Contents
1 Introduction
2 Motivation: Verification of complex systems

2.1 Mathematics e
2.2 Verification of reactive and hybrid systems
2.3 Databases L
2.4 Multi-agent systemso
2.5 Formalization, reduction to deduction in logical theories
2.6 Structure of the course L

Preliminaries

3.1 Formulae, models, theories
3.2 Restriction to a sublanguage Lo oo
3.3 Combinations of theories
3.4 Theory extensions L L L

Decidable theories and theory fragments

4.1 Problems and relationships between them
4.2 SAT checking modulo a theory
4.3 Methods for proving decidability 0 0.

Tractability
5.1 Datalog e
5.2 Local theories o

Efficient reasoning in complex theories
6.1 Modularity
6.2 Hierarchical reasoning in theory extensions

Combinations of theories
7.1 Combinations of theories with disjoint signatures

7.1.1
7.1.2

The Nelson-Oppen combination procedure.
Extensions of the Nelson-Oppen procedure.

7.2 Combinations of theories with non-disjoint signatures
7.3 Further comments

Theory extensions

8.1 Local theory extensions
8.2 Hierarchical reasoning in local theory extensions
8.3 Recognizing local extensions: 1. Semantical criterion
8.4 Recognizing local extensions: 2. Locality and saturation
8.5 Combinations of local theory extensions

Applications
9.1 Mathematics: numerical functions

9.1.1
9.1.2
9.1.3
9.14
9.1.5
9.1.6

Monotonicity and boundedness conditions
Inverse conditions Lo o
Convexity/concavity
Lipschitz conditions L
Continuity, derivability 0oL
Combinations of axioms,

10
11
12
13

14
15
16

17
17
18

19
20
20
24
24
26

26
27
28
29
31
32

CONTENTS

9.1.7 Example of proof task oo
9.2 Mathematics: partial-ordered structures
9.2.1 Monotone functions Lo
9.2.2 Extensions with definitions and boundedness conditions
9.3 Verification
9.3.1 System specification. L oL
9.3.2 System verification. oo Lo oo
9.4 Some theories important in verification
9.4.1 Pointer data structures a la McPeak and Necula
9.4.2 Extensions of the fragment of Necula and McPeak.
9.4.3 The theory of arrays a la Bradley, Manna and Sipma
9.4.4 Extending the array property fragment.
9.5 Case studies in verification Lo oo
9.5.1 ARBCCaseStudy
9.5.2 Verification of a program changing pointer structures.
9.5.3 Verification of a program handling arrays
9.6 Databases
9.6.1 Description logics: generalities
9.6.2 Combinations of ALC-ontologies
9.6.3 The description logic EL oL
9.6.4 &L with numerical domains
9.7 Multi-agent systems oL

10 Conclusions
A Appendix A. Some notions in model theory

B Appendix B. Partial algebras

37
38
38
39
39
39
39
41
41
43
43
44
44
44
49
50
o1
51
53
53
95
o7

58

63

63

2 MOTIVATION: VERIFICATION OF COMPLEX SYSTEMS 4

2 DMotivation: Verification of complex systems

The main obstacle in using computers for solving real-life problems is complexity: On the
one hand, the systems which are analyzed are complex, therefore their formalization is
complex as well. At the same time, the amount of data to be taken into account, even when
analyzing relatively simple systems, is huge. In this section we briefly illustrate the type of

verification problems in mathematics, verification, and databases.

MATHEMATICS VERFCATIRR DATA BASES
Tasks Tasks Tasks
— construct proofs ~ programs - test consistency
- check proofs — correctness — answer queries
— termination — limit search
- reactive/hybrid
Theories systems Theories
b - safety / lifeness - First-order logic
- numbers
i - Datalog
— polynomials Theories =
— numbers i
= functigns over — i Complex theories
numeric domains . - numbers
- functions over
- algebras numeric domains — functions

2.1 Mathematics

The verification tasks needed in mathematics are, on the one hand, proving or disproving
theorems about mathematical theories, and also (automatically) checking the correctness of
proofs. Theories important in mathematics include:

e theories of real, rational, integer or natural numbers;

e theories of polynomials with real/rational/integer /natural coefficients;

e theories of functions over numerical domains — for instance monotone, continuous,
derivable functions, or functions with special properties, e.g. satisfying the Lipschitz
conditions — very important in mathematical analysis;

e theories of algebraic structures (groups, rings, fields);

e theories of ordered structures (lattices, Boolean algebras);

e more generally, possibly many-sorted theories of universal algebras;

e logical theories.

To refer to only one of the aspects mentioned above: The task of automatically reasoning in
extensions of numerical domains with function symbols whose properties are expressed by
first order axioms is highly non-trivial: most existing methods are based on heuristics; very
few sound and complete methods or decidability results exist, even for specific fragments
[24, 25, 14, 58]. More details are given in Section 9.1 and 9.2.

2 MOTIVATION: VERIFICATION OF COMPLEX SYSTEMS)

2.2 Verification of reactive and hybrid systems

Typical examples of reactive systems are programs. In more general reactive or hybrid
systems we need to refer to parametric changes which can be described using functions over
numerical domains which satisfy certain properties. Depending on the specific application
domain, the specifications explicitly refer to certain theories and data types:

e numbers (real/rational/integer/natural);
e functions over numerical domains (e.g. for modeling parametric changes);

e theories of data structures such as lists or arrays — especially for program verification,
but also e.g. in the specification of systems with a parametric number of components.

Such theories are usually explicitly mentioned in the specification part. Correspondingly,
a background theory T7g — describing the data types used in the specification and their
properties — is associated in a canonical way with every specification. More details about
the specific problems which are interesting in this context are given in Section 9.3.

2.3 Databases

Among the verification tasks important in relationship with databases are consistency testing
and query answering. In addition, when constructing a database it is very important to
check incrementally whether after adding new information the truth of formulae w.r.t. the
information contained in the database changes or not. Since the information stored in
databases is usually huge, it is extremely important to find methods for limiting search
without affecting the accuracy of the answers. The type of theories related to the contents
of a database depends on the type of information stored in databases. Information can be
expressed in:

e (full) first order logic — which has the disadvantage of being undecidable — or even
higher-order logic;

o light-weight fragments of first order logic, such as Datalog (sets of (universally quan-
tified) rules consisting of Horn clauses in a language without function symbols) or
variants thereof;

e specific theories as used for instance in description logics;

e combinations of theories, involving formulae in (fragments) of first order logic, func-
tions with certain properties and numerical theories.

An issue which is becoming increasingly essential in databases and ontologies is modularity:
important aspects are modular design and reasoning. Since the component databases or on-
tologies can be regarded as logical theories, efficient reasoning in combinations of ontologies
is extremely important. It is also very important to identify light-weight description log-
ics and possibilities of efficiently integrating numerical domains in light-weight description
logics. Such aspects are mentioned in Section 9.6

2.4 Multi-agent systems

Another area of applications in which combinations of theories are important is the area of
multi-agent systems. We address here only one aspect, referring to the possibilities of agents
of reasoning about knowledge and belief: In a logical formalization, each agent may have its
own knowledge about environment, its own way of reasoning about knowledge and belief,
and, possibly, also its own knowledge about the knowledge of the other agents.

The way of reasoning about knowledge of an agent A may be represented by a specific
type of modal logic, with modal operators O 4, $ 4 having, for instance, the meaning:

3 PRELIMINARIES 6

e Oy¢: ¢ is known to A (or A believes that ¢)
e Oa¢: ¢ is consistent with the knowledge of A (resp. with the beliefs of A).

For proving or disproving statements about the knowledge/belief of a set of agents it is
important to be able to reason in combinations of modal logics. Since reasoning in many
modal logics can be reduced to deciding uniform word problems in corresponding classes of
Boolean algebras with operators, the reasoning problem in the combinations of logics can
be reduced to the problem of modular reasoning in combinations of Boolean algebras with
operators. Such aspects are mentioned in Section 9.7.

We can consider even more complex multi-agent systems whose behavior is controlled by
databases, reasoning about knowledge and belief, planning mechanisms, or programs.

2.5 Formalization, reduction to deduction in logical theories

Many of the verification problems mentioned above can be reformulated as follows:

1. Formalize the problems by explicitly pointing out the theories involved and expressing
the proof tasks in a logical language.

2. Reduce the verification problems to the task of proving satisfiability, validity, or en-
tailment of formulae in a logical theory — canonically associated with the concrete
application.

The main problems which occur in this context are, on the one hand, the size of the for-
mulae obtained this way and, on the other hand, the fact that most real-life problems are
heterogeneous in nature, and when formalizing them, complex theories are often needed:
typically extensions and combinations of “standard” theories.

2.6 Structure of the course

We start by defining theories and models in Section 3. In Section 4, decidability and unde-
cidability results for theory fragments are presented. After presenting some general decid-
ability and undecidability results for logical theories, we introduce several theory fragments
and their associated decision problems, as well as the relationship between them. Methods
for proving decidability are mentioned. In Section 5 we present some practically relevant
examples of tractable theory fragments.

In Section 6 we present the main problems, challenges and ideas for reasoning in complex
theories. The way these ideas can be applied is then explained in detail for combinations
of theories over disjoint signatures (Section 7.1), theories over non-disjoint signatures (Sec-
tion 7.2) as well as certain types of theory extensions (Section 8). We end by providing
various examples from mathematics, verification, databases and multi-agent systems where
efficient decision procedures exist (Section 9).

3 Preliminaries

In this section we define the main notions used in what follows: theories, models, as well as
restrictions, combinations and extensions of theories.

3.1 Formulae, models, theories

For basic definitions in first order logic (formulae, satisfiability, validity, entailment) we refer
to any textbook in logic. We will consider formulae and models over many-sorted signatures
¥ = (5,9, Pred), where S is a set of sorts, Q is a set of function symbols and Pred a set

3 PRELIMINARIES 7

of predicate symbols (with given arities). For one-sorted signatures we will omit the set of
sorts and use the notation ¥ = (€2, Pred).

Definition 1 A 3-structure (or X-algebra) is a tuple

M = ({M}ies, {fm}rea, {Pm} Pepred);

where for every s € S, My is a non-empty set, for all f € Q with arity a(f)=s1...8, — 8,
Iac: [Ty My, — M and for all P € Pred with arity a(P) = s1...8n, Pasg © Mg, % ... XM, .

We will denote the set of all X-algebras by »-Alg. In what follows we will denote the equality
predicate by ~. We consider terms and formulae over variables in a (many-sorted) family
X ={X; | s € S}, where for every s € S, X, is a set of variables of sort s. The set of all
Y-terms will be denoted by Tx(X), and if we want to emphasize the set of function symbols
used for building the terms also by Tq(X). The set of all ¥-formulae over the variables in
X is denoted by Fx(X). Truth and satisfiability of a first order formula in a given model
are defined in the standard way.

Definition 2 A model of a set T of formulae is a %-structure satisfying all formulae of T .
We will denote by Mod(7') the set of all models of a set of formulae.
Definition 3 If ¢ and Y be formulae over the signature ¥, we say that:

(1) ¢ is true w.r.t. T (denoted =1 ¢) if ¢ is true in all models of T ;

(2) ¢ entails ¢ w.r.t. T (denoted ¢ =1 1) if ¥ is true in all models of T A ¢;
(3) ¢ is satisfiable w.r.t. T if there exists a model of T in which ¢ is true;
(4) If ¢ is false in all models of T, we say that ¢ is unsatisfiable.

Note that ¢ is unsatisfiable iff ¢ =71, where L stands for false.

Theories can be described by sets of formulae or by sets of models. We present the syntactic
and semantic views, as well as the link between them.

Definition 4 (Syntactic point of view) A first order theory can be defined by a set F
of (closed) first order E-formulae (its axioms).

The class of all models of F is: Mod(F) = {A € Y-alg| A= G, for all G in F}.

Definition 5 (Semantic point of view) Given a class M of X-algebras, the first order
theory of M is Th(M) = {G € Fx(X) closed | M |= G}, where X is a countably infinite
set of variables.

Note that Th(Mod(F)), the set of formulae true in all models of F, represents exactly the
set of consequences of F. It is easy to show that F C Th(Mod(F)) (typically strict) and
M C Mod(Th(M)) (also typically strict).

Example 1 (Peano arithmetic) The language of Peano arithmetic contains constants 0
and 1 and binary functions + and * (addition resp. multiplication). Peano arithmetic is
axiomatized by the axioms PA:

(A1) Vaz-(z+1=0) (zero)
(A2) VaVy(z+1l=~y+1—-z=y) (successor)
(A3) F[0]A (Vz (Flz] — Flz +1]) — VaF[z]) (induction)
(A4) Va(x+0=2z) (plus zero)
(45) Vrz,y(z+@y+1) =(xz+y) +1) (plus successor)
(A6) Vz,y(x+0=~0) (times 0)
(A7) Vz,y(xx(y+1)=zxy+x) (times successor)

3 PRELIMINARIES 8

The inequality and strict inequality relations are definable in this signature. For instance
3xy—+5 > 2xy expressed as Iz(z % OA3*xy+5 = 2xy+2). The intended interpretation for this
theory is (N, {0, 1, +, x}, {~, <}) (but it does not capture true arithmetic by Gddel’s incom-
pleteness theorem). Clearly, (N,{0,1,+,*},{=, <}) € Mod(PA) and PA C Th(Mod(PA)).

Example 2 (Presburger arithmetic (Presburger 1929)) The language of Presburger
arithmetic contains constants 0 and 1 and a binary function +. The axioms of Presburger
arithmetic are azioms (A1)-(A5) above. The intended interpretation for this theory is
(NA0, 1, 4}, {~, <}).

Example 3 (Linear integer arithmetic) Let ¥ = ({0/0,s/1,+/2},{< /2}). Let Z4 =
(Z,0,s,+,<) the standard interpretation of integers. {Z4+} C Mod(Th(Z4.)).

Example 4 (Uninterpreted function symbols) Let ¥ = (2, Pred) be an arbitrary sig-
nature. Let M = X-Alg be the class of all X-structures. The theory of uninterpreted function
symbols is Th(Z-Alg), the family of all first order formulae which are true in all X-algebras.
We will denote the theory of uninterpreted function symbols also by Free(X).

Example 5 (Lists) Let ¥ = ({car/1,cdr/1,cons/2},0) and Fiss be the set of azioms:

Vz,y car(cons(z,y)) =~ «x
Va,y cdr(cons(z,y)) =~
Vx cons(car(z),cdr(z)) ~ =

Let Mod(Fiists) be the class of all models of F. Then Thiiss = Th(Mod(Fiists)) is the theory
of lists (aziomatized by Fists), i.e. the set of all logical consequences of the axioms in Fiists.

Example 6 (Acyclic Lists) Let ¥ = ({car/1,cdr/1,cons/2},D). The theory of acyclic lists
18 axiomatized by the set of axioms Fajists:

Y,y car(cons(z,y)
Va,y cdr(cons(z,y)
Vx cons(car(z), cdr(z)
Vo t(x

8 8 € 8

)

) =~
) &~
) #

for all terms t containing only the

symbol cons and the variable x

Vz,y,z',y" cons(z,y) ~ cons(z’,y') — z=ma' Ay=y

(injectivity of constructors)
(Note that injectivity of constructors is a consequence of the first two axioms, but can be
listed also as a separate axiom.) Let Mod(Faists) be the class of all models of A. Then
Thatists = Th(Mod(Faiists)) is the theory of lists (axiomatized by Fajsts), i-€. the set of all
logical consequences of the axioms of acyclic lists.

Example 7 (Arrays) McCarthy’s theory of arrays has three sorts (for arrays (a), index
(i), and elements (e)). The signature consists of the function symbols write of sort axixe — a
and read of sort a x i — e. The theory is axiomatized as follows:

read(write(a, i, ¢), i)
read(write(a, i, €),)
a=rb

~oe
~ read(a,j)Virj
— Vi(read(a,i) = read(d, j))

3 PRELIMINARIES 9

3.2 Restriction to a sublanguage
Let ¥ = (9, Pred) and ¥’ = (€, Pred’). Suppose ¥ C ¥/, i.e. 2 C Q' and Pred C Pred’.

Definition 6 Let A = (A, {fa}tseq,{Pa}pecprear) € ¥'-Alg. The restriction of A to ¥
(or the ¥-reduct of A) is the X-structure Ajs = (4, {fA‘Z}fGQ, {PA‘E}PGPred) obtained by
ignoring all functions and predicates associated with symbols in X'\X, i.e. such that:

fae = fa for f€Q
P-A\z = Py forPEPred

Example 8 Consider the signatures ¥/ = ({+/2,%/2,1/0},{< /2,even/1,0dd/1}) and ¥ =
({+/2,1/0},{< /2}) T If N = (N, +,%,1,<,even,0dd) (a X'-algebra) then the S-reduct
OfN is \Z:(Nv—i_vlaé)'

If M be a class of ¥'-algebras, M5 consists of all ¥-reducts of algebras in M:

M\E = {A\E | Ae M}

3.3 Combinations of theories

We can consider combinations of theories again both from a syntactic and from a semantic
point of view.

Definition 7 (Syntactic view) We regard theories as sets of formulae. Let Ty and T3 be
described by sets of axioms in the signatures Y1 resp. %o with variables in a set X. The
union of the two theories is the theory in the signature 1 UYs = (Qq, Pred;) U (Qg, Preds) =
(1 U Qo, Pred; U Predsy) obtained by taking the union of the sets of axioms for T1 and Ty:

Note that Mod(7; UTz) = {A € (X1 UXs)-alg | AE G, for all G in T; U To}.

Definition 8 (Semantic view) Let My, My be two classes of algebras. Let My + Ma =
{A S (21 U EQ)-AIg | A\Zl e M,; fOT 1= 1,2}.

The link between the syntactic and the semantic view is given by Theorem 9.

Theorem 9 Let 77 be a set of Xi-formulae and T3 a set of Xo-formulae. Let M; =
Mod(7;),i =1,2. Then Th(Mod(71 U72)) = Th(M; + My).

Proof: For every X1 U Xa-algebra A, A € Mod(7; UTs) iff A = G for all G in 7; U7Z;. This
happens iff Ay, |= G for all G in 7;,i = 1,2, i.e. iff Ay, € M;,i = 1,2, hence, by definition,
iff A e My + Ms. O

Example 9 The combination of Presburger arithmetic with the theory Free(X) of free func-
tion symbols in 3 = (Q, Pred) has as models algebras

(A,0,1,+,{fa}trea, <, {Pa} Pepred):

where (A,0,1,4+,<) is a model of Presburger arithmetic. The combination of Presburger
arithmetic with the theory Thyiss of lists has as models algebras

(A,0,1,+,cary, cdra, consa, <),

where (A,0,1,4, <) is a model of Presburger arithmetic and (A, cara,cdra,consy) € Mod(Thists)-

4 DECIDABLE THEORIES AND THEORY FRAGMENTS 10

Example 10 The combination of the theory of reals with the theory of a monotone function
f s the theory Th(R) U Mon(f), where

Mon(f) : Vo,y(z <y — f(z) < f(y)-

Its models are algebras of the form (A,+,x, fa, <), where (A,+,*,<) € Mod(Th(R)), and
(A, fa, <) EMon(f), i.e. fa:A— A monotone.

Note that in this case the signatures of the two theories share the < predicate symbol.

We can also consider the combination of the theory of real numbers with the theory of a
monotone function over a poset (these two theories share the common subtheory of posets).

3.4 Theory extensions

Combinations of theories cannot properly capture all types of theories of interest. For
instance, as explained in Example 10, the theory of real numbers with a monotone function
can be seen as the combination of two theories whose signatures share the predicate symbol
<. Consider now the theory of a A-Lipschitz function over R at a given point c¢. The
Lipschitz axiom:

L}e) Ve [f(@) ~ f(e)] < Axla e

contains {—, *, <} i.e. (almost) the whole signature of the theory of real numbers. Thus, if
we would like to represent this theory as a combination of two theories the shared signature
would be (almost) the same as the signature of the real numbers. In such situations it is
more convenient to talk about theory extensions.

Let 7y be a theory with signature ¥y = (S, Qg, Pred). We consider extensions 77 of 7
with signature ¥ = (S, €2, Pred), where the set of function symbols is ¥ = ¥q U X5 (i.e. the
signature is extended by new function symbols). We assume that 7; is obtained from 7, by
adding a set K of (universally quantified) clauses in the signature X. Thus, Mod(77) consists
of all ¥-structures which are models of KL and whose reduct to ¥y is a model of 7.

Example 11 The combination of the theory of Presburger arithmetic with the theory Free(X)
of free functions in a set X2 can also be seen as an extension:

e the base theory is Presburger arithmetic;

e the new function symbols are those in X; they are not constrained by any axioms.

Example 12 The combination of the theory of the reals with the theory of a monotone
function f can be also seen as a theory extension:

e the base theory 1y is the theory of real numbers.
o [ts signature is extended with the function symbol f, subject to the axiom Mon(f).

Similarly, we can think of the theory of a Lipschitz function f over the reals as the extension
of the theory of reals with a function subject to the Lipschitz condition (which can be expressed
as a set of clauses).

4 Decidable theories and theory fragments

Let ¥ = (€2, Pred) be a signature and 7 be a 3-theory (e.g. the class of all models of a class
M of ¥-algebras, or the class of all first order consequences of a set F of formulae).

4 DECIDABLE THEORIES AND THEORY FRAGMENTS

11

Figure 1: Common restrictions on £

L={VxA(x) | A atomic}
L={Vx(A1N...NA,—B) | A;, B atomic}
L={VxC(z) | C(x) clause}

L={Vxd(z) | #(x) unquantified}

Pred = 0) {peL|TE ¢}
word problem

uniform word problem ThyvHorn
clausal validity problem Thy q

universal validity problem Thy

L={FzA1N...NA, | A; atomic}
L={VxIx AN ... NA, | A; atomic}

unification problem Ths
unification with constants Thyg

Definition 10 The theory T = Th(M) is decidable iff there is an algorithm which, for
every closed first order formula ¢, can decide (after a finite number of steps) whether ¢ is in
T or not. Equivalently, T = Th(M) is decidable iff there is an algorithm which, for every
closed first order formula ¢, can decide (in finite time) whether M = ¢ or not. If no such
algorithm exists, the theory is said to be undecidable.

Some examples of undecidable theories are given below:

Example 13 (Peano arithmetic) Peano arithmetic is undecidable. The related theory of
integers (with multiplication): Th((Z,{0,1,+,*},{<,~})) is undecidable as well.

Example 14 (Uninterpreted function symbols) The theory Free(X) of all X-algebras
for a given signature ¥ is also undecidable: Word problems can be encoded this way; there
exist presentations with undecidable word problems.

Although, as seen above, some theories are undecidable, decision procedures exist if we
restrict to certain classes of formulae (for instance only to universally quantified formula,
only to existentially quantified formulae, to formulae with alternations of quantifiers of a
certain type, or to formulae with a certain syntactic form). Let 7 be a first order theory in
signature 3 and let £ be a class of (closed) X-formulae. Common restrictions on £ can be:

o L={VzA(z) | A atomic} the class of all universal atomic formulae;
L={Vz(A1N...ANA,—B) | A;, B atomic} the class of universal Horn clauses;
L={VxC(z) | C(x) clause} the class of all universally quantified clauses;

L={Vx¢(z) | (x) quantifier-free} the class of all universal formulae;

o L={3xA1N...NA, | A; atomic} the class of all atomic existential formulae;
L={VzIz AN ... NA, | A; atomic} the class of all V3 atomic formulae.

4.1 Problems and relationships between them

Problems of interest are:

The T -validity problem for formulae in L: Given ¢ € L, does T |= ¢?
The T -satisfiability problem for formulae in L: Given ¢ € L, does ¢ E7 L7

It is easy to see that 7 = ¢ iff 7 U —¢ unsatisfiable.

Theorem 11 The T -validity problem for formulae in L can be reduced to the T -satisfiability
problem for formulae in =L = {—¢ | ¢ € L} and vice-versa.

Example 15 Let Free(X) = Th(X-Alg). The following are equivalent:

4 DECIDABLE THEORIES AND THEORY FRAGMENTS 12

Figure 2: Common restrictions on £/—L

L -L
{VzA(x) | A atomic} {Fz—A(x) | A atomic}
{Vx(A1N...NA,—B) | A;, B atomic} {3Jz(A1A...NAA-B) | A;, B atomic}
{Va'\/ L; | L; literals} {3z A\ L} | L literals}
{Vxo(z) | $(x) unquantified} {3z’ (2) | ¢'(x) unquantified}

o Free(Y) | Vavy((z = f(y) Ay = h(z)) — g(z) = f(h(2)));
o Free(X) A FxTy(z = f(y) ANy =~ h(z) Ag(x) # f(h(z))) unsatisfiable;
e Free(X) Ac= f(d) ANd = h(e) Ag(c) % f(h(e)) unsatisfiable

(where ¢,d, e are new Skolem constants).

Definition 12 A first order X-theory T is Xo-convex (Lo C X) iff whenever T = N_; A; —
\/;n:1 Bj, where Aq,..., A, are ¥-atoms, and By,..., By, are Yo-atoms there exists k €

{1,...,m} such that T = \]_, A; — By.

Example 16 Theories aziomatized by sets of Horn clauses are convex. (Any theory T such
that Mod(T) closed under products is convez.)

Example 17 Let LI(Q) be the theory of rational numbers with linear arithmetic. LI(Q) is
convex w.r.t. equality atoms: if LI(Q) = \; Ai — \/; timt] then LI(Q) E A\i_; Ai — ti=t),
for some k. LI(Q) is not conver w.r.t. inequality atoms: LI(Q) = x < yVy < x but
LIQ) ¥ o <y and LI(Q) ey < .

Theorem 13 The following reductions hold:

(1) If T -validity for Thy o is decidable then T -validity for Thy is decidable.

(2) For any convex theory T, if T-validity for Thy nom is decidable then T -validity for
Thy o is decidable.

(8) If T -satisfiability for conjunctions of (quantifier-free) literals is decidable, then Thy ¢
s decidable.

4.2 SAT checking modulo a theory

In most cases, decision procedures can efficiently handle simple problems, such as, for in-
stance the problem of checking the satisfiability of (quantifier-free) conjunctions of literals.
Before considering more complex satisfiability problems, we recall the methods for proving
satisfiability of propositional formulae. The problem can be formulated as follows:

Input a propositional formula ¢
Output YES if there is a Boolean assignment satisfying ¢
NO is there is no Boolean assignment satisfying ¢

The problem is known to be NP-complete. By applying linear time structural transforma-
tions we transform any propositional formula in clause form. We can therefore assume that
¢ is a conjunction of clauses.

Modern SAT solvers are based on highly optimized versions of the classical DPLL pro-
cedure (Davis-Putnam 1960 + Davis-Logemann-Loveland 1962). The DPLL procedure:

e performs deterministic choices first (unit resolution, backward subsumption, pure lit-
eral assignment);

4 DECIDABLE THEORIES AND THEORY FRAGMENTS 13

e when this is not possible anymore: choose an atom for case distinction (semantic
splitting);

e makes use of appropriate heuristics such as: selection criteria for splitting atoms, non-
chronological back-tracking, conflict-driven learning.

State of the art SAT solvers such as for instance MINISAT (http://minisat.se/) or Chaff
(http://www.princeton.edu/~chaff/) currently handle problems with ca. 10K variables.
Efficiency of SAT solvers increased their application domains (planning, bounded model
checking, security, description logics). However, many applications require solving satisfia-
bility problems for quantifier-free formulae modulo a first order theory 7. Systems imple-
menting methods for solving such specialized problems (Yices, Z3, BarcelogicTools, CVC
Lite, Math-SAT) are called S(atisfiability) M(odulo) T (heory) solvers. The structure of an
SMT solver is roughly as follows:

e we assume w.l.o.g. that the formula is a set of clauses (a set of disjunctions of literals)
in the language of the theory 7;

e a Boolean assignment for the literals in the formula is found, and is then checked for
T -satisfiability (lazy approach);
e the assignment may be partial and checked before splitting (early pruning);

e usual heuristics like non-chronological backtracking and learning are employed.

DPLL(T) (cf. e.g. [27]) is an example of a formally structured extension of DPLL which is
able to cope with the aspects above.

4.3 Methods for proving decidability

Among the methods for proving decidability of theories or fragments thereof we mention
the following;:

(1) Finite/Bounded model property. Prove that every satisfiable formula has a model of
bounded cardinality.

(2) Show that special calculi provide decision procedures. Resolution, rewriting, superposi-
tion, tableau or sequent calculi can be used as decision procedures for certain fragments
of first order logic.

(3) Use quantifier elimination to reduce the problem of testing validity/satisfiability of
formulae with alternations of quantifiers to the problem of testing validity /satisfiability
of formulae without quantifiers.

(4) Reduction to problems known to be decidable. For instance:

(a) encoding to problems in automata theory (used for instance to prove decidability
of Presburger arithmetic: validity/satisfiability of formulae is encoded to prob-
lems related to emptiness of languages in automata theory).

(b) encoding into decidable fragments of FOL (this is a method which has been widely
used in the study of non-classical logics).

We mention how the methods above allow us to prove decidability of the following theories.

Example 18 (Linear rational arithmetic, (LI(Q)) Linear rational arithmetic is decid-
able: this can be shown by giving a decision procedure for the quantifier-free fragment and
then a method for eliminating quantifiers. Several methods can be used for this. The most
common ones are the Fourier-Motzkin method ([23], cf. also [41]) and the test point method

[69].

5 TRACTABILITY 14

Example 19 (Presburger arithmetic) Presburger arithmetic is decidable [48]. A pos-
sibility of proving decidability of Presburger arithmetic uses an encoding of the problem of
checking whether a quantifier-free formula is satisfiable to the problem of checking whether
the language accepted by an automaton associated with the formula is empty.

Example 20 (The theory of real numbers) The theory of real numbers
Th(R, {+/2,%/2},{< /2,~})
is decidable in 2EXPTIME [62]. For proving this, Tarski uses quantifier elimination.

Examples of theories with a decidable 7 -validity problem for the universal theory (or, equiv-
alently with a decidable satisfiability problem for ground clauses):

Example 21 The following theories have a decidable universal theory:

e The theory Free(X) of uninterpreted function symbols in a set X. There exist standard
decision procedures for this such as congruence closure.

e Linear rational or integer arithmetic.

e Theories aziomatizing common datatypes (lists, arrays) in Examples 5,6,7. Several
methods can be used: for instance extensions of congruence closure for (acyclic) lists,
instantiation-based methods, or superposition [2].

o Algebraic counterparts of modal logics (theories axiomatizing varieties of Boolean alge-
bras with operators). Such decidability results can be obtained for instance by proving
the bounded model property, or by using tableauzr or resolution as decision procedures.

T -satisfiability vs. constraint solving. The field of constraint solving also deals with
satisfiability problems. But one must be careful: In constraint solving one is interested if a
formula is satisfiable in a given, fixed model of 7', whereas in 7 -satisfiability one is interested
if a formula is satisfiable at all — in some model of 7.

5 Tractability

Since in mathematics, databases, and verification the problems to be solved consist of a large
number of formulae, a large amount of effort has been dedicated to the study of tractable
theories, i.e. theories in which satisfiability or entailment of (ground) Horn clauses can be
checked in polynomial time. To address this problem, essentially very similar ideas occurred
in various areas: proof theory and automated deduction, databases, mathematics (especially
algebra) and verification.

Databases: The inference rules of a deductive database are usually of a special form (known
as datalog program): typically a set of universal Horn clauses which do not contain
function symbols. Any datalog program defines an inference relation for which entail-
ment of ground clauses is decidable in polynomial time [66, 67].

Proof theory: Possibilities of restricting the search space in inference systems without loss
of completeness were studied by McAllester and Givan in [32, 42, 33]. They introduced
so-called “local inference systems”, which can be modeled by sets of rules (or sets of
Horn clauses N) with the property that for any ground Horn clause G, it is guaranteed
that if G can be proved using N then G can already be proved by using only those
instances N|[G] of N containing only ground terms occurring in G or in N. They
proved that the notion of locality captures PTIME, i.e. that any problem solvable in
PTIME can be encoded as the entailment problem w.r.t. a local inference system.

5 TRACTABILITY 15

Mathematics: Similar ideas also occurred in algebra. To prove that the uniform word
problem for lattices is decidable in polynomial time, Skolem [50] used the following
idea: replace the lattice operations V and A by ternary relations r, and r,, required
to be functional, but not necessarily total. The lattice axioms were translated to a
relational form, by flattening them and then replacing every atom of the form zVy =~ z
with ry(z,y, z) (similarly for A-terms). Additional axioms were added, stating that
equality is an equivalence and that the relations are compatible with equality and
functional. This new presentation, consisting only of Horn, function-free clauses', can
be used for deciding in polynomial time the uniform word problem for lattices. The
correctness and completeness of the method relies on the fact that every partially-
ordered set (where V and A are partially defined) embeds into a lattice. A similar idea
was used by Evans in the study of classes of algebras with a PTIME decidable word
problem [20]. The idea was extended by Burris [13] to quasi-varieties of algebras. He
proved that if a quasi-variety axiomatized by a set K of Horn clauses has the property
that every finite partial algebra which is a partial model of the axioms in K can be
extended to a total algebra model of IC then the uniform word problem for K is decidable
in polynomial time. In [26], Ganzinger established a link between the proof theoretic
notion of locality and embeddability of partial into total algebras. In [28, 52] the notion
of locality for Horn clauses is extended to the notion of local extension of a base theory.

Verification: Apparently independently, similar phenomena were studied in the verifica-
tion literature, mainly motivated by the necessity of devising methods for efficient
reasoning in theories of data structures. In [45], McPeak and Necula investigate local
reasoning in pointer data structures, with the goal of efficiently proving invariants in
programs dealing with pointers. Locality considerations also occur in the study of a
theory of arrays by Bradley, Manna and Sipma [11]. Since the theories from verifi-
cation mentioned above are in fact combinations of theories, they will be discussed
separately in what follows.

Because of the importance of the concept of locality in databases, logic, mathematics and
verification, in what follows we give a short introduction to Datalog and we present a sum-
mary of results in the area of local theories.

5.1 Datalog

Datalog is a rule-based database query language that syntactically is a subset of Prolog. In
contrast to Prolog, it does not allow complex terms as arguments of predicates (e.g. P(1,2)
is admissible but not P(f(1),2)) and it imposes certain restrictions on the use of negation
and recursion.

Definition 14 A Datalog rule is an expression of the form By A --- N B, — H, where
H (the head of the rule) is an atomic formula R(uq,...,uy), and By A--- A B, (the body
of the rule) is a conjunction of literals of the form S(vi,...,vm) or =S(v1i,...,vm), where
(U1, up), (V1,...,0m) are tuples of variables or constants. A Datalog rule is positive if
it does mot contain negative literals.

A Datalog program is a finite collection of rules such that none of its head predicates
occurs negated in the body of any rule. The predicates that appear only in the bodies of the
rules are called input predicates.

In what follows we identify a relational database with a finite relational structure.

1The encoding Skolem uses is an encoding to Datalog. A similar encoding is used by Burris in [13].

5 TRACTABILITY 16

Definition 15 A Datalog query is a pair (Prog, R) consisting of a Datalog program and
a designated head predicate. With every finite relational structure A, the query (Prog, R)
associates the result (Prog, R)A, the interpretation of R as computed by Prog from the input
A.

Example 22 A Datalog program consisting of clauses which describes the rules which define
the ancestor relationship,

parent(X,Y) — ancestor(X,Y)
ancestor(X, Z) A ancestor(Z,Y) — ancestor(X,Y)

A database describes a set of facts (unit ground clauses which are supposed to hold):

parent(bill, mary)
parent(mary, john).

The query ancestor(bill, X) asks for all ancestors of bill and would return mary and john
when posed to a Datalog system containing the facts and rules described above.

Datalog programs always express queries that are computable in time bound by a polynomial
in the size of the underlying database. Moreover, Datalog can capture queries that are
complete for polynomial time computations (e.g. the path systems query [16]).

The exact expressive power of Datalog is completely understood in certain cases: if
only databases with a successor relation and first and last element are considered, then a
query is expressible by a Datalog program if and only if it is computable in polynomial
time [68, 38, 47]. (Without this assumption, some PTIME problems cannot be expressed in
Datalog [15], see also [40].)

5.2 Local theories

Local theories (or inference systems) were first introduced and studied by McAllester and
Givan in [32, 42, 33].

Definition 16 (Local theories) A local theory is a set of Horn clauses K such that, for
any ground Horn clause C, K = C only if already K[C] = C (where K[C] is the set of

instances of K in which all terms are subterms of ground terms in either K or C).

The size of K[G] is polynomial in the size of G for a fixed K. Since satisfiability of sets of
ground Horn clauses can be checked in linear time [19], it follows that for local theories,
validity of ground Horn clauses can be checked in polynomial time. Givan and McAllester
proved that every problem which is decidable in PTIME can be encoded as an entailment
problem of ground clauses w.r.t. a local theory [33]. An example of a local theory (cf. [33])
is the set of axioms of a monotone function w.r.t. a transitive relation <:

K={r<yry<z—z<z, z<y— f(z)<f(y}

Another example provided in [33] is a local axiom set for reasoning about a lattice (similar
to that proposed by Skolem in [50]). In [9, 8], Ganzinger and Basin defined the more general
notion of order locality and showed how to recognize (order-)local theories and how to use
these results for automated complexity analysis. Given a term ordering >, we say that a set
K of clauses entails a clause C' bounded by = (notation: K =< C), if and only if there is a
proof of K = C from those ground instances of clauses in K in which (under *) each term
is smaller than or equal to some term in C.

Definition 17 (Order locality, [9, 8]) A set of clauses K is local with respect to » if
whenever K = C for a ground clause C, then K =< C.

6 EFFICIENT REASONING IN COMPLEX THEORIES 17

Theorem 18 ([9, 8]) Let > be a (possibly partial) term ordering and K be a set of clauses.
Assume that KC is saturated with respect to =-ordered resolution, and let C' be a ground
clause. Then K = C for a ground clause C if and only if K =< C, i.e. K is local with
respect to .

The converse of this theorem is not true in general. Ganzinger and Basin established con-
ditions under which the converse holds — they use a hyperresolution calculus and identify
conditions when for Horn clauses order locality is equivalent to so-called peak saturation
(Theorems 4.4-4.7 in [8]). These results are obtained for first order logic without equal-
ity. In [26], Ganzinger established a link between proof theoretic and semantic concepts for
polynomial time decidability of uniform word problems which had already been studied in
algebra [50, 20, 13]. He defined two notions of locality for equational Horn theories, and
established relationships between these notions of locality and corresponding semantic con-
ditions, referring to embeddability of partial algebras into total algebras. Theorem 18 also
can be used for recognizing equational Horn theories:

Theorem 19 ([26]) Let K be a set of Horn clauses. Then K is a local theory in logic with
equality if and only if KU EQ is a local theory in logic without equality, where EQ denotes
the set of equality axioms consisting of reflexivity, symmetry, transitivity, and of congruence
axioms for each function symbol in the signature.

Theorems 19 and 18 were used in [26] for proving the locality of the following presentation
Int of the set of integers with successor and predecessor by saturation:

1) pl)=y — sy ~= (3) pl@)~ply) — y~=

2) s@)=y — ply)=z 4) s@)=sly) — yrz

The presentation Int’ of integers with successor and predecessor consisting of the axioms (1)
and (2) alone (without the injectivity conditions (3) and (4)) is not local but it is stably local:
in order to disprove a ground set G of clauses only those ground instances Int’l¢) of Int’ are
needed where variables are mapped to subterms occurring in G. (Note that Int’ U EQ is not
saturated under ordered resolution; when saturating it the injectivity axioms are generated.)

6 Efficient reasoning in complex theories

As mentioned before, in most applications theories do not appear alone and combinations
or extensions of theories need to be considered. A major challenge is to identify situations
where reasoning in complex theories can be done efficiently and accurately. Efficiency can
be achieved for instance by:

(1) reducing the search space (preferably without losing completeness);

(2) modular reasoning, i.e., delegating some proof tasks which refer to a specific theory to
provers specialized in handling formulae of that theory.

Accuracy means that we are interested in situations when sound and complete methods
exist.

6.1 Modularity

An important aspect in reasoning in complex theories is modularity. Given two theories 73
and 75, possibly sharing a common subtheory 7g, it is very important to know if we can use
provers for the theories 77 and 75 as “blackboxes” in order to prove theorems in 77 U 7,
and if so which amount of communication between the provers for the component theories is
necessary in order to guarantee completeness (at least for certain proof tasks). The situation
is described in Figure 3.

6 EFFICIENT REASONING IN COMPLEX THEORIES 18

Figure 3: Modular reasoning in combinations of theories

Example:

T T T To: 3o-theory. lists(R) U arrays(R)
T;: Yy-theory; 7o C7; 3o C X,

Question: Can we use provers for 77,75 as blackboxes to prove theorems in 77 U 757

Example 23 For instance, if we want to prove theorems involving statements about lists of
real numbers and arrays of real numbers: is it sufficient to use as black boxes a prover for
lists over the reals and one for arrays over the reals? Which information about real numbers
needs to be propagated between the two provers in order to guarantee completeness?

6.2 Hierarchical reasoning in theory extensions

When reasoning in extensions of a theory 7p with additional functions subject to certain
axioms it is important to know: Can we use a prover for 7y for proving theorems in 777

Figure 4: Hierarchical reasoning in theory extensions

Example:
Tq: Yi-theory; 7o C 77 Yo C X4 f:R—=R
monotone
To: Yo-theory. R

Question: Can we use a prover for 7y as a blackbox to prove theorems in 777

Example 24 Assume that we need to prove some properties about monotone functions over
real numbers. Can we reduce the proof task to a proof task w.r.t. the real numbers which can
be solved by specialized prover for real numbers?

We start by presenting the type of complex theories we have in mind (combinations of
theories and theory extensions) and the main problems when reasoning in extensions and
combinations of theories. In Section 7 we talk about theory combinations. In Section 8 we
talk about theory extensions.

7 COMBINATIONS OF THEORIES 19

7 Combinations of theories

We consider possibility of efficient reasoning in combinations of theories. One important
property of theories is consistency:

Definition 20 A theory is consistent if it has at least one model.

The following natural question arises: Is the union of two consistent theories always con-
sistent? The answer is in general no, even when the two theories have disjoint signatures
(everywhere in what follows we assume that equality is built-in and that theories with dis-
joint signatures share the equality predicate).

Example 25 ([63]) Let X1 = (21,0), X2 = ({¢/0,d/0},0), such that ¢,d & Qq. Let Tq
be ariomatized by {3z, y,z(x £y N x % z AN y % 2)}, and let Ta be axiomatized by
{Ve(x~c V z=d)}. It is easy to see that

(1) Ae Mod(Th) iff |A| > 3 and
(2) B € Mod(T2) iff |A] < 2.

The second natural question is whether decidability (of a specific fragment) is preserved
when combining theories.

Figure 5: The decidability problem for complex theories

Given: Fori=1,2
e 7; a first order theory in signature 3;

e L; a class of (closed) 3;-formulae

Assumption: the 7;-validity problem for £; is decidable
Let 7; €@ 72 be a combination of 7; and 7
Let L1 €D L2 be a combination of £; and L

Question: Is the 73 @ 7Tz-validity problem for £; €@ L2 decidable?

The answer depends on the way the combination of the two theories is defined, and on the
way the combination of the fragments £, and L5 is defined.

In what follows we consider combinations of theories as defined in Section 3.3. In general,
decidability is not preserved under such combinations. Restrictions are needed for an affir-
mative answer. Example 26 shows that even if two theories have decidable word problems
2 (i.e. validity of universally quantified unit positive clauses is decidable in the component
theories) this problem may be undecidable in the combination.

Example 26 Let A be the theory of one associative binary operation, and let G consist
of a finite set of ground equations over a binary operation such that G is the presentation
for a semigroup with an undecidable word problem. (Finitely-presented semigroups with
undecidable word problem exist by a result by Matijasevic.) It can be checked that the word
problem is decidable for A and for G, but it is undecidable for AU G.

2The word problem for a theory 7 is the problem of deciding whether 7 |= Va(s =~ t).

7 COMBINATIONS OF THEORIES 20

Simpler instances of the combination problem are needed for guaranteeing that the decid-
ability is transfered under composition:

e combinations of theories over disjoint signatures,
e combinations of theories sharing constructors,

e combinations of theories satisfying certain model theoretic compatibility conditions
with the shared theory.

In this section we will study situations in which the decidability of the problem of test-
ing satisfiability of ground formulae in the component theories implies the decidability of
the problem of testing satisfiability of ground formulae w.r.t. the combination of theories.
Important in this context will also the the possibility of finding modular decision procedures.
Methods for checking satisfiability of conjunctions of ground literals in combinations of
theories which have disjoint signatures or only share constants are well studied. However,
also in this case there cannot be a general, effective, method for reasoning in combinations
of theories always leading to a complete algorithm.

Theorem 21 ([10]) There exist theories Ty, Ty with disjoint signatures with decidable ground
satisfiability problem such that ground satisfiability in Ty U Ty is undecidable.

Complete methods can only be obtained under additional assumptions on the component
theories. The Nelson-Oppen combination procedure [46] for instance, can be applied for
combining decision procedures of stably infinite theories over disjoint signatures. Resolution-
based methods have also been used in this context [2, 1].

7.1 Combinations of theories with disjoint signatures

We present a standard method for reasoning in combinations of theories with disjoint sig-
natures, the Nelson-Oppen method [46]. We then mention some extensions without going
into detail.

7.1.1 The Nelson-Oppen combination procedure.

The Nelson-Oppen combination procedure is a method for testing satisfiability of conjunc-
tions of ground literals w.r.t. a combination of theories over a non-disjoint signature.

Let 7; and 75 be two theories with signatures ¥1,Ys. Assume that 31 and Yo share only
constants and the equality predicate. The problem we consider is the following: Let ¢ be a
ground formula over the signature (X; U X2)¢ = (21 U X3 U C) (the extension of the union
31 UX, with a countably infinite set C' of constants). We want to test whether ¢ is satisfiable
w.r.t. 73 U 7s.

In order to test the satisfiability of ¢ we first purify it, i.e. we find formulae ¢1, ¢2 s.t. ¢; is

a pure Y;-formula and ¢; A ¢2 is equivalent with ¢.

Step 1: Purification. We purify the formula ¢ as follows:

(1) Purify all terms by replacing, in a bottom-up manner, the “alien” subterms in ¢
(i.e. terms starting with a function symbol in ¥; occurring as arguments of a function
symbol in X;, j # i) with new constants (from a countably infinite set C' of constants).
The transformations are schematically represented as follows:

(VPG gl flE1y oo ytn)ye)yen) = ()P(e, g uy),) Ausst
where t =~ f(t1,...,tn), f € 1,9 € Lo (or vice versa).

7 COMBINATIONS OF THEORIES 21

(1) Purify mixed equalities and inequalities by adding additional constants and performing
the following transformations (where f € ¥; and g € X9 or vice versa):

f(s1,o 8n) mglty, ..oy tm) — uf(s1,...,8.) Aumeg(t, ..., tm)
f(s1yeoy8n) Zgte, ..o tm) — uxf(s1,...,8,) ANvrg(ty,...,tm) Au®v

(3) Purify mixed literals by renaming alien terms:
()P Siyee) = ()P Uy) Ausss;
if P is a predicate symbol in ¥; and s; is a X§-term (or vice versa).

The purification procedure terminates in linear time in the size of the formula and returns
a purified conjunction ¢; A ¢o (of size linear in the size of ¢) with the following properties:

(i) ¢; is a ground X;-formula for ¢ = 1, 2;
(ii) ¢1 A ¢ and ¢ are satisfiable in exactly the same models of 7; U 75 (we regard the
constants as existentially quantified variables).

We can now use a decision procedure for 7; for testing whether ¢; 7, L for i = 1,2. If ¢;
is unsatisfiable in 7; for ¢ = 1 or ¢ = 2 then we know that ¢ must be unsatisfiable. If ¢
and ¢ are satisfiable we do not have the guarantee that ¢ is satisfiable: in a second step we
need to exchange some information about the shared constants (or alternatively existentially
quantified variables®) between the provers.

Step 2: Propagation. We deduce and propagate all possible (disjunctions of) equalities
between constants entailed by the components. There are two possibilities for doing this:
backtracking/case split or (non-deterministic) guessing.

1. Propagation: backtracking version This is done as follows:

(1) Propagate equalities between different shared constants. If ¢ entails an equality
between shared constants not entailed by ¢2 then add the equality as a new
conjunct to ¢ (and vice versa).

(2) Case split necessary? If either ¢ or ¢ entails a disjunction uymvy V- - -V uprvy
without entailing any of the equalities alone, then we apply the procedure recur-
sively to ¢1 A g Auimv;, 1 < i < k.

If any of these formulae is satisfiable then return “satisfiable”, else return “un-
satisfiable”.

2. Propagation: guessing version. Let Cj be the (finite) set of constants common to ¢
and ¢o. Guess a possible partition P on C, and let R be the associated equivalence
relation. Let ar(Cop, R) be:

{c~=d|c,de Cy,R(c,d)} U{c#d]c,de Cy, not R(c,d)}.

Use decision procedures for testing decidability of ground conjunctions of literals in 73
resp. 7z to check whether ¢1 A ar(Co, R) =7, L or ¢2 Aar(Co, R) =1, L.

If one of the formulae is unsatisfiable, then return: “¢ is unsatisfiable”. If both
formulae are satisfiable then return “¢ is satisfiable”.

3We emphasize the formulation in which one mentions shared variables due to historical reasons

7 COMBINATIONS OF THEORIES 22

Remark. The advantage of the first option (backtracking) is that the procedure can be
made deterministic if the theories 7; are convex. It can be in fact seen that if 7; are convex
and if satisfiability of conjunctions of ground literals in 7; can be checked in PTIME then
satisfiability of conjunctions of ground literals in 7; U 75 can be checked in PTIME.

The advantage of the second option (guessing) is that whenever constraints are represented
as boolean combinations of atoms one may combine heuristics of SMT solvers for the specific
theories in order to efficiently produce the right arrangement.

Termination, Soundness and Completeness. Termination is obvious, since the number
of shared constants is finite. We prove soundness and completeness for the second variant of
the propagation step (the guessing version). Let Cp be the (finite) set of constants common
to ¢1 and ¢9. For every partition P on Cj, let R be the associated equivalence relation, and
ar(Cy, R) be:

{c=d|c,de Cy,R(c,d)} U{c#d]c,de Cy, not R(c,d)}.
We first prove soundness.

Theorem 22 If for any partition of Cy, ¢; A ar(Co, R) E1, L for some i € {1,2} then ¢ is
unsatisfiable.

Proof: Assume that ¢ is satisfiable. There there exists a satisfying assignment v for ¢ A ¢o.
Let R be relation on the set C' of shared constants defined by R(c,d) iff v(c) = v(d). Then
¢1 N ar(Co, R) and ¢o A ar(Cop, R) are both satisfiable w.r.t. the theories 7; w.r.t. 7. O

In order to prove completeness we need to show that if there exists a partition of Cy such
that fori = 1,2, ¢; Aar(Coy, R) is satisfiable w.r.t. 7; then ¢ satisfiable. However in general
this is not true as the following example shows:

Example 27 ([63]) Let 77 be the theory axziomatized by:

flg(x),9(y) = =
flg(z),h(y) =~ y

and Ty be the free theory of a unary function k. Let ¢ = g(c) = h(c) ANk(c) % c. ¢ is in
purified form. It is easy to see that g(c) =~ h(c) is satisfiable in Ty and k(c) # c¢ is satisfiable
in To. There are no entailed non-trivial equations between the shared constants. However,
¢ is unsatisfiable in Ty U Ty if A € Mod(7T1 U T2) is a model of ¢ then A |= g(c) = h(c),
hence for all a € A, a = fa(ga(a),ga(ca)) = fa(ga(a),ha(ca)) = ca. Then A has only
one element, so it cannot satisfy k(c) % c.

The problem in Example 27 is that the formula ¢; has only models of bounded cardinality.
In order to avoid to this type of problems — which lead to loss of completeness — we consider
in what follows theories in which every formula which has a model has also an infinite model.

Definition 23 A theory T is stably infinite iff for every quantifier-free formula ¢, ¢ is
satisfiable in T iff ¢ is satisfiable in an infinite model of T .

Under the additional hypothesis that 7; and 75 are stably infinite we can prove that the
Nelson-Oppen combination method is complete.

Theorem 24 Assume that 7y and Tz are stably infinite. With the notations used previously,
assume that there exists a partition of Coy such that fori=1,2, ¢; Aar(Co, R) is satisfiable
w.r.t. T;. Then ¢ satisfiable.

7 COMBINATIONS OF THEORIES 23

Proof: Assume that for i = 1,2, ¢; A ar(Cy, R) is satisfiable w.r.t. 7;. By stable infinity,
¢iNar(Cop, R) have both an infinite (hence a countably infinite) model. Let A; be a countably
infinite model of ¢; A ar(Cy, R). For every i, let {v;(c) | ¢ € Co} C A; be the interpretation
of the shared constants in Cy. Let ¢ : Ay — Ay be a bijection with the property that
i(vi(c)) = wva(c) for every ¢ € Cy. We transfer the ¥;-structure, as well as the constants
occurring in ¢q, from A; to As via the bijection i as follows: if f € X1, and a1,...,a, € Ag,
we define

fay(ar, ... an) == i(fa, (i a1),...,i Yan))).

Let A be the (X1 UX5)-algebra obtained this way. It is not difficult to check that A =707, @
O

Example 28 We can use the Nelson-Oppen method for checking the satisfiability of con-
junctions of ground literals in the combination of any stably infinite theory Ty with signature
31 (with decidable ground satisfiability) with the theory of free (or uninterpreted) functions
symbols Free(X2) (cf. definition in Ezample 4), where 31 N Yo = @. In Section 8.1 we
will show (using an alternative approach) that the condition that T; needs to be stably infi-
nite can be safely dropped without influencing the decidability of ground satisfiability in the
combination T; U Free(2s).

Example 29 We illustrate the Nelson-Oppen procedure on the example given in the original
paper of Nelson and Oppen [[6]. Consider the following theories with mutually disjoint
stgnatures:

(1) LI(Q) linear rational arithmetic;
(2) The theory Tiss of lists in Example 5;
(3) Free(X) the theory of uninterpreted function symbols in X.

We want to check whether
LI(Q) U Tjists U Free(X) | Va, y(x<y A y<z+car(cons(0, z)) A P(h(x)—h(y)) — P(0))
or, equivalently, whether the following conjunction (the negation of the formula above):
¢ c<d N d<c+car(cons(0,¢)) A P(h(c) —h(d)) N =P(0)

is satisfiable w.r.t. the conbination LI(Q) U Tjists U Free(X). We proceed in two steps:

Step 1: Purification. We replace alien terms with new constants and introduce the new
definitions. The purified formula can be represented as follows:

LI(Q) Tiists Free(X)
c<d ¢1 = car(cons(cs, ¢)) P(c2)
d<c+ac -P(c5)
Co R C3 — 4 c3 =~ h(c)
5~ 0 ca = h(d)
o1 b2 ¢3

Step 2: Propagation. Since ¢1,p2, ¢3 are satisfiable in the corresponding theories, we
need to propagate information about shared constants between theories. Since all the theories
involved are convex, it is sufficient if we propagate atomic equality atoms between the shared
constants. Since ¢po = ¢1 = ¢5, we add ¢1 = c5 also to the set of formulae corresponding to
LI(Q). As a consequence, the new set of the formulae corresponding to LI(Q) now entails
¢ ~ d. We propagate this equality to the Free(X). The set of formulae corresponding to
Free(X) entails cs = c4, equality which is propagated to the LI(Q) part. In LI(Q) we thus

7 COMBINATIONS OF THEORIES 24

deduce that co = c5, which is propagated to Free(X) and there leads to a contradiction. The
procedure ends with the following configuration:

LI(Q) 7Tists Free(E)
c<d ¢1 = car(cons(cs, ¢)) P(e2)
d<c+c —P(cs)
Co R C3— 4 cs =~ h(c)
Cy =~ 0 Cyp = h(d)
1~y 1~y c~d
cx~d c3 R Cy
C3 = Cq

Cy = Cy 1

Hence, ¢ is unsatisfiable.

7.1.2 Extensions of the Nelson-Oppen procedure.

Recently, attempts have been made to extend the Nelson-Oppen combination procedure to
more general theories. Extensions have been achieved either by relaxing the requirement
that the theories to be combined are stably-infinite [65] or by relaxing the requirement that
the theories to be combined have disjoint signatures (cf. e.g. [7, 64] and [29]). In what follows
we will discuss a generalization of the Nelson-Oppen combination method to theories with
non-disjoint signatures, in which the restrictions on the component theories are of a model
theoretic nature given by Ghilardi in [29].

7.2 Combinations of theories with non-disjoint signatures

Let 77 and 75 be theories with signatures X1, 3. The common subsignature g = 1 N 3o
is not assumed to be empty. The goal is to apply the Nelson-Oppen combination schema
for reasoning in the combination 77 U 75:

Step 1: Purification can be done as in the disjoint case.

Step 2: Propagation We need to ensure that only a finite number of formulae
over the shared signature needs to be propagated.

Soundness: is obvious.

Completeness: We need to impose additional conditions on the theories such
that completeness is guaranteed.

The most simple way of avoiding non-termination in Step 2 is to assume that:

Assumption I: the theories 7; and 75 contain a Yg-theory 7oy which is locally finite, i.e.
has the property that for any finite set X of variables only finitely many Yg-terms
with variables in X (up to Zp-equivalence) exist.

Assumption II: Representative terms for each equivalence class are computable.

Step 2 (Propagation) can still be implemented by guessing (guess a maximal set of repre-
sentative literals over Xy over the shared constants) or by backtracking (make case-split on
disjunctions of g-literals over the shared constants which are not entailed by the purified
formulae).

We need to identify sufficient conditions for completeness. In the completeness proof of
the Nelson-Oppen procedure (Theorem 24) the main idea is: given 7;-models A; of ¢; —
construct a 7; U 73-model A of ¢1 A ¢o. Stable infinity guarantees that this is possible.
Ghilardi [29] noticed that the condition that 7; is stably infinite (used in the Nelson-Oppen

7 COMBINATIONS OF THEORIES 25

Figure 6: Amalgamations of models for non-disjoint signatures

procedure) means that every model of 7; embeds into an infinite model, and that the theory
of an infinite model is the model completion 7 of the theory 7y of pure theory of equality
(for definitions cf. Appendix A). Thus, every model of 7; embeds into a model of 7; U 7.
He adapted this definition to the non-disjoint case, and proved that the completeness proof
of the disjoint case works (with small modifications) also in the non-disjoint case.

Definition 25 Let 7y C 7T be theories in the signatures Xo C X. Assume that Ty is universal
and has a model completion 1y*. We say that T is Ty-compatible if every model of T embeds
into a model of T U7y .

We make the additional assumptions:
Assumption III: 7 is universal and has a model completion 7.

Assumption IV: Every model of 7; embeds into a model of 7; U 7%, for i = 1, 2.

Theorem 26 ([29]) Under Assumptions I, II, III, IV on the theories Ty and T3, the Nelson-
Oppen procedure transfers decidability of ground satisfiability from 11,75 to T3 U Ts.

Proof: Assumptions I and II ensure that Step 2 (propagation) terminates. It is easy to
see that all steps of the algorithm are satisfiability preserving. Thus, if at the end of
the algorithm the prover for one of the component theories returns “unsatisfiable” on the
corresponding clauses the initial formula was unsatisfiable.

The idea of the completeness proof is presented below. Assume that the Nelson-Oppen
style procedure ends without returning unsatisfiable. It is shown that in this case in the
propagation step exhaustive information between the theories has been exchanged (in the
original paper [29] this infomation exchange is modeled using so-called residue chains) - a
saturation set (consisting of Yp-formulae) is obtained in the process. This guarantees that
we can find models M; € Mod(7;), M2 € Mod(72) of the pure formulae I'1, 'y obtained at
the end of the propagation phase which share a common substructure A. By Assumption
IV, the models M; embed into models M} of 7; U7, for i = 1,2; we can still assume that
M7 and M3 share A as a common substructure.

By Assumption III, 7; is universal. Since truth of universal formulae is preserved in
substructures, A € Mod(7;). Moreover, since 7y has model completion, 75* U A(A) is a
complete theory (the diagram A(A) of A is defined in Appendix A). This allows us to use
Robinsons Joint Consistency theorem to infer that A°(M7) U A°(M3) is consistent and its

8 THEORY EXTENSIONS 26

model is a model of (7; UT1) U (72 UT2), and thus is a model of 73 U 73 and of ¢. (For the
definition of the elementary diagram of a structure A, A°(A) see Appendix A). O

Example 30 Let 7; = LI(Q) be linear arithmetic, T3 be the theory of total orders with a
strictly monotone function f, i.e. a function satisfying

Va,y (z <y — f(z) < f(y))

Let 1y be the theory of total orders. This theory has no function symbols and it is therefore
effectively locally finite. Thus, Assumptions I and II hold. Both in 17 and in T3 the ground
satisfiability problem is decidable. Since the model completion 1, of the theory of total orders
is the theory of dense total orders without endpoints, obviously T,;* C Ty = LI(Q). It can
be shown that every model of the theory of total orders with a strictly monotone function
f embeds into a model of the theory of dense total orders without endpoints with a strictly
monotone function f. This shows that the Nelson-Oppen style procedure presented above
yields a decision procedure for the ground satisfiability problem w.r.t. T3 U Ts.

Note that the argument above cannot be used for the combination of Presburger arithmetic
with the theory of total orders with a strictly monotone function f. A different, orthogonal,
method which provides decidability results for many theories of monotone functions over
numerical and non-numeric domains is presented in Section 9.1.1 (cf. also Section 8.1).

Example 31 Let 7; = Th(BAO(X;)) be the theories of Boolean algebras with operators in
i1 = 1,2 such that 31 NXy = 0. Let Ty be the theory of Boolean algebras. This theory is
effectively locally finite, hence satisfies assumptions I and II. Both in Ty and in T3 the ground
satisfiability problem is decidable. Ty also satisfies Assumption I1I. The model completion 1
of the theory of Boolean algebras is the theory of atomless Boolean algebras. It can be shown
that every Boolean algebra with operators in X; embeds into an atomless Boolean algebra
with operators in X;, so Assumption IV is fulfilled. This shows that the Nelson-Oppen style
procedure presented above yields a decision procedure for the ground satisfiability problem
w.r.t. 7L UTs.

7.3 Further comments

Note that the extension mentioned above is still quite restrictive, as the conditions imposed
on the base theory and on the component theories are very strong, and of a model theoretic
nature. For instance, decidability transfer in combinations of theories studied in [29], is
guaranteed only under strong conditions assumptions on the shared theory (only locally
finite or noetherian shared theories (hence only a small class of numerical domains) can be
handled when applying these results to verification in [31]. In contrast, the notion of local
extensions we studied [52] imposes no restrictions on using numerical domains as a base
theory. Additional results concerning reasoning in combinations of theories will be given in
Section 8.5.

8 Theory extensions

We can consider the extension of a given theory with new function or predicate symbols
subject to certain axioms.

In this section we present a class of extensions of a “base” theory (which we will call local)
in which hierarchic reasoning is possible (i.e. proof tasks in the extension can be hierarchically
reduced to proof tasks w.r.t. the base theory). Many theories important for computer science
or mathematics fall into this class (typical examples are theories of data structures, theories
of free or monotone functions, but also functions occurring in mathematical analysis). In

8 THEORY EXTENSIONS 27

fact, it is often necessary to consider complex extensions, in which various types of functions
or data structures need to be taken into account at the same time. We show how such local
theory extensions can be identified and under which conditions locality is preserved when
combining theories, and we investigate possibilities of efficient modular reasoning in such
theory combinations.

In the study of local theory extensions we will refer to total models of a theory and to
partial models of a theory. The necessary definitions are given in Appendix B.

8.1 Local theory extensions

The notion of local theories introduced and studied by Givan and McAllester [32, 42, 33]
can be extended in a natural way to extensions of a base theory with a set of additional
function symbols constrained by a set K of clauses.

Let I be a set of clauses in the signature ¥ = (.9,, Pred), where Q@ = Qo U Q;. In
what follows, when we refer to sets G of ground clauses we assume that they are in the
signature ¢ = (S, QU Q,, Pred), where . is a set of new constants. If T is a set of ground
QpUN; U -terms, we denote by K[T] the set of all instances of X in which all terms starting
with a ©;-function symbol are ground terms in the set 7. We denote by KI] the set of all
instances of K in which all variables occurring below a €2;-function symbol are instantiated
with ground terms in the set Tq,(T') of Qo-terms generated by T'.

If G is a set of ground clauses and T = st(K, G) is the set of ground subterms occurring in
either K or G then we write K[G] := K[T], and K¢ .= K[T],

We will focus on the following type of locality of a theory extension 7y C 77, where 77 =
7o U K with K a set of (universally quantified) clauses:

(Loc) For every set G of ground clauses 7; UG =L iff 7o U K[G] U G has
no weak partial model in which all terms in st(K, G) are defined.

(SLoc) For every set G of ground clauses 7; UG =L iff 7o U KI¢1 U G has
no partial model in which all terms in st(K, G) are defined.

Weaker notions (Locf), resp. (SLocf) can be defined if we require that the respective condi-
tions only hold for finite sets G of ground clauses. An intermediate notion of locality (Locf)
can be defined if we require that the respective conditions only hold for sets G of ground
clauses containing only a finite set of terms starting with a function symbol in ;.

An extension Ty C 7Ty is local (stably local) if it satisfies condition (Loc’) (resp. (SLocf)). A
local (stably local) theory [26] is a local extension of the empty theory. In (stably) local
theory extensions hierarchical reasoning is possible.

In [37] we study a natural generalization of the notion of locality. Let ¥ be a function
associating with a set K of axioms and a set Ty of ground terms a set U (K, Tp) of ground
terms such that (i) all ground subterms in K and Ty are in W(KC, Tp); (ii) for all sets of ground
terms Ty and Tj) if To C 7§ then (K, Ty) C U(K,TY); (iii) ¥ defines a closure operation,
i.e. for all sets of ground terms Ty, ¥ (K, U (K, Tp)) C U(K, Tp). Let K[T(K, G)] be the set of
instances of K in which the extension terms are in ¥(/C, st(G)), which here will be denoted
by ¥(K,G). We say that an extension 7y C 7y U K satisfies a locality condition w.r.t. ¥ if
it satisfies condition (Loc”):

(Loc”) for every set G of ground clauses, 7; UG =L iff To UK[¥(K, G)] UG has
no weak partial model in which all terms in ¥ (K, G) are defined.

8 THEORY EXTENSIONS 28

8.2 Hierarchical reasoning in local theory extensions

Consider a local theory extension 7y C 7o UK. The locality conditions defined above require
that, for every set G of ground clauses, 73 UG is satisfiable if and only if 7o U *[G] UG has
a (Evans, weak, finite) partial model with additional properties, where, depending on the
notion of locality, KC*[G] is K[G] or KIC]. All clauses in K *[G]UG have the property that the
function symbols in ©; have as arguments only ground terms. Therefore, K x [G] UG can be
flattened and purified (i.e. the function symbols in §; are separated from the other symbols)
by introducing, in a bottom-up manner, new constants ¢; for subterms ¢ = f(¢1,. .., gn) with
1 € D4, g; ground QpUQ.-terms (where €. is a set of constants which contains the constants
introduced by flattening, resp. purification), together with corresponding definitions ¢; ~ t.
The set of clauses thus obtained has the form Ky U Gy U D, where D is a set of ground unit
clauses of the form f(g1,...,9n)~c, where f € Qq, ¢ is a constant, g1,...,g, are ground
terms without function symbols in 1, and Ky and Gy are clauses without function symbols
in Q4. Flattening and purification preserve both satisfiability and unsatisfiability w.r.t. total
algebras, and also w.r.t. partial algebras in which all ground subterms which are flattened
are defined [52]. For the sake of simplicity in what follows we will always flatten and then
purify K % [G] U G. Thus we ensure that D consists of ground unit clauses of the form
f(e1, ... cn)me, where f € Qq, and ¢y, ..., ¢y, ¢ are constants.

Lemma 27 ([52]) Let K be a set of clauses and G a set of ground clauses, and let KoUGoU
D be obtained from K x [G) UG by flattening and purification, as explained above. Assume
that 7o C To U K is a local theory extension. Then the following are equivalent:

(1) ToUK % [G)UG has a partial model in which all terms in st(K,G) are defined.
(2) ToUKoUGoUD has a partial model with all terms in st(Ko, Go, D) defined.
(3) To UKo UGy U Ny has a (total) model, where

No={ N\cimdi—crd|flc,...,cn) mc,f(dy,....dn) ~d € D}.

=1

Theorem 28 ([52]) Assume that the theory extension Ty C T either (1) satisfies condition
(Loch), or (2) satisfies condition (SLoc’) and Ty is locally finite. Then:

(a) If all variables in the clauses in K occur below some function symbol from Q1 and if
the universal theory of 1y is decidable, then the universal theory of 11 is decidable.

(b) Assume some variables in K do not occur below any function symbol in Qq. If the V3
theory of Ty is decidable then the universal theory of Ty is decidable.

In case (a) above locality allows to reduce reasoning in 77 to reasoning in an extension of
7y with free function symbols (for this an SMT procedure can be used). In case (b) this is
not possible, as K x [G] is not a set of ground clauses.

Similar results hold also for W-locality.

We will illustrate the applicability of Lemma 27 and Theorem 28 for specific examples of
local theory extensions in Section 8.3 (Examples 32 and 33), as well as Sections 9.1, 9.5,
9.6.3 and 9.6.4.

We discuss two different ways of recognizing the locality of a theory extension. The first
is semantical, based on possibilities of embedding partial models of a theory extension into
total models. The second is proof theoretical, and at the moment part of work in progress:
we present some results based on possibilities of saturating the extension axioms with respect
to ordered resolution.

8 THEORY EXTENSIONS 29

8.3 Recognizing local extensions: 1. Semantical criterion
We will use the following notation:

e PMod(9,77) is the class of all partial models of 77 in which the functions in Q; are
partial, and all other function symbols are total;

e PMod,,(21,77) is the class of all weak partial models of 77 in which the Q;-functions
are partial and all the other function symbols are total;

e Mod(7;7) denotes the class of all total models of 7;.
We will also consider small variations of the notion of weak partial model:

° PModi(Ql,Tl) is the class of all finite weak partial models of 77 in which the Q-
functions are partial and all other functions are total;

° PMod\f,‘j(Ql7 T1) is the class of all weak partial models of 77 in which the ;-functions
are partial and their definition domain is a finite set, and all other functions are total,

and similar variations PMod(Qy,71), PMod® (2, 77) of the notion of partial model.

Embeddability. For theory extensions 7y C 7; = 7y U K, where K is a set of clauses, we
consider the following conditions:

(Emb) Every A € PMod(©4,77) weakly embeds into a total model of 7.
(Emby,) Every A € PMod,, (€1, 77) weakly embeds into a total model of 7;.

We also define a stronger notion of embeddability, which we call completability:

(Comp,) Every A € PMod,,(21,71) weakly embeds into a total model B of 7y
such that Ay, and By, are isomorphic.

(Comp) is defined analogously (w.r.t. PMod(921,77)).

Conditions which only refer to embeddability of finite partial models are denoted by (EmbY),
(Compf,), resp. (Embf), (Compf). Conditions referring to embeddability of partial models
in which the extension functions have a finite definition domain (i.e. in PModfd(;,7;)) are
denoted by (Embd), resp. (Compf?).

In what follows we say that a non-ground clause is Q;-flat if function symbols (including
constants) do not occur as arguments of function symbols in ;. A ;-flat non-ground
clause is called €;-linear if whenever a variable occurs in two terms in the clause which start
with function symbols in €2, the two terms are identical, and if no term which starts with
a function symbol in ; contains two occurrences of the same variable.

For sets of Q;-flat clauses locality implies embeddability. This generalizes results presented
in the case of local theories in [26].

Theorem 29 ([54]) Assume that K is a family of Q1 -flat clauses in the signature X.
(1) If the extension Ty C T; := To UK satisfies (Loc) then it satisfies (Emby).
(2) If the extension To C Tp := Ty U K satisfies (Loc?) then it satisfies (Embf,).
(3) If the extension Ty C Tp := To U K satisfies (Loc™) then it satisfies (Emb{d).
(4) If Ty is compact and Ty C Ty satisfies (Loc’), then Ty C Tp satisfies (Emb,,).

Conversely, embeddability implies locality. The following results appear in [52], [56] and
allow us to give several examples of local theory extensions (cf. Examples 32 and 33, as well
as Sections 9.1, 9.5, 9.6.3 and 9.6.4).

Theorem 30 ([52, 56]) Let K be a set of Q-flat and Q-linear clauses.

8 THEORY EXTENSIONS 30

(1) If the extension Ty C Ty satisfies (Emby,) then it satisfies (Loc).

(2) Assume that Ty is a locally finite universal theory, and that K contains only finitely
many ground subterms. If the extension Ty C Ty satisfies (Embf), then Ty C T)
satisfies (Loc’).

(3) To € T satisfies (Embfd). Then Ty C T, satisfies (Loc™).

Theorem 31 ([52]) Let Ty be a universal theory and K be a set of clauses. Then:

(1) If the extension To C Ty satisfies (Emb) then it satisfies (SLoc).
(2) Assume that Ty is a locally finite universal theory, and that K contains only finitely
many ground subterms. If Ty C Ty satisfies (Embf), then Ty C Ty satisfies (SLoc’).

Analyzing the proofs of Theorems 30 and 31 we notice that the embeddability conditions
(Comp) and (Comp,,) imply, in fact, stronger locality conditions. Consider a theory extension
To C 7o UK with a set K of formulae of the form V... 2, (®(z1,...,2,) V C(x1,...,2,)),
where ®(z1,...,xy,) is an arbitrary first order formula in the base signature Xy with free
variables x1, ..., 2y, and C(z1,...,x,) is a clause in the signature X.

We can extend the notion of locality of an extension accordingly:

(ELoc) For every formula I' = 'y U G, where Iy is a YXg-sentence and G is a
set of ground clauses, 7; UT =L iff 7o U K[I') UT has no weak partial
model in which all terms in st(K, G) are defined.

A stable locality condition (ESLoc) and a W-locality condition (ELoc”) can be defined sim-
ilarly. The proofs of Theorems 30 and 31 can be adapted with minimal changes to prove a
stronger result:

Theorem 32 ([52]) (1) Assume all terms of KC starting with a Qi-function are flat and
linear. If the extension To C Ty satisfies (Compy,) then it satisfies (ELoc).

(2) Assume that Ty is a universal theory. If the extension To C Ty satisfies (Comp) then
it satisfies (ESLoc).

Similar results hold also for W-locality.

Example 32 Let 7y be the theory LI(Q) of linear rational arithmetic, and let Ty = LI(Q) U
Free({f,g,h}) be the extension of Ty with the free functions f,g,h, and let G = g(a) =~
c+5 A flgla))>c+1 A b)) ~d+4 A dx~c+1 A f(h(D) < c+1. We show that G
is unsatisfiable in LI(Q) U Free({f,g,h}) as follows:

Step 1: Flattening; purification. G is purified and flattened by replacing the terms starting
with f, g, h with new constants from a countably infinite set Q. of constants. We obtain the
following purified form:

Go: ar=c+5 AN as>c+1 AN bi=d+4 N d=c+1 AN by<c+1,
Def: a;=~gla) AN az= f(a1) A by=h(b) A by= f(b1).

Step 2: Hierarchical reasoning. By Lemma 27, G is unsatisfiable in LI(Q) U Free({f, g,h})
iff Go N Ny is unsatisfiable in LI(Q), where No corresponds to the consequences of the
congruence axioms for those ground terms which occur in the definitions Def for the newly
introduced variables.

Def | Go No

a1~g(a) A az=f(a1) ar~c+5ANaz>c+1 No : birai — ba=as

bi~h(b) A baxf(b1) bh~d+4Nd=c+1Ab2<c+1

To prove that Go A Ny is unsatisfiable in LI(Q), note that Go f=iq) a1 ~ bi. Hence, Go ANy
entails as = by Nag > c+ 1 ANby < c+ 1, which is inconsistent.

8 THEORY EXTENSIONS 31

Remark: It is important to see that the hierarchical calculus for local extensions gives a de-
cision procedure for the extension with free functions symbols of any theory. A similar result
can be obtained using the Nelson-Oppen combination procedure, but only for extensions of
stably infinite theories with free function symbols.

Example 33 Let Ty be a theory (with a binary predicate <), and Tq a local extension of Ty
with two monotone functions f,g. Consider the following problem:

7o UMon; UMong =V, y, z,u,v(x <y A flyVz) <glunv) — flx) < g(v)).

The problem reduces to the problem of checking whether Ty U Mony U Mong UG =L, where
G=co<ciAflerVez) <glesNea) N flco) € glea).

The locality of the extension To C Ty means that, in order to test if TyUMon UMon,UG =1,
it is sufficient to test whether To U Mon¢[G] U Mony[G] U G =, L, where Mon¢[G], Mong[G]
consist of those instances of the monotonicity axioms for f and g in which the terms starting
with f and g already occur in G:

Mon;[G] = co<c1Vea — f(eo)<f(c1Ver) Mong[G] = ca<csAca — g(ea)<g(csAca)
c1Vea<co — f(ea1Ve2)<f(co) esea<cs — g(csNea)<g(ca)

In order to check the satisfiability of the latter formula, we purify it, introducing definitions
for the terms below the extension functions di ~ c¢1V ca,ds = c3 Acy as well as for the terms
starting with the extension functions themselves: f(dy) = ey, f(co) =~ e3,g(cq) = eq, g(da) ~
e2, and add the following (purified) instances of the congruence azioms: di ~ ¢y — €1 = e3
and cq & dg — e4 = eo. We obtain the following set of clauses:

Def | Go No ’Co

f(di) = e co < c1 di ~cyg— el ~ ez di <cyp—e1<es
f(co) = es dy =~ c1 Ve da X cy — e & ey co <dl —e3<e
glca) = eq do ~ c3 A ca d2 <cs —ex<es
g(d2) =~ e e1<exs AN esfes dis <ds —es <ea

We illustrate the hierarchical reduction to testing satisfiability in the base theory for the
following examples of local extensions:

(1) Let 7o = DLat, the theory of distributive lattices or Ty = Bool, the theory of Boolean
algebras. The universal clause theory of DLat (resp. Bool) is the theory of the two element
lattice (resp. two element Boolean algebra), so testing Boolean satisfiability is sufficient (this
is in NP); any SAT solver can be used for this.

(2) If Ty = Lat, the theory of lattices, we can reduce the problem above to the problem of
checking the satisfiability of a set of ground Horn clauses. This can be checked in PTIME.
(8) If To = R we first need to explain what V and A are. For this, we replace di = ¢1 V ¢o
with (c1 < co — dy &) A (ca < ¢1 — dy = ¢2) and similarly for do =~ c3 A cy. We proved
unsatisfiability using REDLOG [18].

We can therefore conclude that in all cases above:
Ty b=V, g, 20, 0(z <y A f(yV 2) < gluAv) — £(z) < g(v)). .

8.4 Recognizing local extensions: 2. Locality and saturation

In Section 5.2, we mentioned the results of Basin and Ganzinger [9, 8] in which links between
saturation w.r.t. ordered resolution of a set of clauses K and the (order)-locality of K are
established. A first result which establishes a link between the locality of the set I of clauses
and the locality of the extension 7y C 7y U K is given below:

Theorem 33 ([54]) Let Ty be a theory with signature 3o = (Sp, Qo, Pred). Let Ty = ToUK
with signature ¥ = (So U S1, Q0 U 2y, Pred). Assume that:

8 THEORY EXTENSIONS 32

e all functions in Q1 occurring in K have their output sort in Si;
o IC is a set of clauses which only contain function symbols in 2y ;

e the set K of clauses is local (resp. stably local).
Then the extension Ty C To U K is also local (resp. stably local).

Proof: (Sketch) Let P = ({Ps}sesous:s {/P}reqouas, {Rr} repred) be a weak partial model
of 7o U K in which all Qp-functions are totally defined. We will denote by Fjs;, the partial
structure obtained from P by forgetting all operation symbols in . P (hence also Py,) is a
weak partial model of K. By the locality of K, Pis;, = ({Ps}sesous,» {.fP}rea.; {Ra}RePred)
weakly embeds (via embedding ¢) into a total model A = ({As}sesousy, {fa}reor, {Ra}rePred)
of K. Let A* be the substructure of A having the same supports as A for the sorts in Sy
and support is(Ps) for each sort s € Sy. (Since we assumed that all function symbols in €y
have output sort in Sy, A* is closed under all ;-operations.)

Let B = ({Bs}sesous:» 1B} reqouns {RB} RePred), Where:

e for s € Sy, Bs = i5(Ps), for s € S1, B; = Ag;
e for f € Qp, fp coincides with fp;
o for f € Oy, fp coincides with fa-,

and all predicate symbols coincide with those in A*. Then By, is isomorphic to P, hence
is a model of 7y and By, = A*, hence B |= K. O

The locality of K can be checked e.g. by testing whether U E(is saturated under ordered
resolution (w.r.t. the (strict) subterm ordering) using Theorems 18 and 19 (cf. also [9, 8, 26])
but now extended to a many-sorted framework. The advantage is that even if I is not
saturated, if * is a finite saturation of XL U EQ under ordered resolution, then 75U K* can
be used to extract a presentation which defines a (local) theory extension which has the
same total models as 7o U K.

Note: The idea in the proof of Theorem 33 can also be used to show that (under the
assumptions in Theorem 33) if K satisfies Comp (resp. (Comp,,)) then the extension 7y C
7o U K also satisfies Comp (resp. (Comp,,)).

8.5 Combinations of local theory extensions

In this section we study the locality of combinations of local theory extensions. In the light
of the results in Section 8.3 we concentrate on studying which embeddability properties are
preserved under combinations of theories. For the sake of simplicity, in what follows we only
consider conditions (Emb,,) and (Comp,,). Analogous results can be given for conditions
(Embf,), (Comp!,), resp. (Embf?), (Comp!d) and combinations thereof. We first consider the
situation when both components satisfy the embeddability condition (Compy).

Theorem 34 ([54]) Let Ty be a first order theory with signature 3o = (Qq, Pred) and (for
i€{1,2}) T, =Ty UK; be an extension of Ty with signature X; = (o U Q;, Pred). Assume
that both extensions Ty C Ty and Ty C T3 satisfy condition (Compy,), and that Q1 N Qs = 0.
Then the extension Ty C T=ToUK1UK2 satisfies condition (Compy,). If, additionally, in K;
all terms starting with a function symbol in Q; are flat and linear, for i = 1,2, then the
extension is local.

Example 34 The following combinations of theories (seen as extensions of a first order
theory To) satisfy condition (Compy) (in case (4) condition (Compld))*:

(1) To UFree(X1) and To USel. if Ty is a theory and ¢ € Qg is injective in Tp.

4We always assume that the signatures are 3; = (€, Pred).

8 THEORY EXTENSIONS 33

(2) RU Free(X;1) and RU L}(c), where f & Q. Here L;‘»(c) is the \-Lipschitz condition®
for f at point c € R (for A >0): Vx |f(z) — f(c)] <A |x —c|.

(3) RU L;l(cl) and RUL)?(ca), where f # g.

4) Ty U Free(X1) and Ty U Mon$, where f & Q1 has arity n, o : {1,...,n} — {—1,1,0},
f
if 1y is, e.g., a theory of algebras with a bounded semilattice reduct.

This result can be extended to the more general situation in which one extension satisfies
condition (Emb,,) and the other satisfies (Comp,,) or (Emby,).

Theorem 35 ([54]) Let 7y be a first order theory with signature Xo = (Qo, Pred), and let
T =ToUK: and To = Ty U Kq be two extensions of Ty with signatures X1 = (2o UQq, Pred)
and 3o = (Qo U Qq, Pred), respectively. Assume that:

(1) Ty C Ty satisfies condition (Compy);
(2) Ty C Ty satisfies condition (Emby),

(3) K1 is a set of Q1-flat clauses in which all variables occur below a Q4 -function.

Then the extension Ty C Ty U K1 U Ko satisfies (Emby). If in K; all terms starting with a
function symbol in §; are flat and linear (for i=1,2) the extension is local.

Theorem 36 ([54]) Let Ty be an arbitrary theory in signature o = (Qo, Pred). Let Ky
and ICy be two sets of clauses over signatures ¥; = (Qo U Q;, Pred), where Q1 and Q2 are
disjoint. We make the following assumptions:

(A1) The class of models of Ty is closed under direct limits of diagrams in which
all maps are embeddings (or, equivalently, Ty is a VY3 theory).

(A2) K; is Q;-flat and Q;-linear for i = 1,2, and Ty C Ty UK;, i = 1,2 are both
local extensions of Ty.

(A83) For all clauses in K1 and Kz, every variable occurs below some extension
function.

Then 7o U K1 UKy is a local extension of 7.

Example 35 The following combinations of theories (seen as extensions of the theory Tp)
satisfy condition (Emby,), hence are local:

(1) Eq C Free(X1) U L, where Eq is the pure theory of equality, without function symbols,
and L the theory of lattices.

(2) To € (To UFree(X1)) U (7o UMon(Xs)), where ¥1 NYa =0, Mon(22) = A ;cq, Mon;(f)
and Ty 1is, e.g., the theory of posets.

(8) The combination of the theory of lattices and the theory of integers with injective
successor and predecessor is local (local extension of the theory of pure equality).

In what follows we discuss some issues related to modular reasoning in combinations of local
theory extensions. We analyze, in particular, the form of information which needs to be
exchanged between provers for the component theories when reasoning in combinations of
local theory extensions.

Let 77 and 73 be theories with signatures 31 = (Qy, Pred) and 3 = (£, Pred), and G a set of
ground clauses in the joint signature with additional constants ¥¢ = (QoUQUQUSQ,., Pred).
We want to decide whether 7; U, UG L.

5We proved in [52] that for every function f and constants ¢ and A with A > 0 the extension R C
RU (Lip2 (f)) satisfies (Compy), hence it is local.

9 APPLICATIONS 34

The set G of ground clauses can be flattened and purified as explained above. For the sake
of simplicity, everywhere in what follows we will assume w.l.o.g. that G = G1 A G2, where
(G1, G5 are flat and linear sets of clauses in the signatures X1, Yo respectively, i.e. for i = 1,2,
G; = G? A Go A D;, where G? and Gy are clauses in the base theory and D; is a conjunction
of unit clauses of the form f(ci,...,cn) = ¢, f € Q.

Corollary 37 Assume that 71 = ToUK1 and To = ToUKs are local extensions of a theory 1
with signature Yo = (Qo, Pred), where Qo = Q1NQs, and that the extension Ty C ToUK1 UK,
is local. Let G = G1 N G2 be a set of flat, linear are purified ground clauses, such that
G; = GY NGy A D; are as explained above. Then the following are equivalent:

(1) TLU T3 U(Gy AGo) =L,
(2) ToU (K1 UK2)[G1 AGa] U (GYAGoADy)A(GYANGoADs) =L,
(3) ToUKSUKIU(GYUGy) U(GYUGH)UN;UNy =L, where

Ni = {Ncmd—crd|fle,....co)mc, fld,....dn) ~de D}i=1,2,

=1

and KY is the formula obtained from K;[G;] after purification and flattening, taking into
account the definitions from D;.

9 Applications

We now present various examples from mathematics, verification, databases and multi-agent
systems where efficient decision procedures exist.

9.1 Mathematics: numerical functions

We give several examples of theories from mathematics for which hierarchic and modular
theorem proving is possible. For the sake of simplicity, we here restrict to unary functions,
but most of the results also hold for functions f : R™ — R™. The results presented here
were first given in [52, 56, 39, 58].

9.1.1 Monotonicity and boundedness conditions

Any extension of a theory with free function symbols is local. In addition the following
theory extensions have been proved to be local in [52, 56, 39]:

Monotonicity. Any extension of the theory of reals, rationals or integers with functions
satisfying Mon? (f) is local ((Comp,,) holds [52, 56]) ©:

Mon?(f) A=<y A N\ zimys = f(@1, . 20) < F(Y1, 0 n).
i€l il

The extension 7oC7ToUSMon(f) is local if 7y is the theory of reals (and f : R—R) or the
disjoint combination of the theories of reals and integers (and f : Z—R) [37]. The extension
of the theory of integers with (SMongz(f)) is local.

SMon(f) Vi, j(i<j — f(i)<f(5)) SMonz(f) Vi, j(i<j — (§—i) < f(1)—=f(4)).

SFor i € I, 0,€{—,+}, and for i € I, 0;=0; <T=<, <" =>.

9 APPLICATIONS 35

Boundedness. Assume 7 contains a reflexive binary predicate <, and f ¢ Q. Let
m € N. For 1 < i < m let t;(z1,...,2,) and s;(z1,...,2,) be terms in the signature
Yo and ¢;(x1,...,2,) be Yo-formulae with (free) variables among z1,...,z,, such that
7o): Vf((bl(f) — Si(f) < ti(f)), and if 7 75 7, &i N\ ¢j):TOJ—
Let GB(f)= A", GB?(f) and Def(f)= A", Def® (f), where:
GB”(f) V&(:i(F) — s:(T) < f(T) < t:(T)) Def® (f) VE(¢i(T) — f(T) ~ t:(T)).
(i) The extensions Ty C 7o U GB(f) and 7y C 7o U Def(f) are both local [56, 37].

(ii) Any extension of a theory for which < is a partial order (or at least reflexive) with
functions satisfying Mon? () and Bound"(f) is local [56, 37].

Bound’(f) Yoy, . oo xn(flzr, .o xn) <tlar,...,Tn))

where t(x1,...,2,) is a Yo-term with variables among 1, ..., z, whose associated
function has the same monotonicity as f in any model. Similar results hold for strictly
monotone functions.

Injectivity. An extension 7y C 7; = To U Inj(f) with a function f of arity i — e satisfying
Inj(f) is local provided that in all models of 77 the cardinality of the support of sort i is
lower or equal to the cardinality of the support of sort e.

Inj(f) Vi, j(i 2 j — f(@) % f(5))-

9.1.2 Inverse conditions
Consider the following inverse condition:
Inv(f,9) Vz,yly = f(z) — g(y) = 2).

Such conditions often occur in mathematics and are important in verification (e.g. to model
direct and inverse links between certain objects).

Theorem 38 Let Ty be a theory and f,g & Qo. Assume that Ty C To U K(f) satisfies
Comp,,, and that To UK(f) = Inj(f). Then To U (K(f) Ulnv(f,g9)) UG =L iff To U (K(f)U
Inv(f, g))[GlUG =L for all sets G of ground clauses with the property that if g(c) occurs in
G then also some f(a) = ¢ occurs in G.

9.1.3 Convexity/concavity

Let f be a unary function, and I = [a,b] a subset of the domain of definition of f. We
consider the axiom:

Conv'(f) Va,y,z <x,yeI Nz<z<y — f(zi:i(x) gf(yzii(m)) :

Theorem 39 Let 7y be one of the theories: (i) R, (i) Z (a theory of integers), (i) the
many-sorted combination of the theories of reals (sort real) and integers (sort int). Let f be
a new, unary function (for (i) assume f has arity int — real).

'ZEJUConvfc and 'ZEJUConcfc are local extensions of Ty, where Conc’ (f) = Conv! (—f).

9 APPLICATIONS 36

9.1.4 Lipschitz conditions

Consider the following conditions:

(L} (co)) Va(|f(z) — feo)| < Az — col) Lipschitz condition at ¢o
(L?) Va,y(|f(z) — fy)| < Mz —y|) (uniform) Lipschitz condition
(BL?) Va,y(+|z —y| < |f(z) — f(y)] < Alz —y|) bi-Lipschitz condition

Such conditions occur in the verification of hybrid systems when specifying (by universal
axioms) that the derivative of a function is bounded by a given value.

Theorem 40 R U (L?(Co)), RU (L?), and RU (BL;‘») are local extensions of R.

Theorem 41 The extension R U BL? Ulnv(f,g) of R has the property that for all sets G
of ground clauses such that if g(c) occurs in G then also f(a) ~ ¢ occurs in G, RU (BL? U

Inv(f,g)) UG EL iff RU (BL; U lnv(f, 9))[G] U G has no weak partial model in which all
subterms of G (and only those) are defined.

9.1.5 Continuity, derivability

We consider the following continuity conditions for a function f: R — R:

Conty(co) Ve(e>0—30(0>0AVz(|x—co|<d—|f(x)—f(co)|<€))) continuity at co
Conty Vx(Contys(z)) continuity

and the following derivability conditions for a (continuous) function f:

Der(f, f')(co) : Ve(e>0—35(6>0AVa (| —co| <6—| LE=Lla) _ ¢/(ch)|<e)))

T—co

Der="(f,f',...,f")(co) : [\ Contsi—1(co) ADer(f~, f*)(co)

i=1
Der(f, f') := YaDer(f, f')(x); Der="(f, f',..., f*) = VYaDer="(f, f',..., f*)(z) (axiomatiz-
ing derivability — resp. n-times derivability — at every point, where n € NU {0}, f* = f
and f? is the i-th derivative of f).

Theorem 42 (1) Any partial function over the reals with a finite domain of definition
extends to a total continuous function over the reals.

(2) RU Contys(co) UDer(f, f')(co) and RU Conty U Der(f, f') are U-local extensions of R,
where U(T) =T U{f(c) | f'(c) e TYU{f'(¢) | f(e) € T}
The extensions R € RUDer="(f, f1,..., f")(co) and R C RUDer="(f, f*,..., f*) are
U™ _local extensions, where W (T) = TU{f*(c) | 0<k<n if fi(c)E€T for some 0<i<n}.

Proof: We can use any polynomial interpolation theorem to compute a total model from
any partial model (e.g. the Hermite interpolation theorem). O

9.1.6 Combinations of axioms

Analyzing the proofs in the previous sections we notice that the same completion for the
partial functions can be used for (i) monotone, strictly monotone, convex/concave, Lipschitz
and continuous functions over R. The same completion (possibly different from that in (i))
is used (ii) for Lipschitz, and for (uniformly) continuous and n-derivable functions over R.

Theorem 43 The following axiom combinations define local extensions of R:

(1) Arbitrary combinations of [S]Mon)(f), Convy, L?[(Co)], BL?, Conty[(co)];

9 APPLICATIONS 37

(2) Arbitrary combinations of L}, L?(Co), BLf\, Conty, Conts(co), ContgADer(f, '), Conty(co)A
Der(f, ") (co) Der="(f, f*, ., f*)(co), and Der="(f, f*, ... f*).

However, care is needed when combining Der(f, f’) with boundedness or monotonicity con-
ditions on f’, or with convexity/concavity conditions on f or f’.

9.1.7 Example of proof task

We present an example which illustrates the type of deduction problems in mathematics
we may need to consider: Assume that f:R—R satisfies the bi-Lipschitz condition (BL?)
with constant A and g is the inverse of f. We want to determine whether g satisfies the bi-
Lipschitz condition on the codomain of f, and if so with which constant A\, i.e. to determine
under which conditions the following holds:

R U (BL}) U (Inv(f,9)) = ¢, (1)
where ¢ : Vo, o',y ¥/ (y=f(z) Ny'=f(2') = x:ly = ¥'1<l9(y) — 9(¥)|<Mly —o/]);
(BL}) Ve, y(3le —] < 1) —)] < Az — o))
Inv(f,g) Vo, y(y = flz) — g(y) =).

Entailment (1) is true iff RU (BL?) U(Inv(f,g)) UG is unsatisfiable, where G = (c1=f(a1) A
corf(az) A ()\—11|cl—02| > |g(e1)—g(c2)| V]g(e1)—g(c2)| > Aile1—cz|)) is the formula obtained
by Skolemizing the negation of ¢.

Standard theorem provers for first order logic cannot be used in such situations. Provers for
reals do not know about additional functions. The Nelson-Oppen method [46] for reasoning
in combinations of theories cannot be used either.

The method we propose reduces the task of checking whether formula (1) holds to the
problem of checking the satisfiability of a set of constraints over R. We first note that
for any set G of ground clauses with the property that “if g(c) occurs in G then G also
contains a unit clause of the form f(a) = ¢’ every partial model P of G — where (i) f and
g are partial and defined exactly on the ground subterms occurring in G and (ii) P satisfies
BL? UInv(f,g) at all points where f and g are defined — can be completed to a total model
of RU (BL?) U(Inv(f,g)) UG (cf. Theorem 40 and Corollary 41). Therefore, problem (1) is
equivalent to

RU (BL} UInv(f,9))[GIUG =1,

where (BL? UInv(f,g))[G] is the set of those instances of BL;‘» UInv(f,g) in which the terms
starting with g or f are ground terms occurring in G, i.e.

(BL} UTnv(£,9)G] = 3lar — az| < [f(@) = f(a)] < Nas — az| A
(@1 flar) = gler) ar) A (e2 = flar) = g(ez2) = ar) A
(c1 = fla2) = g(er) ®az2) A (e2 = f(az) = d(c2) = az).
We separate the numerical symbols from the non-numerical ones by introducing new names
for the extension terms, together with their definitions D = (f(a1) = e1 A f(az2) = eaAg(c1) =~
dy Ag(e2) = dz) and replacing them in (BL? UInv(f, 9))[G]JUG. The set of formulae obtained

this way is BLo U Invg U Gy. We then use — instead of these definitions — only the instances
Con[G]y of the congruence axioms for f and g which correspond to these terms. We obtain:

1
Bl : X|a1—a2|§|el—eg|§A|a1—a2|
Invo : (cimer—dimar) N (cemer—demar) A (cires—dicaz) A (ceRes—daraz)
c1 — ¢
Go : c1 el Nca e N\ (|d1 —d2| < M Vv |d1 —d2| >)\1|61 —Cz|)

A1
Con[GJo cilxcy—dixdoNar Ras — el ~es

9 APPLICATIONS 38

Thus, entailment (1) holds iff BLoAlInvgAGoACon[G]o is unsatisfiable, i.e. iff
Jay, az,c1,ca,d1,da, e1,e2(BLlo Alnvg A G A Con[G]p) is false.

The quantifiers can be eliminated with any QE system for R. We used REDLOG [18]; after
simplification (w.r.t. A>1, A\;>1 and some consequences) we obtained:

MAZ=A<0V AMA=A2<0V M =A<0V (MA=A>0AN =)V
A=A >0 A A =MA<0V AT =MA>0 A M =)N)V
DIA=A >0 A XN =XMA<0AXM=A>0 V MA=X>0 A X -XA<0).

If A>1, A\;>1, this formula is equivalent to A;<A. Hence, if A>1, A1 >1 we have:
RU(BL}) A (Inv(f,9)) ¢, iff A > . (2)

The constraints we obtain can be used for optimization (e.g. we can show that the smallest
value of A\; for which g satisfies the bi-Lipschitz condition is \).

9.2 Mathematics: partial-ordered structures

We now present various of examples of local extensions in mathematics, involving possibly
non-numeric functions. Some of the results below can be seen as a natural generalization of
the results in Section 9.1.

9.2.1 Monotone functions

The extensions of any (possibly many-sorted) theory whose models are posets with functions
satisfying the axioms Mon? (f) satisfy condition (Compy,) if the codomains of the functions
have a bounded semilattice reduct or are totally ordered [52, 56]

Theorem 44 ([56]) The extensions with functions satisfying monotonicity axioms of the
following (possibly many-sorted) classes of algebras are local:

(1) Any class of algebras with a bounded (semi)lattice reduct, a bounded distributive lattice
reduct, or a Boolean algebra reduct.

(2) Any extension of a class of algebras with a semilattice reduct, a (distributive) lattice
reduct, or a Boolean algebra reduct, with monotone functions into an infinite numeric

domain” .

(3) T, the class of totally-ordered sets; DO, the theory of dense totally-ordered sets.

Consider now the following conditions:
SMon(f) Vi,j(i <j— f(i) < f(5)) and Inj(f) Vi, j(i % j— f(i) # f(4))

Theorem 45 ([37]) Assume that in all models of Ty the support of sorti has an underlying
strict total order relation <. Let Ty = ToUSMon(f), where f is a new function of arity i — e
(e may be a new or an old sort), in all models of Ty the support of sort e has an underlying
strict total order <, and there exist injective order-preserving maps from any interval of
the support of sort i to any interval of the support e. Then the extension Ty C 17 satisfies
(Compy,), hence it is local.

Theorem 46 ([37]) A theory extension Ty C Ty = To U Inj(f) with a function f of arity
i — e satisfying Inj(f) is local provided that in all models of Ty the cardinality of the support
of sort i is lower or equal to the cardinality of the support of sort e.

7Of interest in non-classical logics (e.g. description logics) [56, 59].

9 APPLICATIONS 39

9.2.2 Extensions with definitions and boundedness conditions

Let 7y be a theory containing a binary predicate < which is reflexive, and f & X.

Guarded boundedness. Let m € N. For 1 <1i < m let t;(x1,...,2,) and s;(x1,...,2,)
be terms in the signature IIy with variables among x1,...,Z,, and let ¢;(z1,...,zy), © €
{1,...,m} be Ilp-formulae with free variables among z1,...,z,, such that (i) for every

i # j, i No; =1,L, and (ii) for every i, Ty = VZT(¢:(T) — s:(T) < t;(T)). Let GBound(f) =
A", GBound? (f), where:

GBound? (f) VT(¢i(T) — si(T) < f(T) < t:(T)).
The extension 7y C 7o U GBound(f) is local.

Boundedness for (strictly) monotone and injective functions. Any extension of a
theory for which < is a partial order (or at least reflexive) with functions satisfying Mon?(f)
and boundedness Bound(f) conditions is local [53, 56].

Bound'(f) Var, .o Zn(f(ar, .o) < @1, 20))
where ¢(21,...,2,) is a Ilp-term with variables among z1, . .., z, whose associated function
has the same monotonicity as f in any model. Similar results hold for strictly mono-
tone/injective functions (under the conditions in Thm. 45, 46).

Extensions with (guarded) definitions are defined similarly.

9.3 Verification

In the verification of reactive and hybrid systems the most important problems are to prove
safety and lifeness.

9.3.1 System specification.

In the specification of complex systems, one needs to take several aspects into account: con-
trol flow, data changes, and timing aspects. An example is the specification language CSP-
OZ-DC (COD) [34, 36] which integrates three well-investigated formalisms: Communicating
Sequential Processes [35], Object-Z [51], and Duration Calculus [70], allowing the composi-
tional and declarative specification of each aspect by means of the best-suited formalism.
In particular, data and data changes can be specified in a constraint-based representation
(using OZ). In particular, depending on the specific application domain, the specifications
explicitly refer to certain theories and data types:

e numbers (real/rational/integer/natural);
e functions over numerical domains (e.g. for modeling parametric changes);

e theories of data structures such as lists or arrays — especially for program verification,
but also e.g. in the specification of systems with a parametric number of components.

Such theories are usually explicitly mentioned in the specification part. Correspondingly,
a background theory T7g — describing the data types used in the specification and their
properties — is associated in a canonical way with every specification.

9.3.2 System verification.

Starting from the specifications of a reactive and real time system we can build a formal
model for the system expressed as a transition constraint system T = (V,, Init, Update)
which specifies:

e the variables (V) and function symbols (2) whose values change over time;
e a formula Init specifying the properties of initial states;

9 APPLICATIONS 40

System Specifications

v

Complex theories / TCS

¥

Theory abstraction

—

Invariant checking/ BMC | | Abstraction/ Refinement | | Model Checking
Automated reasoning Interpolation

- full theory
— abstraction of theory
refine abstraction

- use interpolants

for refining abstraction

e a formula Update with variables in VUV’ and function symbols in QU (where V' and
Q' are copies of V resp. (2, denoting the variables resp. functions after the transition)
which specifies the relationship between the values of variables and function symbols
f before a transition and their values (2, f’) after the transition.

Such descriptions can be obtained from system specifications (for an example cf. [22]).

Verification problems usually considered are invariant checking, bounded model checking
(BMC), verification using abstraction/refinement and full verification. The first two prob-
lems are usually much simpler than the last one. The use of abstraction and refinement can
help provide additional safety proofs compared to the first two ones.

Invariant checking. We can check whether a formula ¥ is an inductive invariant of a
transition constraint system T'=(V, Q, Init, Update) in two steps:

(1) prove that Tg, Init = U;

(2) prove that 7g, ¥, Update = ¥’, where ¥’ results from ¥ by replacing each x € V by z’
and each f € Q by f'.

Failure to prove (2) means that W is not an invariant, or ¥ is not inductive w.r.t. T'.8

Bounded model checking. We check whether, for a fixed k, unsafe states are reachable
by runs of length at most k. Formally, we check whether:

J
Ts Alnitg A /\ Update, A=W, =1 forall 0 < j <k,

i=1

where Update; is obtained from Update by replacing all variables € V' by «; and any f € Q
by fi, and all 2’ € V', ' € Q' by i1, fir1; Initg is Init with xo replacing z € V and f
replacing f € ; ¥, is obtained from ¥ similarly.

We are interested in checking whether a safety property (expressed by a suitable formula)
is an invariant, or holds for paths of bounded length, for given instances of the parameters,
or under given constraints on parameters. We aim at identifying situations in which de-
cision procedures exist. We will show that this is often the case, by investigating locality
phenomena in verification. As a by-product, this will allow us to consider problems more

8Proving that ¥ is an invariant of the system in general requires to find a stronger formula T' (i.e.,
7s ET —) and prove that I" is an inductive invariant.

9 APPLICATIONS 41

general than usual tasks in verification, namely to derive constraints between parameters
which guarantee safety. These constraints may also be used to solve optimization problems
(maximize/minimize some of the parameters) such that safety is guaranteed.

Abstraction/Refinement. In [43], McMillan proposed a method for abstraction-based
verification in which interpolation (e.g. for linear arithmetic + free functions) is used for ab-
straction refinement. The idea is the following: Starting from a concrete, precise description
of a (possibly infinite-state) system one can obtain a finite abstraction by merging the states
into equivalence classes. A transition exists between two abstract states if there exists a
transition in the concrete systems between representatives in the corresponding equivalence
classes. Literals describing the relationships between the state variables at the concrete level
are represented — at the abstract level — by predicates on the abstract states (equivalence
classes of concrete states). Classical methods (e.g. BDD-based methods) can be used for
checking whether there is a path in the abstract model from an initial state to an unsafe
state. We distinguish the following cases:

(1) No unsafe state is reachable from an initial state in the abstract model. Then, due to
the way transitions are defined in the abstraction, this is the case also at the concrete
level. Hence, the concrete system is guaranteed to be safe.

(2) There exists a path in the abstract model from an initial state to an unsafe state. This
path may or may not have a correspondent at the concrete level. In order to check
this, we analyse the counterpart of the counterexample in the concrete model. This
can be reduced to testing the satisfiability of a set of constraints:

Init(sp) A Tr(sg,s1) A~ ATr(Sp—1,8n) A —Safe(s,).

(2.1) If the set of constraints is satisfiable then an unsafe state is reached from the
initial state also in the concrete system. Thus, the concrete system is not safe.

(2.2) If the set of constraints is unsatisfiable, then the counterexample obtained due to
the abstraction was spurious. This means that the abstraction was too coarse.
In order to refine it we need to take into account new predicates or relationships
between the existing predicates. Interpolants provide information about which
new predicates need to be used for refining the abstraction. Interpolation in
local theory extensions has been studied in [53] and will not be discussed in this
tutorial.

Full verification. Methods for the verification of finite-state systems are well-studied. In
the presence of complex data types however, full verification is often impossible. Positive
results have been obtained for locally finite theories of data structures by Ghilardi, Ranise,
Nicolini and Zuccheli. The main idea is that local finiteness for the data structures ensures
that the state space of the systems is finite, so ideas from finite model checking can be used.
We will not present these results in detail here.

9.4 Some theories important in verification

In what follows we present methods for proving decidability of certain theories important
in verification such as the theory of pointer data structures and a fragment of the theory of
arrays.

9.4.1 Pointer data structures a la McPeak and Necula

In [45], McPeak and Necula investigate reasoning in pointer data structures. The language
used has sorts p (pointer) and s (scalar). Sets €, and € of pointer resp. scalar fields are

9 APPLICATIONS 42

modeled by functions of sort p — p and p — s, respectively. A constant null of sort p exists.
The only predicate of sort p is equality; predicates of sort s can have any arity. The axioms
considered in [45] are of the form

Vp EVC (3)

where £ contains disjunctions of pointer equalities and C contains scalar constraints (sets
of both positive and negative literals). It is assumed that for all terms fi(fa(... fn(p)))
occurring in the body of an axiom, the axiom also contains the disjunction p & nullV f,,(p) ~
null V.-V fa(... fn(p)) = null.? Examples of axioms (for doubly linked data structures with
priorities) considered there are:

Vp p # null A next(p) # null — prev(next(p)) = p (4)
Vp p# null Aprev(p) % null — next(prev(p)) = p (5)
Vp p % null A next(p) % null — priority(p) > priority(next(p)) (6)

(the first two axioms state that prev is a left inverse for next, the third axiom is a monotonicity
condition on the function priority). Let Wic(T) =st(K)UT U {f(¢) |t € st(K)UT, f € Qs}
for any set of ground terms T.

Theorem 47 ([37]) Let Ty be a Xo-theory, where So = {s}, and T = ToUK be the exten-
sion of Ty with signature ¥ = ({p,s}, 2, Pred) — where Q=Q,UQ;UQq, and K is a set of
azioms Vp(E V C) of type (3). Then every partial model A of K with total Qo-functions such
that the definition domain of A is closed under U (i.e. if f€Qs and the p-term t is defined
in A then f(t) is defined in A) weakly embeds into a total model of K. Hence Ty C Ty is a
W-stably local extension.

W-stable locality is not harmful in this case, since all universally quantified variables in the
axioms in C are of sort p, and the number of instances of these variables with subterms in
U (G) which need to be considered is polynomial in the size of st(K, G) (no operations with
output sort s generate such terms).

Figure 7: Properties of lists

Example: In order to prove that in a theory of doubly-linked lists it is not possible for two
fields to have the same “next” field, we need to consider only instances of the axioms for
“next” and “prec” in a neighborhood of a possible counterexample.

9This excludes null pointer errors.

9 APPLICATIONS 43

9.4.2 Extensions of the fragment of Necula and McPeak.

We are interested in pointer structures which can be changed during execution of a program
(a cell of a list can be removed, or a new subtree added into a tree structure). The general
remarks above also apply for such situations.

Theorem 48 ([37]) Assume that the update azioms Update(£2, Q) describe how the values
of the Q-functions change, depending on a finite set {¢; | i € I} of mutually exclusive
conditions, expressed as formulae over the base signature and the Q-functions (axioms of
type (7) below represent precise ways of defining the updated functions, whereas axioms of
type (8) represent boundedness properties on the updated scalar fields, assuming the scalar
domains are partially ordered):

VZ(¢i(T) — f1(T)=si(T)) i €1, where ¢;(T) A ¢j(T) =1y L for i#j (7)
VE(0i(T) = t:(T)<fi([@)<s:(T)) i €1, where ¢5(T) A ¢;(T) oz, L for i#j (8)
where s;,t; are terms over the signature Q such that Ty = VI (¢;(T)—1:(T)<s:(T)) for alli €

1. They define local theory extensions. This holds for any extension of disjoint combinations
of various pointer structures with such update arioms.

Q

9.4.3 The theory of arrays a la Bradley, Manna and Sipma

In [11] the array property fragment is studied, a fragment of the theory of arrays with Pres-
burger arithmetic as index theory and parametric element theories. Consider the extension
of the combination 7y of the index and element theories with functions read, write and
axioms:

read(write(a, i, €),1) ~ e j % i — read(write(a, i, €),) ~ read(a,).
The array property fragment is defined as follows'©:

An index guard is a positive Boolean combination of atoms of the form ¢ < w or ¢ ~ u where
t and u are either a variable of index sort or a ground term (of index sort) constructed from
(Skolem) constants and integer numbers using addition and multiplication with integers.
A formula of the form (Vi)(vr(i) — v (7)) is an array property if ¢y is an index guard
and if any universally quantified variable of index sort ¢ only occurs in a direct array read
read(a, z) in py. Array reads may not be nested. The array property fragment consists of
all existentially-closed Boolean combinations of array property formulae and quantifier-free
formulae.

The decision procedure proposed in [11] decides satisfiability of formulae in negation normal
form in the array property fragment in the following steps.

1. Replace all existentially quantified array variables with Skolem constants; replace all
terms of the form read(a,i) with a(i); eliminate all terms of the form write(a, 1, e)
by replacing the formula ¢(write(a,i,e)) with the conjunction of the formula ¢(b)
(obtained by introducing a fresh array name b for write(a, %, €)) with (b(7) ~ e) AVj(j <
i—1Vi+1<j—b())=~a(j)).!

2. Existentially quantified index variables are replaced with Skolem constants.

3. Universal quantification over index variables is replaced by conjunction of suitably
chosen instances of the variables.

10The considerations below are for arrays of dimension 1, the general case is similar.
1 Note that, by the definition of array property formulae, if a term write(a, 4, €) occurs in the array property
fragment then 7 is an existentially quantified index variable.

9 APPLICATIONS 44

For determining the set of ground instances to be used in Step 3, the authors prove that
certain partial “minimal” models can be completed to total ones.

Theorem 49 ([11, 37]) Let K be the clause part and G the ground part (after the trans-
formation steps (1)—(3)), and T be the set of index terms defined in [11]. Let (K, st(G)) =
{f(i1,...,in) | f array name ,i1,...,i, € I}. Every partial model of TyUK[V (K, G)|UG in
which all terms in U(K, G) are defined can be transformed into a (total) model of To UK UG.
This criterion entails (ELoc”).

9.4.4 Extending the array property fragment.

Let 7y be the array property fragment in [11] (set of arrays €). There are several ways of
extending 7o:

Theorem 50 ([37]) Let T1=ToUK be an extension of Ty with new arrays in a set ;.

(1) If K consists of guarded boundedness axioms, or guarded definitions (cf. Section 9.1.1)
for the Q1 -function symbols, then the extension To C Ty is local. 2

(2) If K consists of injectivity or (strict) monotonicity (and possibly boundedness axioms)
for the function symbols in Q1 then the extension Ty C Ty is local if the assumptions
about the element theory specified in Section 9.1.1 hold.

(3) Any combination of extensions of Ty as those mentioned in (1),(2) with disjoint sets
of new array constants leads to a local extension of 1.

If the guards ¢; of the axioms in K are clauses then the result of the hierarchical reasoning
method in Theorem 27 is a formula in Ty, hence satisfiability of ground clauses w.r.t. To UK
is decidable. Similarly for chains of extensions. The same holds for testing satisfiability
of goals Ty U G where Ty and (K[G])o belong to the array property fragment. For general
guards and chains of extensions decidability depends on the form of the formulae obtained
by hierarchical reduction(s).

9.5 Case studies in verification

We present three case studies in verification which illustrate the use of decision procedures
for the theories previously mentioned for invariant checking and bounded model checking.
The examples below only refer to invariant checking. For the sake of simplicity, in this
section we use the notation “=" for the equality predicate.

9.5.1 A RBC Case Study

The case study we discuss here is taken from the specification of the European Train Control
System (ETCS) standard [21] and presented in detail in [39] and [57]. We consider a radio
block center (RBC), which communicates with all trains on a given track segment. Trains
may enter and leave the area, provided that a certain maximum number of trains on the
track is not exceeded. Every train reports its position to the RBC in given time intervals and
the RBC communicates to every train how far it can safely move, based on the position of
the preceding train. It is then the responsibility of the trains to adjust their speed between
given minimum and maximum speeds.

For a first try at verifying properties of this system, we have considerably simplified
it: we abstract from the communication issues in that we always evaluate the system after
a certain time At, and at these evaluation points the positions of all trains are known.
Depending on these positions, the possible speed of every train until the next evaluation is

12An example is defining new arrays by writing « at a (constant) index c, axiomatized by {Vi(i % ¢ —

a (i) = a(i)), Vi(i=c—ad (i) =x)}.

9 APPLICATIONS 45

European Train Control System

decided: if the distance to the preceding train is less than a certain limit ljaym, the train
may only move with minimum speed min (otherwise with any speed between min and the
maximum speed max).

We present two formal system models. In the first one we have a fixed number of trains;
in the second we allow for entering and leaving trains.

Model 1: Fixed Number of Trains. In this simpler model, any state of the system
is characterized by the real-valued constants At > 0 (the time between evaluations of the
system), min and max (the minimum and maximum speed of trains), lyarm (the distance
between trains which is deemed secure), the integer constant n (the number of trains) and
the function pos (mapping integers between 0 and n — 1 to real values representing the
position of the corresponding train).

We use an additional function pos’ to model the evolution of the system: pos’(i) denotes the
position of ¢ at the next evaluation point (after At time units). The way positions change (i.e.
the relationship between pos and pos’) is defined by the following set Iy = {F1,F2,F3, F4}

of axioms!3:

(F1) Vi (i=0 — pos(i)+ Atxmin <g pos'(i) <g pos(i) + Atxmax)

(F2) Vi (0<i<n A pos(i—1)>r0 A pos(p(i)) — pos(i) >R latarm
— pos(i) + At * min <g pos’(i) <g pos(i) + Atxmax)

(F3) Vi (0<i<n A pos(i—1)>r0 A pos(p(i)) — pos(i) <r lalarm
— pos’(i) = pos(i) + Atkmin)

(F4) Vi (0<i<n A pos(i—1)<g0 — pos'(i) = pos(i))

Note that the train with number 0 is the train with the greatest position, i.e. we count trains
from highest to lowest position.

Axiom F1 states that the first train may always move at any speed between min and
max. F2 states that the other trains can do so if their predecessor has already started and
the distance to it is larger than lyam. If the predecessor of a train has started, but is less
than lzjam away, then the train may only move at speed min (axiom F3). F4 requires that a
train may not move at all if its predecessor has not started.

Model 2: Incoming and leaving trains. If we allow incoming and leaving trains,
we additionally need a measure for the number of trains on the track. This is given by
additional constants first and last, which at any time give the number of the first and

13Inequality over integers is displayed without subscript, inequality over reals is marked with an R

9 APPLICATIONS 46

last train on the track (again, the first train is supposed to be the train with the highest
position). Furthermore, the maximum number of trains that is allowed to be on the track
simultaneously is given by a constant maxTrains. These three values replace the number of
trains n in the simpler model, the rest of it remains the same except that the function pos
is now defined for values between first and last, where before it was defined between 0 and
n — 1. The behavior of this extended system is described by the following set IC, consisting
of axioms (V1) — (V9):

(V1) Vi (i = first = pos(i) + At % min <g pos’(i) <g pos() + At * max)

(V2) Vi (first <i <last A pos(i—1) >r 0Apos(i — 1) — pos(i) >g lalarm
— pos(i) + At min <g pos’(i) <g pos(i) + At * max)

(V3) Vi (first <i <lastApos(i—1) >r 0Apos(i—1)— pos(i) <r laiarm
— pos’(#) = pos(i) + At x min)

(V4) Vi (first <i<lastApos(i—1) <z 0 — pos'(i) = pos(i))

(V5) last — first + 1 < maxTrains — last’ = last V last’ = last + 1
(v6) last — first + 1 = maxTrains — last’ = last

(V7) last — first + 1 > 0 — first’ = first V first’ = first 4+ 1

(v8) last — first + 1 = 0 — first’ = first

(V9) last’ =last+1 — pos'(last’) <g pos’(last)

where primed symbols denote the state of the system at the next evaluation.

Here, axioms V1 — V4 are similar to F1 — F4, except that the fixed bounds are replaced
by the constants first and last. V5 states that if the number of trains is less than maxTrains,
then a new train may enter or not. V6 says that no train may enter if maxTrains is already
reached. V7 and V8 are similar conditions for leaving trains. Finally, V9 states that if a
train enters, its position must be behind the train that was last before.

The safety condition which is important for this type of systems is collision freeness.
In [39] we use a very simplified model of the system of trains, where collision freeness is
modeled by a ’strict monotonicity’ property for the function pos which stores the positions
of the trains. We now consider a more realistic axiomatization — assuming the maximum
length of the trains is known — expressed by the following axiom:

SdMon(pos) Vi,j,k (0<j<i<n A i—j=k — pos(j) — pos(i) >g k * LengthTrain),

where LengthTrain is the standard (resp. maximal) length of a train.

As base theory we consider the combination 7y of the theory of integers and reals with
a multiplication operation * of arity i X num — num (multiplication of k with the constant
LengthTrain in the formula above)'*. Let 77 be the theory obtained by extending 7o with
a function pos satisfying the axiom above. By the results presented in Section 9.1.1 on
locality of extensions with functions satisfying strict monotonicity and related properties,
the extension 7y C 77 is local.

We now extend the resulting theory 77 in two different ways, with the axiom sets for one of
the two system models, respectively. Both extensions are extensions with guarded bound-
edness axioms. By the remarks in Section 9.1 both 7; C 77 UK¢ and 7y € 7; UK, are

141n the light of locality properties of such extensions, k will always be instantiated by values in a fi-
nite set of concrete integers, all within a given, concrete range; thus the introduction of this many-sorted
multiplication does not affect decidability.

9 APPLICATIONS 47

local extensions. The method for hierarchical reasoning described above allows us to reduce
the problem of checking whether system properties such as collision freeness are inductive
invariants to deciding satisfiability of corresponding constraints in 7. As a side effect, after
the reduction of the problem to a satisfiability problem in the base theory, one can auto-
matically determine constraints on the parameters (e.g. At, min, max, ...) which guarantee
that the property is an inductive invariant, and are sufficient for this. (This can be achieved
for instance using quantifier elimination.) These constraints can be used, for instance, for
optimization problems (e.g. maximize speed and At while guaranteeing safety).

Illustration: We indicate how to apply hierarchical reasoning on the case study given in
Section 9.5.1, Model 1'5. We follow the steps given in Section 8.2 and show how the sets of
formulas are obtained that can finally be handed to a prover of the base theory.

To check whether 7; U Ky = ColFree(pos’), where
ColFree(pos’) Vi (0<i<n—1 — pos'(i)—pos'(i+1) >g LengthTrain),

we check whether 7 UK, UG | L, where G ={0<k<n-1, kK =k+1, pos(k)—
pos’'(k') <g LengthTrain} is the (skolemized) negation of ColFree(pos’), flattened by intro-
ducing a new constant k’.

Reduction from 7; UKy to 7;. This problem is reduced to a satisfiability problem over
77 as follows:

Step 1: Use locality. We construct the set ;[G]: There are no ground subterms with pos’
at the root in Ky, and only two ground terms with pos’ in G, pos’(k) and pos’(k’). This
means that /C;[G] consists of two instances of Ky: one with ¢ instantiated to k, the other
instantiated to k’. E.g., the two instances of F2 are:

(F2[G]) (O <k<n A pos(k—1)>r0 A pos(k—1)—pos(k) >r laarm
— pos(k) + At min <g pos’'(k) <g pos(k) + Atxmax)
(0O<k <n A pos(k'—=1)>r0 A pos(k’ —1)—pos(k’) >R lalarm
— pos(k’) + At * min <g pos’(k’) <r pos(k’) + Atxmax)

The construction of (F1[G]), (F3[G]) and (F4[G]) is similar. In addition, we specify the known
relationships between the constants of the system:
(Dom) At>0 A 0<min A min< max

Step 2: Flattening and purification. K¢[G] A G is already flat w.r.t. pos’. We replace
all ground terms with pos’ at the root with new constants: we replace pos’(k) by ¢; and
pos' (k') by ca. We obtain a set of definitions Def = {pos’(k) = ¢1, pos’ (k') = c2} and a set
(Dom) U Go U Ky, of clauses which do not contain occurrences of pos’, consisting of (Dom)
together with:

(Go) 0<k<n—1 A kK=k+1 A ¢ —cy<glengthTrain

(F29) (0<k<n A pos(k—1)>r0 A pos(k—1)—pos(k) >R laarm
— pos(k) + At * min <g ¢; <g pos(k) + Atxmax)

(0<k <n A pos(k'—1)>r0 A pos(k’ —1)— pos(k’) >r lalarm
— pos(k') + At * min <g c3 <g pos(k’) + Atxmax)

15We illustrate our approach for the simplest model. For a variable number of trains the approach is the
same.

9 APPLICATIONS 48

The construction can be continued similarly for F1, F3 and F4.

Step 3: Reduction to satisfiability in T;. We add the functionality clause No = {k = k' — ¢; = 2}
and obtain a satisfiability problem in 77: K¢, A Go A Np.

The reduction is schematically represented in the following diagram:

Def Dom U Go U Ky, U No
pos'(k) = c1 (Dom) U (Go) U (F19) U (F20) U (F30) U (F4o)
pos' (k') = ¢o No:k=k —c1=co

Reduction from 7; to 75. To decide satisfiability of 73 A Kg, A Go A No, we have to
perform another transformation w.r.t. the extension 7y C 77. The resulting set of ground
clauses can directly be handed to a decision procedure for the combination of the theory of
indices and that of reals. We flatten and purify the set K¢, AGo A Ny of ground clauses w.r.t.
pos by introducing new constants denoting k£ — 1 and k' — 1, together with their definitions
E'=k—1,k" = K —1; as well as constants d; for pos(k), ds for pos(k’), ds for pos(k’) and
dy for pos(k”") together with their definitions. Taking into account only the corresponding
instances of the collision freeness axiom for pos we obtain a set of clauses consisting of (Dom)
together with:

G K =k—-1 A K=k -1
(Go) 0<k<n—-1 AN kK=k+1 A ¢ —cy<gLengthTrain

(GFlg) k=0 — dy+ Atxmin <g ¢; <g di + At*max
=0 — dy+ Atxmin <p co <p doy + Attmax

(GF2y) O<k<n A ds>gr0 A ds—di >R lalarm — di+Atsmin <g ¢; < dj+Atkmax
0<k'<n A ds>r0 A di—ds >Rr layiarm — do+Atsmin <g ¢ <g do+Atsmax

(GF30) O0<k<n A d3>r0 A d3—di <g lalarm — ¢1 = d1+At*xmin
0<k'<n A dy>r0 A di—da <gr lalarm — c2 = do+At*min

(GF40) (0<I€<TL A\ d3 <g0 — Clzdl)/\(0<k/<n A dys <p0 — 02:d2)

SdMon(pos)[G'] 0<k < k' <n — dy — dg >gr (k' — k) % LengthTrain
0<Kk < k<n — dy — dy >g (k — k') * LengthTrain
0<k< Kk'<n — dy — d3 >g (K" — k) * LengthTrain
0<K'< k<n — ds — dy >g (k — k") = LengthTrain
0<k< KE"<n — dy —dyg >g (K" — k) * LengthTrain
0<EKk"< k<n — dy —dy >r (k — k") x LengthTrain
0<Kk < K'<n — dy — d3 >g (k" — k') * LengthTrain
0<K'< kK <n — ds — do >g (k' — k") x LengthTrain
0<Kk < K"<n — dy—dg>g (K" —k)x*LengthTrain
0<k'"< K <n — dy — do >g (K" — k") * LengthTrain
0<Kk'< K'"<n — d3—ds>r (K" — k")« LengthTrain
0<k'"< K'<n — dy—ds >r (K" — k") x LengthTrain

No(pOS/) k=k — C1 = C2
No(pOS) k:k/—>d1:d2 A k:k”—>d1:d3 A k/:km—>d2:d4
k=k"—di=ds N K=k"—dy=ds N k'=kK"—>d3=4d,

In fact, the constraints on indices can help to further simplify the instances of monotonicity
of Mon(pos)[G’] A No(pos) A No(pos'): k' > k, k" < k, k" < k', K" < k',k" = k. The set

9 APPLICATIONS 49

p.prio < x p.prio > x p.prio > x
p.prev = null p.next % null p.next & null
p.next.prio < x

Figure 8: Insertion in lists

of clauses equivalent to SdMon(pos)[G’] A Ny(pos) A Ny(pos') is given below. (Here we do
these simplifications by hand; this can be done as well by a pre-simplification program which
detects obviously true relationships between the premises of these rules.) After making these
simplifications we obtain the following set of (many-sorted) constraints:

CDefinitions C'Indices (SOI‘t |) C'Reals C’Mixed

pos'(k)=c1 |k =k+1 d1 — d2 >g LengthTrain | 0 < k" — d3 — d2 >r 2 * LengthTrain
pos(k')=ds | k' =k—-1 ds — dg >g LengthTrain | 0 < k" — d3 — d1 >g LengthTrain
pos'(k')=co | K" =k —1 ds — d2 >g LengthTrain | (GF1o)

pos(k”) = ds d4 — d2 >gr LengthTrain | (GF2o)

pos(k) = d1 0<k<n-1 di =dsNec1—c2 <g (GF3p)

pos(k”)=ds | 0< Kk <n—1 | (Dom) (GF4o)

For checking the satisfiability of Clndices /A CRreals A CMixed We can use a prover for the two-
sorted combination of the theory of integers and the theory of reals, possibly combined with
a DPLL methodology for dealing with full clauses. An alternative method is discussed in
[39].

9.5.2 Verification of a program changing pointer structures

Consider the following algorithm for inserting an element ¢ with priority field c.prio = x into
a doubly-linked list sorted w.r.t. the priority fields.

c.prio = x, c.next = null
for all p # c do
if p.prio < x then if p.prev = null then c.next’ = p, endif; p.next’ = p.next
p.prio > x then case p.next = null then p.next’ := ¢, c.next’ = null
p.next # null A p.next.prio > = then p.next’ = p.next
p.next # null A p.next.prio < = then p.next’ = ¢, c.next’ = p.next

The update rules Update(next, next’) can be read from the program above, and are repre-
sented in Fig. 8:

Vp(p#£null A p#£c A prio(p)<z A (prev(p) = null) — next’(c)=p A next’(p)=next(p))
Vp(p#null A p#c A prioEpggx A (prev(p) # null) — next’(p)=next(p))
(»)

—~

Vp(p#£null A p#£c A prio(p)>z A next(p)=null — next’(p)=c A next’(c)=null)

Vp(p#£null A p#£c A prio(p)>z A next(p)#null A prio(next(p))>z — next’(p)=next(p))

Vp(p#£null A p#£c A prio(p)>x A next(p)#null A prio(next(p)) <z — next’(p)=cAnext’(c)=next(p))
We prove that if the list is sorted, it remains so after insertion, i.e. the formula:

d # null A next’(d) # null A =prio(d) > prio(next’(d))
is unsatisfiable in the extension 737 = 75 U Update(next, next’) of the theory 7y of doubly

linked lists with a monotone field prio. 7y is axiomatized by the axioms K = {(4), (5), (6)}
in Section 9.4.1. The update rules are guarded boundedness axioms, so the extension 7y C 73

9 APPLICATIONS 50

is local. Hence, the satisfiability task above w.r.t. 7; can be reduced to a satisfiability task
w.r.t. 7o as follows:

Def Updatey A Go A No
Update, d#null A d#c A prio(d)<z A prev(d)=null — c¢1=d
next’(d)=d1 d##null A d#c A prio(d)<xz A prev(d)=null — dy=next(d)
next’(c)=c1 d#£null A dc A prio(d)<z A prev(d)#null — dy=next(d)
d#null A d#c A prio(d)>x A next(d)=null — di=c A c;=null
d#null A d#c A prio(d)>x A next(d)#null A prio(next(d)) <z — di=next(d)
d#null A d#c A prio(d)>x A next(d)#null A prio(next(d))<z — di=c
d##null A d#c A prio(d)>x A next(d)#null A prio(next(d))<z — c1=next(d)
Go d # null A next’(d) # null A —prio(d) > priority(next’(d))
No d=c — d1:C1

To check the satisfiability of G’ = Update, A Go A Ny w.r.t. 7y we use the U-stable locality
of the theory defined by the axioms K = {(4), (5), (6)} of doubly linked lists with decreasing
priorities in Section 9.4.1 or the instantiation method in [45].

9.5.3 Verification of a program handling arrays

The following example illustrates the extension of the fragment in [11] we consider. Consider
a parametric number m of processes. The priorities associated with the processes (non-
negative real numbers) are stored in an array p. The states of the process — enabled (1)
or disabled (0) — are stored in an array a. At each step only the process with maximal
priority is enabled, its priority is set to x and the priorities of the waiting processes are
increased by y. This can be expressed with the following set of axioms which we denote by
Update(a, p,a’, p’):

Vil <i<mA (Yl <j<mAj#—p(i)>p(j))) — a'(i) = 1)
Vil <i<mA (Vi1 <5 <mAj#—p(i)>p()))) — p'(i)=2)
Vi(l <i <mA-(Vi(l < j < mAj#i— p(i)>p()) — a'(5)=0)
Vi(l <i<mA=(Vi(1 <5 <mAj#— p(i)>p(5))) — p'(0)=p(i)+y)
where z and y are considered to be parameters.
process nr. 1 2 3 4 5
enabled (0/1) |1 | O O 0] 0] O
priority Of7] 3|1 9 4| 2
process nr. 1 5 7
enabled(0/1) |O | OfO0] 0] 1 0
priority 118 4] 2] 0| 5 3

Figure 9: Array update: priority lists

The task is to check the unsatisfiability of the formula G = (1 <¢ <mAl <d < mAc #
dAp'(c) =p'(d)) in the extension of the many sorted combination 7y of Z, R, {0, 1} with
the axioms Vi, j(1 <i<mA1<j<mAi#j— p()#p()) AUpdate(a,p,da’,p’).

The extension can be expressed as a chain: 7y C 77 = ToUInj(p) C 7 = T1UUpdate(a, p, d’, p’).
By the locality of the second extension (with guarded boundedness axioms) we obtain the
following reduction of the task of proving 73 A G =L to a satisfiability problem w.r.t. 77.
We take into account only the instances of Update(a, p,a’,p’) which contain ground terms

9 APPLICATIONS 51

occurring in G. This means that the axioms containing o’ do not need to be considered.
After purification and skolemization of the existentially quantified variables we obtain:

Def Update, A Go A No
p'(c)=c1 | Update, 1<c<mA(l<ke<mAkc#c— plc)>plke)) — ci=x
p'(d) = dy 1<d<mA(l<ks <mAks#d — p(d)>p(kq)) — di=z

<m — a=p(c)+y)

d
V(1< j < mAj#e— ple)>p() V (1< ¢
V(1 <d<m— di=p(d)+y)

Vi(l <j <mAj#d — p(d)>p(5)) V (1

Go 1<c<mAl<d<mAc#dANca =di
N() c=d— Cc1 = d1

We reduced the problem to checking satisfiability of G; = Update, A Gy A Ny (which contains
universal quantifiers) w.r.t. 7;. Let G1 = G4 A Gy, where G, is the ground part of G and
Gv the part of G containing universally quantified variables. We now have to check whether
7o A Inj(p) A Gy A G4 = L. Note that extensions of injectivity axioms and boundedness are
local, and thus 7y C 7o A Inj A Gy is a local extension. This makes the following reduction
possible:

Def1 Injo A Gvo A Gg A Nj

p(c)=c2 | Inj, 1<i#j<m — p(i)#p(j) where i, j are instan-
p(d)=d2 | Gvo (A<j<MmA j#c — c2>p(j)) V (1<c<m — c1=ca+y) tiated with ¢, d, ke, ka
p(ke)=c3 (I<j<m A j#£d — d2>p(j)) V (1 < d < m — di=dz+y) + purification
p(kq)=ds | Gy 1<e<m A (1<ke<m A ke#c — c2>c3) — ci=x

1<d<m A (1§kd§m A kq#Ad — d2>d3) — di=x
1<e<m A 1<d<m A cEd N c1=dq
c=d — c1=d1

Né c=d — Cdez, C:kc — C2—=C3, C:kd — 62:d3,
d:kc — d2:C3, d:kd — d2:d3, k’C:ktd — 63:d3

We can use a prover for a combination of integers and reals to determine whether the
conjunction of formulae above is satisfiable or symbolic computation packages performing
quantifier elimination over the combined theory to derive constraints between x and y which
guarantee injectivity after update.

9.6 Databases

In what follows we present some results on hierarchical and modular reasoning in description
logic. In particular, we present results which relate locality results for semilattices with
monotone oiperators to the PTIME description logic ££ and allow us to give an extension of
EL with numerical domains.

9.6.1 Description logics: generalities

The central notions in description logics are concepts and roles. In any description logic
a set N¢ of concept names and a set Ngi of roles is assumed to be given. Complex con-
cepts are defined starting with the concept names in N¢, with the help of a set of concept
constructors. The available constructors determine the expressive power of a description
logic. The semantics of description logics is defined in terms of interpretations Z = (D%, %),
where D7 is a non-empty set, and the function -2 maps each concept name C € N¢ to a set
CT C DT and each role name r € Ny to a binary relation rT C DT x DT. Table 1 shows
the constructor names used in ALC and their semantics. The extension of -Z to concept
descriptions is inductively defined using the semantics of the constructors.

Terminology. A terminology (or TBox, for short) is a finite set consisting of primitive
concept definitions of the form C' = D, where C' is a concept name and D a concept descrip-
tion; and general concept inclusions (GCI) of the form C' C D, where C' and D are concept
descriptions.

9 APPLICATIONS 52

Table 1: Constructors and their semantics

| Constructor name | Syntax | Semantics
negation -C DI\C?*
conjunction CinCy | CInc?
disjunction CiUuCy C’lZ U C’QI
existential restriction | Ir.C {z | W((z,y) € r¥ and y € CT)}
universal restriction | Vr.C {z | Vy((z,y) et = y e Ch)}

Interpretations. An interpretation Z is a model of a TBox 7 if it satisfies:
e all concept definitions in 7, i.e. CT=D? for all definitions C=D € T;
e all general concept inclusions in 7, i.e. CZCD? for every CCD € 7.

Since definitions can be expressed as double inclusions, in what follows we will only refer to
TBoxes consisting of general concept inclusions (GCI) only.

Definition 51 Let T be a TBox, and C1,C5 two concept descriptions. Cy is subsumed by
Co w.r.t. T (for short, C1 C1 Co) if and only if C¥ C C% for every model T of T.

A translation of concept descriptions into terms in a signature naturally associated with the
set of constructors can be defined as follows. For every role name r, we introduce unary
function symbols, f3, and fv,.. The renaming is inductively defined by:

e C = C for every concept name C;
OTZ"U; Cll‘lngél/\Ug, Ol|_|02:61\/62;
o Ir.C = f5.(C), Yr.C= fu,(C).

Set theoretical semantics. There exists a one-to-one correspondence between interpre-
tations of description logics, Z = (D, -Z) and Boolean algebras of sets with additional oper-
ators (P(D),U,N, =, 0, D, {far, fvr}reng), together with valuations v : No — P (D), where
far, fvr are defined, for every U C D, by:

fa(U) = {z|3y((x,y) er’ andy € U)};
for(U) = {z|Vy((z,y) erf =>yelU)}.

Let v : No — P(D) with v(A) = A* for all A € N¢, and let T be the (unique) homomorphic
extension of v to terms. Let C' be a concept description and C' be its associated term. Then

O =%(C) (denoted by T).

Boolean algebras with operators. Let BAOy,, be the class of all Boolean algebras with
operators (37 VA=, 0,1, {f}ra fV’r}TENR)7 where

e f3, is a join hemimorphism, i.e. f3.(z Vy) = fa.(z) V f3,(y), f3-(0) = 0;
e fy, is a meet hemimorphism, i.e. fy,.(x A y)=fv-(z) A for(y), fuvr(1)=1;
o fur(x) = —fa-(—x) for every x € B.

It is known that the TBox subsumption problem for ALC can be expressed as uniform word
problem for Boolean algebras with suitable operators.

Theorem 52 If7T is an ALC TBox consisting of general concept inclusions between concept
terms formed from concept names No = {C1,...,Cyn}, and D1, Do are concept descriptions,
the following are equivalent:

9 APPLICATIONS 53

(1) D1E+Ds.

(2) P(D) EVC:...C, ((/\CgDeTUSﬁ) — D_1§D_2) for all interpretations T = (D, 1),
where P(D) = (P(D),U,N, =, 0, D, {far, for}reng)-

(3) BAO N, [=YC1...Cn ((/\CEDUU@) N D_lgD_Q) .

9.6.2 Combinations of ALC-ontologies

Let T} and Ty be two ALC-TBoxes with sets of constructors N}, N3 which only share
the Boolean constructors. We are interested in possibilities of modularily checking TBox
subsumption w.r.t. T = T UT5. By Theorem 52, this problem can be expressed as the
problem of testing satisfiability of conjunctions of ground literals in the combination of
theories of BAOy1 and BAOyz. The results by Ghilardi [29] in Section 7.2 (and especially
Example 31) can be used to show that this is possible. Similar results can be obtained
for description logics with nominals (i.e. with unrestricted use of individuals) under the
additional condition that the logics are nominal-closed, i.e. that all the definable nominals
are already explicitly named [30].

9.6.3 The description logic ££

By restricting the type of allowed concept constructors less expressive but tractable descrip-
tion logics can be defined. If we only allow L and intersection and existential restriction as
concept constructors, we obtain the description logic ££ [4], a logic used in terminological
reasoning in medicine [60, 61].

In [4] it was shown that subsumption w.r.t. TBoxes in ££ can be reduced in linear
time to subsumption w.r.t. normalized TBoxes, in which all GCIs have one of the forms:
CCDCinCy,CD,CC3Ir.D,3Ir.C C D, where C,Cy,C5, D are concept names.

The algebraic semantics of £L£ is much simpler [55], it is given by the class SLO]EVR of all
A-semilattices with 0 and with operators (S, A, 0, {far}renyg), such that f3r is monotone
and far(0) = 0. 16 The following results are presented in [59].

Theorem 53 ([59]) If the only concept constructors are intersection and existential re-
striction, then for all concept descriptions D1, Dy and every TBox T, with concept names
Ne ={Cy,...,Ch} the following are equivalent:
(1) D1C¢Ds.
(2) SLOY, =YCy...C, ((/\CgDeTagﬁ) - 1§D_2).

We regard SLO?\,R as the extension of the theory SL of semilattices with monotone operators
{far | ¥ € Ng}. This extension is local.

Theorem 54 ([56]) Let G be a set of ground clauses. The following are equivalent:

(1) SLUMon(2) AG L.

(2) SLUMon(Q)[G] AG has no partial model A such that its {A\}-reduct is a (total) semi-
lattice and the functions in Q) are partially defined, their domain of definition is finite
and all terms in G are defined in A.

16For the sake of simplicity, in what follows we assume that the description logics ££ contain the additional
constructors L, T, which will be interpreted as 0 and 1. Similar considerations can be used to show that the
algebraic semantics for variants of ££ having only T (or L) is given by semilattices with 1 (resp. 0).

9 APPLICATIONS 54

Let Mon(€2)[G]o AGo ADef be obtained from Mon(Q)[G]AG by purification, i.e. by replacing,
in a bottom-up manner, all subterms f(g) with f € Q, with newly introduced constants
ci(g) and adding the definitions f(g) = c; to the set Def. The following are equivalent (and
equivalent to (1) and (2)):
(8) Mon(Q)[G]o A Go N Def has no partial model (A, N\, {fa}req) such that (A,A) is a
semilattice and for all f€Q), fa is partially defined, its domain of definition is finite
and all terms in Def are defined in A.

(4) Mon()[Glo A Go is unsatisfiable in SL.

(Note that in the presence of Mon(Q) the instances Ny of the congruence azioms for
the functions in are not necessary

No = {g=g" = cpg=cr) | F(9)=cy(g), f(9")~cp () € Def}).

This equivalence allows us to hierarchically reduce, in polynomial time, proof tasks in SL U
Mon(f2) to proof tasks in SL (cf. e.g. [56]) which can then be solved in polynomial time.

Example 36 We illustrate the method on an example first considered in [4]. Consider the
EL TBox T consisting of the following definitions:

A = PiMAsM3dri.dry.As
As = Py A3M3dre.dri A
A3 = P3|_|A2|_|3’I”1.(P1 |_|P2)

We want to prove that P31 Az M 3ri.(A1 M Ag) T As. We translate this subsumption
problem to the following satisfiability problem:

SLUMon(f1, f2) U {a1=(p1 Aaz A fi(f2(as))),
az = (p2 A az A f2(fi(ar))),
az = (p3s Aaz A fi(p1 A p2)),
“(pa ANaz A fi(ar Aaz) <az)} EL .
We proceed as follows: We flatten and purify the set G of ground clauses by introducing new
names for the terms starting with the function symbols fi or fo. Let Def be the corresponding
set of definitions. We then take into account only those instances of the monotonicity and
congruence axioms for fi and fo which correspond to the instances in Def, and purify them

as well, by replacing the terms themselves with the constants which denote them. We obtain
the following separated set of formulae:

Def | Go (Mon(/f1, f2)[G])o

fQ(CLg) =~ C1 (CLl ~ D1 A a2 A CQ) a1R01 — CgRCQ, R e {S, Z}
fl(cl) = C2 (CLQ ~ D2 A as A 64) a3R03 — ClRC4, R e {S, Z}
fl(al) X c3 (CLg ng/\CLQ/\dl) a1Re; — csRdy, R € {S,Z}
fg(Cg) X Cq (pg A as A do ﬁ a3) a1Res — c3Rds, R € {S, 2}
filer) mdi | p1 Ap2 = e ciller — coRdy, Re{<,>}
fl(eg) ~ d2 aq A Ao = €9 C1R€2 — CQRdQ, R e {S, Z}

e1Res — diRds, R € {S,Z}

The subsumption is true iff Go A (Mon(f1, f2)[G])o is unsatisfiable in the theory of semilat-
tices. We can see this as follows: note that a; A as < p1 A pa, i.e. ea < ey. Then (using an
instance of monotonicity) do < di, so p3 ANas Ade < ps Aas Adp = as.

This can also be checked automatically in PTIME either by using the fact that there exists
a local presentation of SL or using the fact that SL = ISP(Sse) (i.e. every semilattice is
isomorphic with a sublattice of a power of Sa), where So is the semilattice with two elements,
hence SL and So satisfy the same Horn clauses. Since the theory of semilattices is convex,
satisfiability of ground clauses w.r.t. SL can be reduced to SAT solving.

9 APPLICATIONS 95

Table 2: Constructors for ££ with n-ary roles and their semantics

| Constructor | Syntax | Semantics |
conjunction | Ci M Ch ctnc?t
existential 3R.(C1,...Cn) | {= | 3y1,...,yn (z,y1,...,yn) € RT and y; € C¥}

9.6.4 &L with numerical domains

The results described in Section 9.6.3 can easily be generalized to semilattices with n-ary
monotone functions. This allows us to define natural generalizations of ££. We start by
presenting a generalization of ££ in which n-ary roles are allowed.

The semantics is defined in terms of interpretations Z = (DZ,-%), where D7 is a non-
empty set, concepts are interpreted as usual, and each n-ary role R € Npg is interpreted as
an n-ary relation RT C (D%)™ (cf. Table 2). A further extension is obtained by allowing
for certain concrete sorts — having the same support in all interpretations; or additionally
assuming that there exist specific concrete concepts which have a fixed semantics (or ad-
ditional fixed properties) in all interpretations. The extensions we consider are different
from the extensions with concrete domains and those with n-ary quantifiers studied in the
description logic literature (cf. e.g. [6, 5].

Example 37 Consider a description logic having a usual (concept) sort and a ’concrete’
sort num with fized domain N. We may be interested in general concrete concepts of sort
num (interpreted as subsets of R) or in special concepts of sort num such as Tn, |n, or [n,m]
for m,n € R. For any interpretation T, Tnt = {x €¢ R |2 >n}, InT = {zr € R |z < n},
and [n,m|* = {z € R | n <z <m}. We will denote the arities of roles using a many-sorted
framework. Let (D,R,-T) be an interpretation with two sorts concept and num. A role with
arity (s1,...,8n) is interpreted as a subset of Ds, X --- X Dy, where Deoncept = D and
Dyum = R.

1. Let price be a binary role or arity (concept, num), which associates with every element
of sort concept its possible prices. The concept
Jprice.Tn = {z | Ik > n : price(z, k)}

represents the class of all individuals with some price greater than n.

2. Let has-weight-price be a role of arity (concept,num,num). The concept

3 has-weight-price.(1y, |p) = {z | Jy’'>y, Ip'<p and has-weight-price(z,y’,p')}

denotes the family of individuals for which a weight above y and a price below p exist.

The example below can be generalized by allowing a set of concrete sorts. We discuss the
algebraic semantics of this type of extensions of £L.

Let SLO?VR’S denote the class of all structures (S, P(41),...,P(An),{far | 7 € Ngr}), where
S is a bounded semilattice'”, Ay, ..., A, are concrete domains, and {f3, | r € Ng} are n-ary
monotone operators. We may allow constants of concrete sort, interpreted as sets in P(A;).

Theorem 55 ([59]) If the only concept constructors are intersection and existential re-
striction, then for all concept descriptions D1, Do, and every TBox T consisting of general
concept inclusions GCI the following are equivalent:

17 Again, we assume that the variant of ££ we consider has 1 and T. The other situations can be treated
analogoulsy.

9 APPLICATIONS 56

(1) Dy Cr Ds.

(2) SLO%,.s EYC1,..,Co ((Acgper C < D) = Di < D3) .

Proof: Analogous to the proof of Theorem 53. O

Let SLs be the class of all structures A = (A, P(A1),...,P(4,)), with signature ¥ =
(S, {A,0,1}UQ, Pred) with S={concept,s1,...,sn}, Pred={<}U{C;| 1 < i < n}, where A €
SL, the support of sort concept of A is A, and for all ¢ the support sort s; of A is P(A4;).

Theorem 56 ([56]) FEvery structure (A,P(A1),...,P(An),{fa}req), where
(i) (A, P(A1),...,P(An)) €SLg, and

(ii) for every fEQ of arity si1...sn—$, fa is a partial function from [[;_, Us, to Us with
a finite definition domain on which it is monotone,

weakly embeds into a total model of SLsUMon(£2).

Corollary 57 ([59]) Let G = A\[_, s:(€)<s;(¢) A s(€)£5'(c) be a set of ground unit clauses
in the extension X° of X with new constants Q.. The following are equivalent:

(1) SLs UMon(2) AG E=L.

(2) SLs UMon(Q)[G] A G has no partial model with a total {Asr,,0,1}-reduct in which all
terms in G are defined.

Let |J;_, Mon(Q)[G]; A G; A Def be obtained from Mon(Q)[G] A G by purification, i.e. by
replacing, in a bottom-up manner, all subterms f(g) of sort s with f € Q, with newly
introduced constants cy(g) of sort s and adding the definitions f(g) = c; to the set Def. We
thus separate Mon(Q)[G] A G into a conjunction of constraints T'; = Mon(Q)[G]; A G;, where
o is a constraint of sort semilattice and for 1 < i < n, I'; is a set of constraints over
terms of sort i (i being the concrete sort with fixed support P(A;)). Then the following are
equivalent (and are also equivalent to (1) and (2)):

(3) Uiy Mon(Q)[G); AG; ADef has no partial model with a total {Asi,0, 1}-reduct in which
all terms in Def are defined.

(4) Ui_oMon(Q)[G]; A G; is unsatisfiable in the many-sorted disjoint combination of SL
and the concrete theories of P(4;), 1 <i < mn.

The complexity of the uniform word problem of SLg U Mon(§2) depends on the complexity
of the problem of testing the satisfiability — in the many-sorted disjoint combination of SL
with the concrete theories of P(4;), 1 <4 < n — of sets of clauses Ceoncept U, ; Cs UMon,
where Ceoncept and C; are unit clauses of sort concept resp. s;, and Mon consists of possibly
mixed ground Horn clauses.

Specific extensions of the logic ££ can be obtained by imposing additional restrictions
on the interpretation of the “concrete”-type concepts within P(A;). (For instance, we can
require that numerical concepts are always interpreted as intervals, as in Example 37.)

Theorem 58 ([59]) Consider the following extensions of EL with n-ary roles:
(1) The one-sorted extension of EL with n-ary roles.

(2) The extension of EL with two sorts, concept and num, where the semantics of classical
concepts is the usual one, and the concepts of sort num are interpreted as elements in
the ORD-Horn, convex fragment of Allen’s interval algebra [/4], where any CBox can
contain many-sorted GCI’s over concepts, as well as constraints over the numerical
data expressible in the ORD-Horn fragment.

9 APPLICATIONS o7

In both cases, CBox subsumption is decidable in PTIME.

Example 38 Consider the special case described in Example 37. Assume that the concepts
of sort num wused in any TBox are of the form Tn,|m and [n,m]. Consider the TBox T
consisting of the following GClIs:

Jprice(|n1) L affordable,
Iweight(Tmy) Mcar LT truck,
has-weight-price(Tm, [n) T Fprice({n) M Iweight(Tm),
C LC 3 has-weight-price(m, [n)
ln C lnlv
Tm C Tmlu
C LC car

In order to prove that C' T affordablemtruck we proceed as follows. We refute /\DED’GTE <

D AT « affordable A truck. We purify the problem introducing definitions for the terms
starting with existential restrictions, and express the interval constraints using constraints
over Q and obtain the following set of constraints:

Def || Chum | Cconcept | Mon
forice(In1) &~ 1 n<n; |c < affordable n<n—c<c
forice(In) = ¢ m > mq | di A car < truck nL>n-—c >c
Juweight (Tm1) ~ dy e<cAd my>m—d; <d
fweight(Tm) ~d C <car my <m-—d; >d
Jh-w-p(Tm, n) = e C<e

C « affordable A truck

The task of proving C' C1 affordable M truck can therefore be reduced to checking if Cpum N
Ceoncept A Mon is satisfiable w.r.t. the combination of SL (sort concept) with LI(Q) (sort
num). For this, we note that Chum entails the premises of the first, second, and fourth
monotonicity rules. Thus, we can add ¢ < ¢y and d < dy to Ceoncept- Thus, we deduce that
C <eAcar<(cAd)Acar < c1 A(dy Acar) < affordable A truck, which contradicts the last
clause in Ceoncept -

A similar procedure can be used in general for testing (in PTIME) the satisfiability of
mixed constraints in the many-sorted combination of SL of semilattices with concrete do-
mains of sort num, assuming that all concepts of sort num are interpreted as intervals and
the constraints Cp,m are expressible in a PTIME, convex fragment of Allen’s interval algebra.

9.7 Multi-agent systems

As mentioned at the beginning, the way of reasoning about knowledge of an agent may
be represented by a specific type of modal logic. In order to model and reason about the
knowledge of a set of agents it is important to be able to prove theorems in combinations
of modal logics. Reasoning in many modal logics can be reduced to deciding uniform word
problems in corresponding classes of Boolean algebras with operators, the reasoning problem
in the combinations of logics can be reduced to the problem of modular reasoning in com-
binations of Boolean algebras with operators. In such cases, the model theoretical results
on combinations of theories by Ghilardi presented in Section 7.2, and their application to
modular reasoning in combinations of Boolean algebras with operators in Theorem 31 can
be used also in this case for giving modular methods for checking validity of statements in
combinations of modal logics associated with the individual agents (cf. also [30]).

10 CONCLUSIONS 58

10 Conclusions

We presented an in-depth perspective on recent advances in the field of reasoning in complex
logical theories. Our presentation focused on possibilities of efficient, sound and complete
reasoning in standard theories, as well as in combinations of theories and theory extensions.
We illustrated both the relevance and the applicability of results on several case studies in
mathematics, verification, databases, and multi-agent systems.

Acknowledgement: This work was partly supported by the German Research Council
(DFQG) as part of the Transregional Collaborative Research Center “Automatic Verification
and Analysis of Complex Systems” (SFB/TR 14 AVACS). See www.avacs.org for more
information.

References

[1] A. Armando, M.P. Bonacina, S. Ranise, and St. Schulz. On a rewriting approach
to satisfiability procedures: extension, combination of theories and an experimental
appraisal. In Proceedings of the 5th International Workshop Frontiers of Combining
Systems (FroCos’05), LNCS 3717, pages 65-80. Springer Verlag, 2005.

2] A. Armando, S. Ranise, and M. Rusinowitch. A rewritin approach to satisﬁability
g
procedures. Information and Computation, 183(2)140*164, 2003.

[3] F. Baader. Restricted role-value-maps in a description logic with existential restrictions
and terminological cycles. In Proc. of the 2003 International Workshop on Description
Logics (DL2003), CEUR-WS, 2003.

[4] F. Baader. Terminological cycles in a description logic with existential restrictions. In:
G. Gottlob and T. Walsh, editors, Proc. of the 18th International Joint Conference in
Artificial Intelligence, pages 325-330, Morgan Kaufmann, 2003.

[5] F. Baader, C. Lutz, E. Karabaev, and M. Theien. A new n-ary existential quantifier in
description logics. In Proc. 28th Annual German Conference on Artificial Intelligence
(KT 2005), LNAT 3698, pages 18-033, Springer, 2005.

[6] F. Baader, S. Brandt, and C. Lutz. Pushing the EL Envelope. In Proceedings of the
Nineteenth International Joint Conference on Artificial Intelligence IJCAI-05, Morgan-
Kaufmann Publishers, 2005.

[7] F. Baader and C. Tinelli. Deciding the word problem in the union of equational theories
sharing constructors. Information and Computation, 178(2):346-390, 2002.

[8] D. Basin and H. Ganzinger. Automated complexity analysis based on ordered resolu-
tion. Journal of the ACM, 48(1):70-109, 2001.

[9] D.A. Basin and H. Ganzinger. Complexity analysis based on ordered resolution. In
Proc. 11th IEEFE Symposium on Logic in Computer Science (LICS’96), pages 456-465.
IEEE Computer Society Press, 1996.

[10] M.P. Bonacina, S. Ghilardi, E. Nicolini, S. Ranise, D. Zucchelli. Decidability and
Undecidability Results for Nelson-Oppen and Rewrite-Based Decision Procedures. In
Proceedings of IJCAR 2006, LNAT 4130, pages 513-527, Springer 2006.

[11] A.R. Bradley, Z. Manna, and H.B. Sipma. What’s decidable about arrays? In
E.A. Emerson and K.S. Namjoshi, editors, Verification, Model-Checking, and Abstract-
Interpretation, 7th Int. Conf. (VMCAI 2006), LNCS 3855, pages 427-442. Springer,
2006.

REFERENCES 59

[12]

[16]

[17]

[18]

[27]

(28]

P. Burmeister. A Model Theoretic Oriented Approach to Partial Algebras: Introduc-
tion to Theory and Application of Partial Algebras, Part I, volume 31 of Mathematical
Research. Akademie-Verlag, Berlin, 1986.

S. Burris. Polynomial time uniform word problems. Mathematical Logic Quarterly,
41:173-182, 1995.

D. Cantone, G. Cincotti, and G. Gallo. Decision algorithms for fragments of real
analysis. I. Continuous functions with strict convexity and concavity predicates. Journal
of Symbolic Computation, 41:763-789, 2006.

A. Chandra and D. Harel. Horn clause queries and generalizations. Journal of Logic
Programming, 1:1-15, 1985.

S.A. Cook. An observation of time-storage trade-off. Journal of Computer and System
Sciences, 9:308-316, 1974.

W. Craig. Linear reasoning. A new form of the Herbrand-Gentzen theorem. J. Symb.
Log., 22(3):250-268, 1957.

A. Dolzmann and T. Sturm. Redlog: Computer algebra meets computer logic. ACM
SIGSAM Bulletin, 31(2):2-9, 1997.

W.F. Dowling and J.H. Gallier. Linear-time algorithms for testing the satisfiability of
propositional Horn formulae. J. Logic Programming, 1(3):267-284, 1984.

T. Evans. The word problem for abstract algebras. J. London Math. Soc., 26:64-T71,
1951.

Faber, J.: Verifying real-time aspects of the European Train Control System. In Pro-
ceedings of the 17th Nordic Workshop on Programming Theory, University of Copen-
hagen, Denmark (2005) 67-70.

J. Faber, S. Jacobs, and V. Sofronie-Stokkermans. Verifying CSP-OZ-DC specifications
with complex data types and timing parameters. In Integrated Formal Methods (IFM
2007), LNCS 4591, pages 233—-252. Springer, 2007.

J.-B.J. Fourier. Reported in Analyse des travaux de I’Academie Royale de Sciences,
pendant 'année 1824, Partie Mathematique.

H. Friedman and A. Serres. Decidability in elementary analysis, I. Adv. in Mathematics,
76(1):94-115, 1989.

H. Friedman and A. Serres. Decidability in elementary analysis, II. Adv. in Mathemat-
ics, 70(2):1-17, 1990.

H. Ganzinger. Relating semantic and proof-theoretic concepts for polynomial time
decidability of uniform word problems. In Proc. 16th IEEE Symposium on Logic in
Computer Science (LICS’01), pages 81-92. IEEE Computer Society Press, 2001.

H. Ganzinger, G. Hagen, R. Nieuwenhuis, A. Oliveras, C. Tinelli. DPLL(T): Fast
Decision Procedures. In Proc. CAV 2004, LNCS 3114, pages 175-188. Springer, 2004.

H. Ganzinger, V. Sofronie-Stokkermans, and U. Waldmann. Modular proof systems
for partial functions with Evans equality. Information and Computation, 204(10):1453—
1492, 2006.

REFERENCES 60

[29] S. Ghilardi. Model theoretic methods in combined constraint satisfiability. Journal of
Automated Reasoning, 33(3-4):221-249, 2004.

[30] S. Ghilardi and L. Santocanale. Algebraic and model theoretic techniques for fusion
decidability in modal logics. In Proceedings of LPAR 2003, LNCS 2850, pages 152-166,
Springer 2003.

[31] S Ghilardi, E. Nicolini, S. Ranise, and D. Zucchelli. Combination methods for satisfia-
bility and model-checking of infinite-state systems. In Proceedings of the International
Conference on Automated Deduction (CADE 21), 2007.

[32] R. Givan and D. McAllester. New results on local inference relations. In Principles
of Knowledge Representation and reasoning: Proceedings of the Third International
Conference (KR’92), pages 403-412. Morgan Kaufmann Press, 1992.

[33] R. Givan and D.A. McAllester. Polynomial-time computation via local inference rela-
tions. ACM Transactions on Computational Logic, 3(4):521-541, 2002.

[34] J. Hoenicke and E.-R. Olderog. CSP-OZ-DC: A combination of specification techniques
for processes, data and time. Nordic Journal of Computing, 9(4):301-334, 2002. Ap-
peared March 2003.

[35] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

[36] J. Hoenicke. Combination of Processes, Data, and Time. PhD thesis, University of
Oldenburg, Germany, 2006.

[37] C.Ihlemann, S. Jacobs, and V. Sofronie-Stokkermans. On local reasoning in verification.
In Proc. TACAS 2008, LNCS 4963, pages 265-281, Springer 2008.

[38] N. Immerman. Relational queries computable in polynomial time. Information and
Control, 68:86-104, 1986.

[39] S. Jacobs and V. Sofronie-Stokkermans. Applications of hierarchical reasoning in the
verification of complex systems. FElectronic Notes in Theoretical Computer Science,
174(8):39-54, 2007.

[40] P. Kolaitis and M. Vardi. On the Expressive Power of Datalog: Tools and a Case Study.
In Proc. 9th ACM Symp. on Pronciples of Database Systems, pages 61-71, 1990.

[41] J.-L. Lassez and M.J. Maher. On Fourier’s Algorithm for Linear Arithmetic Constraints.
Journal of Automated Reasoning 9:373-379, 1992.

[42] D. McAllester. Automatic recognition of tractability in inference relations. Journal of
the ACM, 40(2):284-303, 1993.

[43] K.L. McMillan. An interpolating theorem prover. Theoretical Computer Science,
345(1):101-121, 2005.

[44] B.Nebel and H.-J.Biirckert. Reasoning about temporal relations: A maximal tractable
subclass of Allen’s interval algebra. Journal of the ACM, 42 (1): 43-66, 1995.

[45] S. McPeak and G.C. Necula. Data structure specifications via local equality axioms.
In K. Etessami and S.K. Rajamani, editors, Computer Aided Verification, 17th Inter-
national Conference, CAV 2005, LNCS 3576, pages 476-490, 2005.

[46] G. Nelson and D.C. Oppen. Simplification by cooperating decision procedures. ACM
Transactions on Programming Languages and Systems, 1979.

REFERENCES 61

[47]

[48]

[49]

[50]

[56]

[57]

[58]

[59]

[60]

C. Papadimitriou. A note on the expressive power of Prolog. Bulletin of the EATCS,
26:21-23, 1985.

M. Presburger. ber die Vollstndigkeit eines gewissen Systems der Arithmetik ganzer
Zahlen, in welchem die Addition als einzige Operation hervortritt. in Comptes Rendus
du I congres de Mathématiciens des Pays Slaves. Warszawa: 92-101, 1929.

A. Rybalchenko and V. Sofronie-Stokkermans. Constraint solving for interpolation.
In B. Cook and A. Podelski, editors, 8th International Conference on Verification,
Model Checking and Abstract Interpretation (VMCAI 2007), LNCS 4349, pages 346-
362. Springer, 2007.

T. Skolem. Logisch-kombinatorische Untersuchungen tiber die Erfiillbarkeit und Be-
weisbarkeit mathematischen Sétze nebst einem Theoreme iiber dichte Mengen. Skrifter
utgit av Videnskabsselskapet i Kristiania, 1. Matematisk-naturvidenskabelig klasse, 4,
pages 1-36, 1920.

G. Smith. The Object Z Specification Language. Kluwer Academic, 2000.

V. Sofronie-Stokkermans. Hierarchic reasoning in local theory extensions. In
R. Nieuwenhuis, editor, 20th International Conference on Automated Deduction
(CADE-20), LNAI 3632, pages 219-234, Tallinn, Estonia, 2005. Springer.

V. Sofronie-Stokkermans. Interpolation in local theory extensions. In U. Furbach and
N. Shankar, editors, Proceedings of the International Joint Conference on Automated
Reasoning (IJCAR 2006), volume 4130 of Lecture Notes in Artificial Intelligence, pages
235-250. Springer, 2006.

V. Sofronie-Stokkermans. Hierarchical and modular reasoning in complex theories: The
case of local theory extensions. In Proceedings of FroCos 2007, LNCS 4721, pages 47-T71,
Springer 2007.

V. Sofronie-Stokkermans. Automated theorem proving by resolution in non-classical
logics. Annals of Mathematics and Artificial Intelligence (Special issue ”Knowledge
Discovery and Discrete Mathematics: Dedicated to the Memory of Peter L. Hammer”),
49 (1-4): 221-252, 2007.

V. Sofronie-Stokkermans and C. Ihlemann. Automated reasoning in some local exten-
sions of ordered structures. In Proceedings of ISMVL-2007. IEEE Computer Society,
2007. http://dx.doi.org/10.1109/ISMVL.2007.10.

V. Sofronie-Stokkermans, C. Thlemann, and S. Jacobs. Local Theory Extensions, Hi-
erarchical Reasoning and Applications to Verification. In Deduction and Decision
Procedures, Dagstuhl Seminar Proceedings 07401, Internationales Begegnungs- und
Forschungszentrum fiir Informatik (IBFT), Schloss Dagstuhl, Germany, 2007.

V. Sofronie-Stokkermans. Efficient Hierarchical Reasoning about Functions over Nu-
merical Domains. In Proceedings of KI 2008. LNAI 5243, pages 135-143, Springer 2008.

V. Sofronie-Stokkermans. Locality and subsumption testing in ££ and some of its
extensions. In Proceedings of AiML 2008, To appear. 2008.

K.A. Spackman, K.E. Campbell, R.A. Cote. SNOMED RT: A reference terminology for
health care. Journal of the Americal Medical Informatics Association, pages 640-644,
1997. Fall Symposium Supplement.

REFERENCES 62

(61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

K.A. Spackman. Normal forms for description logic expression of clinical concepts in
SNOMED RT. Journal of the Americal Medical Informatics Association, pages 627—
631, 2001. Symposium Supplement.

A. Tarski. A Decision Method for Elementary Algebra and Geometry. Manuscript.
Santa Monica, CA: RAND Corp., 1948. Republished as “A Decision Method for Ele-
mentary Algebra and Geometry”, 2nd ed. Berkeley, CA: University of California Press,
1951.

C. Tinelli and M. Harandi. A New Correctness Proof of the Nelson-Oppen Combination
Procedure. In Proc. FroCos 1996, Kluwer Academic Publishers, Applied Logic Series,
Vol. 3, pages 103-119, 1996.

C. Tinelli and C. Ringeissen. Unions of non-disjoint theories and combinations of
satisfiability procedures. Theoretical Computer Science, 290(1):291-353, 2003.

C. Tinelli and C. Zarba. Combining nonstably infinite theories. Journal of Automated
Reasoning, 34(3):209-238, 2005.

J. Ullman. Principles of Database and Knowledge-Base Systems. Computer Science
Press, 1988.

J. Ullman. Bottom-up beats top-down for datalog. In Proceedings of the 8th ACM
SIGACT-SIGMOD-SIGART Symposium on the Principles of Database Systems, pages
140-149, 1989.

M. Vardi. The complexity of relational query languages. In Proc. 14th. ACM Symp. on
Theory of Computing, pages 137-146, 1982.

R. Loos and V. Weispfenning. Applying Linear Quantifier Elimination. The Computer
Journal, 36(5):450-461, 1993.

C. Zhou and M. R. Hansen. Duration Calculus. Springer, 2004.

A APPENDIX A. SOME NOTIONS IN MODEL THEORY 63

A Appendix A. Some notions in model theory
We give some definitions in model theory needed for the results presented in Section 7.2.

Definition 59 (Embedding) An embedding between two X-structures A and B with sup-
ports A and B is a mapping i : A — B such that for all S4-atoms ®, A= ® iff B = @
where we view B as a YA -structure by interpreting every constant a € A as i(a) in B.

Definition 60 (Diagram) The diagram A(A) of a 3-structure A is the set of all ground
YA -sentences that are true in A.

Definition 61 (Elementary diagram) The elementary diagram A°(A) of a X-structure
A is the set of all first order X4 -sentences that are true in A.

Definition 62 (Model Completion) Let 7 and T* be X-theories such that T C T*.
Then T* is a model completion of 7 iff:

(1) every model of T can be embedded into a model of T*;
(2) for every model M of T we have that T* U A(M) is a complete theory (in LM).

Theorem 63 For X-theories T and T* with T C T*, T* is a model completion of T if:

(a) every model of T can be embedded into a model of T*;
(b) T* eliminates quantifiers.

If T is a universal theory conditions (a) and (b) above are equivalent with conditions (1),(2)
in Definition 62.

B Appendix B. Partial algebras

Let ¥ = (5,9, Pred) be an S-sorted signature where (is a set of function symbols and Pred
a set of predicate symbols. A partial 3-structure is a structure

A= ({As}ses, {fa}rea,{Pa}pPepred);

where for every s € S, A is a non-empty set and for every f € with arity s1...s, — s,
fa is a partial function from H?:l Ag, to As. A lis called a total structure if all functions f4
are total. (In the one-sorted case we will denote both an algebra and its support with the
same symbol.) Details on partial algebras can be found in [12]. The notion of evaluating a
term ¢ with variables X = {X; | s € S} w.r.t. an assignment {3,:X; — A, | s € S} for its
variables in a partial structure A is the same as for total many-sorted algebras, except that
the evaluation is undefined if ¢ = f(t1,...,t,) with a(f) = (s1...s, — s), and at least one
of 0, (t;) is undefined, or else (8, (¢1), ..., s, (tn)) is not in the domain of f4.

A weak ¥-embedding between the partial structures A = ({As}ses, {fatreq, {Pa}precpred)
and B = ({Bs}ses, {fB} req, { PB} Pepred) is a (many-sorted) family i = (is)ses of total maps
iy : Ay — B, such that

o if fa(ay,...,ay)is defined then fp(is, (a1),...,is, (ay)) is defined and i5(fa (a1, ..., an))
= flis,(a1),...,is,(an)), provided a(f) = s1...8, — s;

e for each s, is is injective and an embedding w.r.t. Pred i.e. for every P € Pred
with arity s7...s, and every as,...,a, where a; € As,, Pa(a1,...,ay) if and only
if Pg(is,(a1),...,is, (an)).

B APPENDIX B. PARTIAL ALGEBRAS 64

In this case we say that A weakly embeds into B.

In what follows we will denote a many-sorted variable assignment {3s:Xs — A, | s € S} as
8 : X — A. For the sake of simplicity all definitions below are given for the one-sorted case.
They extend in a natural way to many-sorted structures.

Definition 64 (Weak validity) Let (A,{fa}rca,{Pa}rcrrd) be a partial structure and
0: X—A.

(1) (A,B) Ewtrs iff (a) B(t) and B(s) are both defined and equal; or
(b) at least one of 3(s) and B(t) is undefined.
(2) (A,08) Ewtés iff (a) B(t) and B(s) are both defined and different; or

(b) at least one of 5(s) and B(t) is undefined.

(3) (A, B) Fw P(ty, -) iff (a) B(t1), ..., B(tn) are defined and (5(t1), ..., B(tn))€Pa; or
(b) at least one of B(t1), ..., B(tn) is undefined.

(4) (A, B)EwP(t1,....tn) iff (a) B(t1), ..., B(tn) are defined and (B(t1),...,0(t,))€Pa; or
(b) at least one of B(t1),...,B(tn) is undefined.

(A, B) weakly satisfies a clause C (notation: (A, () Ew C) if (A,B) Ew L for at least one
literal L in C. A weakly satisfies C' (notation: A =y, C) if (4, 8) Ew C for all assignments
8. A weakly satisfies a set of clauses IC (notation: A =y K) if Ay C for all C € K.

Definition 65 (Evans validity) FEvans validity is defined similarly, with the difference
that (1) is replaced with:

(1’) (A,B) Et=sif and only if
(a) B(t) and B(s) are both defined and equal; or
(b) B(s) is defined, t = f(t1,...,tn) and B(t;) is undefined for at least one of the

direct subterms of t; or

(c) both B(s) and B(t) are undefined.

Evans validity extends to (sets of) clauses in the usual way. We use the notation: (A,3) E L
for a literal L; (A,) = C and A |= C for a clause C, etc.

Example 39 Let A be a partial Q-algebra, where Q = {car/1,nil/0}. Assume that nils is
defined and car4(nil4) is not defined. Then:

o A [~ car(nil) = nil (since car(nil) is undefined in A, but nil is defined in A);

e A | car(nil) % nil;

o A=y car(nil) = nil, A =, car(nil) % nil (since car(nil) is not defined in A).
Definition 66 A partial X-algebra A is a weak partial model (resp. partial model) of Th

with totally defined Qo-function symbols if (i) A, is a model of Ty and (ii) A =y, K (resp.
AEK).

